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Supplementary Note 1: Device characterization

Our photodetectors represent two-terminal field-effect transistors (FET) and, therefore, the measured conductance
(Fig. 1d of the main text), which contains non-zero contribution from the BLG-metal contact, does not provide the
information on the quality of the FET channel. In order to estimate the mobility of charge carriers in the BLG channel,
we fabricated a reference multi-terminal Hall bar using the same procedure as described in Methods. The Hall bar
was characterized using the standard four-terminal geometry that involved the measurements of its sheet resistance
ρ as a function of carrier density n and temperature T (Supplementary Fig. 1). One can see a typical field-effect
behavior for high-quality graphene that manifests itself in sharp peak in ρ at the charge neutrality point which decays
steeply with increasing n. The charge carrier mobility µ was calculated using the Drude formula, µ = σ/ne, and for
typical n = 1012 cm−2 exceeded 10 m2/Vs at liquid helium T and remained around 2.5 m2/Vs at room temperature.

Supplementary Figure 1. Reference multiterminal BLG field effect transistor. Sheet resistance as a function of n for
different T measured in the standard four-terminal geometry. Left inset: Optical photographs of our reference Hall bar. Right
inset: Mobility as a function of T measured at n = 1012 cm−2.

Supplementary Note 2: High-responsivity THz detection in dual-gated BLG field effect transistors

As discussed in the main text, the responsivity of the THz detectors made of the field effect transistors is proportional
to the sensitivity of the FET conductivity to the gate voltage variation. To improve the performance of our detectors,
we took advantage of BLG’s gate-tunable band structure and fabricated a dual-gated device (top and bottom insets
of Supplementary Fig. 2a). The idea is that when an electric field is applied perpendicular to the channel it induces a
band gap in BLG that leads to a steeper dependence of the FET resistance R2pt on the gate voltage. Supplementary
Fig. 2a shows examples of R2pt(Vtg) dependences measured at few Vbg demonstrating the expected increase of R2pt

with increasing the average displacement field D = ε
2 (Vtg/dbg − Vbg/dtg) applied to BLG, where dbg (dbg) is the

thickness of the bottom (top) hBN crystal and ε is its dielectric constant.
Supplementary Fig. 2b shows the top gate voltage dependence of Ra measured in response to 0.13 THz radiation

in the dual-gated detector. In the case of zero back gate voltage (black curve), Ra(Vtg) repeats the behaviour of
another detector reported in Fig. 2a of the main text. Namely, the responsivity reaches its maximum of about 200
V/W near the NP where it flips its sign because of the change in the charge carrier type. Note, the absolute value of
the maximum responsivity is very close to that reported in the main text (Fig. 2b) highlighting the reproducibility
of our detectors’ performance. When the back gate voltage is applied, the responsivity increases drastically (red and
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blue curves in Supplementary Fig. 2b). Already for a moderate D ∼ 0.1 V/nm the responsivity increases by more
than an order of magnitude and exceeds 3 kV/W. The corresponding noise equivalent power, estimated using the
Johnson-Nyquist noise spectral density for the same D, reaches 0.2 pW/Hz1/2. This makes our detector competitive
not only with other graphene-based THz detectors1 but also with some commercial semiconductor and superconductor
bolometers (Table 1).

Supplementary Figure 2. Photoresponse of a dual-gated BLG detector. a, Two-terminal resistance as a function of
Vtg measured in a dual-gated BLG FET for different Vbg. Top inset: Schematic of a dual-gated THz detector. Bottom inset:
Optical photographs of the device. b, Responsivity as a function of Vtg for different Vbg measured at given f and T .

Detector NEP, pW/Hz0.5 Operation Temperature, K Reference
Superconducting

hot electron bolometer*
0.1 - 1 2.5 - 4.5

www.boselec.com
www.scontel.ru

Semiconductor
hot electron bolometer (e.g. InSb)

0.04 - 0.8 1.6 - 4.2 www.infraredlaboratories.com

Dual-gated bilayer graphene
THz detector

0.2 10 This work

Supplementary Table 1. Comparison of cryogenic THz detectors. *Reported values of NEP were taken for the same
frequency (0.13 THz) used to probe our dual-gated devices.

Supplementary Note 3: Further examples of resonant photoresponse

To illustrate that the observed resonant photoresponse is reproducible for different electronic systems embedded in
FETs of various lengths L and coupled to different antennas, Supplementary Fig. 3c shows another example of the
photovoltage ∆U(Vg) emerging when the incoming 2 THz radiation is coupled to the broadband logarithmic spiral
antenna connected to another FET. The latter is made of BLG having its crystallographic axis aligned with those of
hBN, that reveals itself in peculiar three-peaks R(Vg) structure, shown in Supplementary Fig. 3e. The photoresponse
curves are rather similar to those shown in Supplementary Fig. 2b of the main text, namely they follow the envelope
trend set by the FET-factor F = − 1

σ
dσ
dVg

(Supplementary Fig. 3d) superimposed with the resonant peaks. The

resonances are periodic in V
−1/2
g (inset to Supplementary Fig. 3c) and are clearly seen for both electron and hole

doping. Importantly, on the contrary to Fig. 2b, the photoresponse now changes sign multiple times following non-
trivial F (Vg) evolution.
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Supplementary Figure 3. Further examples of resonant photoresponse. a-b, Optical photographs of another THz
photodetector. FET channel is coupled to incoming radiation by a broadband logarithmic spiral antenna. The red rectangle in
(a) indicates the region shown in (b). c, Photovoltage versus Vg recorded as a response to f = 2 THz radiation in one of our

BLG/hBN superlattice devices. Arrows point to the resonant peaks. Inset: Mode number k as a function of V
−1/2
g taken from

the peaks marked by the blue arrows. Black: theoretical dependence expected for L = 4 µm, m = 0.036me and rsrd = −1.
d, FET-factor F as a function of Vg obtained from the data in (a). e, Resistivity as a function of Vg for the device in (a-b)
measured at T = 10 K. Three peaks correspond to the secondary neutrality points of BLG/hBN superlattice.
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Supplementary Note 4: Resonant detection of sub-THz radiation

We have also studied the performance of our detectors at frequencies intermediate to those reported in Figs. 2a and
b of the main text and found that the resonant operation onsets already in the middle of the sub-THz domain. Figure
4 shows the gate voltage dependence of Ra recorded in response to 460 GHz radiation. In the vicinity of the charge
neutrality point (NP) the responsivity peaks and changes its sign in agreement with the evolution of the FET-factor
with the gate voltage (black curve in Supplementary Fig. 4) as discussed in the main text. However, away from
the NP the responsivity peaks for both electron and hole doping (stars in Supplementary Fig. 4) despite the fact
that F (Vg) is featureless. These peaks stem from the plasmon resonances in the FET channel as it follows from the
comparison of the experimental data with theory (inset of Supplementary Fig. 4). In good agreement with theory,
at lower frequencies the number of resonant modes, which can be observed for the same gate voltage span, is smaller
compared to that found at 2 THz (Fig. 2b of the main text). In addition, the resonances appear much broader than
those observed at 2 THz (Fig. 2b) which is consistent with the reduced quality factor at sub-THz frequencies.

Supplementary Figure 4. Resonant detection in the sub-THz domain. Normalized to unity Ra as a function of Vg

measured in response to 460 GHz radiation. Data is acquired on the same device as in Fig. 2 of the main text. Two resonances
are clearly visible for electron and hole doping and marked by the black stars. Black curve: FET-factor as a function of Vtg.
Inset: Theory for L = 6 µm, f = 460 GHz, m = 0.036me, T = 10 K and τ = 0.6 ps (eq. 38).

Supplementary Note 5: Fabri-Perot cavity model for plasmonic field-effect transistor

Gated two-dimensional electronic systems support plasma waves with the dispersion relation2

ω(ω + iτ−1) =
n0e

2q

2m∗ε0ε
(1− e−2qd). (1)

where ω and q are the plasmon wavelength and wave vector, respectively, τ is the momentum relaxation time, n0
is the carrier density, m∗ is the effective mass of charge carriers, d it the distance to the gate, ε is the dielectric
permittivity, and ε0 is the vacuum permittivity.

Confinement of a 2d channel by source and drain contacts quantizes the wave vector q and leads to emergence of
discrete plasmon frequencies. The quantization conditions can be obtained by requiring the oscillating quantity (e.g.
voltage Vω) to return to its original value after the channel round trip:

Vωrsrde
2iqL = Vω, (2)

where rs and rd are the complex-valued reflection coefficients at the source and drain terminals, respectively. Therefore,
eigen frequencies of bounded plasmons can be found from

1− rsrde2iqL = 0. (3)

To see that the latter dispersion relation indeed appears in the nonlinear response functions, we model the FET
channel as a transmission line (TL) fed by antenna voltage U1ω = Va cosωt at the source side3,4. The antenna may
have finite impedance Za which will be taken into account at the end of this section. The TL is terminated by load
impedance Zgd at the drain side, and by impedance Zgs at the source side. In real device, these impedances are due
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Supplementary Figure 5. Transmission line equivalent circuit of gated 2d channel. L is the kinetic inductance of
electrons, ρ is the channel resistivity, C is the effective gate-to-channel capacitance, and Zgd is the load resistance at the drain
side. All quantities are measured per unit length of the channel. Zgd →∞ corresponds to Dyakonov-Shur boundary condition

to the capacitive coupling between the respective electrodes. The TL model is justified by the formal coincidence of
TL equations (Telegrapher’s equation) with transport equations in a gated FET channel.

The TL elements are specific inductance

L =
m∗

n0e2W
, (4)

capacitance per unit length

C =
2Wεε0q

1− e−2qd
, (5)

and resistance

ρ = L/τ, (6)

where W is the channel width. It is readily seen that the dispersion relation for waves in an infinite transmission line5

q =
√
CL
√
ω(ω +

iρ

L
) (7)

coincides with plasma wave dispersion (1) with proper values of line parameters (4-6). The characteristic (wave)
impedance of transmission line is

Ztl =

√
ωL+ iρ

ωC
. (8)

A well-known result for current reflection coefficient from a loaded (drain) end of transmission line reads

rd =
Ztl − Zgd

Ztl + Zgd
, (9)

while for source end with fixed voltage

rs = 1. (10)

When the reflection coefficients and conditions at the ends of cavity are specified, it is straightforward to write
down the solution for voltage across the TL (which is the gate-to-channel voltage in the actual FET):

Vω(x) =
Va
2

eiqx − rsrde−iq(x−2L)

1− rsrde2iqL
, (11)

here rd and rs are given by Eqs. (9) and (10), respectively. The longitudinal electric field in the channel is given by

Exω =
qVa
2

eiqx + rsrde
−iq(x−2L)

1− rsrde2iqL
. (12)

As the nonlinear response of the FET is proportional to the properly averaged square of ac electric field in the channel
(12), it becomes apparent that responsivity would possess a plasma resonant factor |1− rsrde2iqL|−2, independent of
the detection mechanism.
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The account of finite antenna impedance results in a a simple ”renormalization” of input voltage in Eqs. (11) and
(12):

Va →
Va

1 + Za

Zgs‖Ztl,in

, (13)

where ‖ stands for parallel connection of impedances, and Ztl,in = Ztl(1−rde2iqL)/(1+rde
2iqL) is the input impedance

of the transmission line (we have used rs = 1). It is straightforward to show that the modification of input voltage
can be translated in the modification of ”resonant denominator”

1− rde2iqL → (1− rde2iqL)

[
1 +

Za
Zgs

]
+ (1 + rde

2iqL)
Za
Ztl

. (14)

The effect of Za in the square bracket is the reduction of input voltage due to the drop at internal antenna resistance.
Finite value of Za in the second term leads to extra broadening or resonances, as analyzed below.

Supplementary Note 6: Gate tuning of graphene plasmons: monolayer vs bilayer

We briefly review the density dependences of plasmon frequencies in single layer graphene (SLG) and bilayer graphene
(BLG). The general dispersion relation for gated plasmons in two-dimensional electron system with sheet conductivity
σ reads2

1 +
iqσ

2ωεε0
(1− e−2qd) = 0. (15)

The study of plasmon dispersions in various two-dimensional systems is therefore reduced to evaluation of their
frequency-dependent conductivity. In the classical (~ω � εF ) long-wavelength (q � ω/vF ) limit, the latter is found
from the Boltzmann equation6

σ =
e2

2

+∞∫
0

dερ(ε)
v2p

−iω + τ−1p

(
−∂f0
∂ε

)
, (16)

where ρ(ε) is the density of states, vp is the velocity of carrier with momentum p, and f0 is the equilibrium distribution
function. In case of BLG, ρ(ε) = 2m/π~2, vp = p/m, which results in ordinary Drude conductivity

σBLG =
ne2τp/m

1− iωτp
. (17)

In case of SLG, ρ(ε) = 2ε/π~2v2F , vp = vF , and the conductivity reads

σSLG =
e2

π~2
kT ln(1 + eεF /kT )

−iω + τ−1p
≈ e2

π~2
εF

−iω + τ−1p
. (18)

The latter equality is valid at low temperatures. Using the low-temperature relation between density and Fermi
energy in SLG n = ε2F /p~2v2F , we readily observe that classical conductivity of SLG is still given by the Drude

formula (17) with density-dependent mass m → εF /v
2
F ∝ n1/2. Combining Eqs. (15), (17) and 18, we observe that

plasma frequency in BLG scales as ω ∝ n1/2, while in SLG ω ∝ n1/4.

Supplementary Note 7: Resonance broadening and plasmon lifetime

Before discussing the physics beyond THz rectification, we specify mechanism-independent quantities, namely, the
positions of plasma resonances and resonance width. Introducing the complex reflection phase

exp [iθ′r − θ′′r ] = −rsrd, (19)

we transform the ”resonant denominator” in eq. (1) of the main text

R(ω, Vg) ∝ |1− rsrde2iqL|−2 =
1

2

eθ
′′
r +2q′′L

cosh(θ′′r + 2q′′L) + cos(θ′r + 2q′L)
, (20)
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The maxima of responsivity correspond to wave vectors

q′0 =
π

2L
(2k + 1 + θ′r/π). (21)

In the case of Dyakonov-Shur boundary conditions realized in our devices, θr = 0, and the first resonance corresponds
to L equal to the quarter of plasmon wavelength. Assuming reflection and scattering losses to be small, the lineshape
(20) can be transformed to Lorentzian in the vicinity of each peak

R(ω, Vg) ∝
eθ
′′
r +2q′′L

(q′′L+ θ′′r /2)2 + (q′ − q0)2L2
. (22)

The full width at half-height is given by

δq

q0
=

1

ωτ
+

2

π

ln |rsrd|−1

2k + 1
≡ 1

ωτp
, (23)

here we have introduced the plasmon lifetime τp which is below the scattering time τp due to resonator loss. It is also
possible to take into account the effect of finite antenna resistance on plasmon linewidth. To this end, one should
transform resonant denominator of the form (14) in the vicinity of resonance. This leads us to

1

ωτp
=

1

ωτ
+

2

π

ln |rsrd|−1 + 2Z ′a/Z
′
tl

2k + 1
. (24)

The above equation clearly demonstrates that inverse plasmon lifetime τ−1p is the sum of electron momentum relaxation

rate τ−1, contact damping rate

τ−1cont =
2ω

π

ln |rsrd|−1

2k + 1
=
s

L
ln |rsrd|−1 ∝

√
Vg, (25)

and damping rate due to antenna resistance

τ−1ant =
2s

L

Z ′a
Z ′tl
∝ Vg. (26)

The two latter contributions to damping rate are minimized in the vicinity of charge neutrality point. Examples of
calculated plasmon lifetime including the contributions of contacts and antenna are shown in Supplementary Fig. 6.
Effects of radiative contribution to plasmon damping on detector responsivity is shown in Supplementary Note 9,
along with the discussion of detection mechanisms.
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Supplementary Figure 6. Plasmon damping. Calculated plasmon lifetimes assuming momentum relaxation time τ = 2
ps and no antenna and contact losses (red), lossless antenna and reflection coefficient |rsrd| = 0.5 (blue), antenna resistance
Z′a = 75 Ohm and perfect reflection (green). Plasmon velocity s at charge neutrality point is limited by residual carriers with
density n∗ = 5× 1010 cm−2.

As the wave vector at fixed frequency is inversely proportional to wave velocity, q = ω/s ∝ V −1/2g , expression (23)
can be transformed to the voltage scale

δV
−1/2
g

V
−1/2
g

=
1

ωτp
. (27)
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Supplementary Note 8: Photothermoelectric rectification in Fabri-Perot cavity

Asymmteric feeding of THz radiation results in asymmetric heating of the device and emergence of thermoelectric
effect. The resulting dc voltage is7

eVpte = (Sch − Scont) [Ts − Td] , (28)

where Sch is the Seebeck coefficient in the gated channel, and Scont – in the metal-doped graphene contact, Ts is the
local temperature at the source junction and Td is at the drain junction . From now on, we refer to the gated part
of graphene as ”channel” and ungated part – as ”contact”. The doping of ungated part does not depend on gate
voltage, however, it can be non-uniform due to the effects of built-in field near metal contacts.

The temperature difference Ts − Td induced by non-uniform heating of the device can be found from the solution
of heat transfer equation in the channel:

∂2T

∂x2
+
T − T0
L2
T

= −q(x)

χch
, (29)

(30)

where q(x) = 2Reσω|Exω|2 is the Joule heating power, χch is the electron thermal conductivity in the channel,
LT = (χchτε/Ce)

1/2 is the thermal relaxation length, τε is the energy relaxation time due to heat sink into substrate
phonons8, and Ce is the heat capacitance of the electronic system. Equation (29) is supplemented by the boundary
conditions at the boundaries of gated domain

χcont
Lcont

(Ts − T0) = χch∇Ts,
χcont
Lcont

(Td − T0) = −χch∇Td; (31)

these conditions follow from the continuity of heat flux at the interfaces. The sought-for temperature difference
between source and drain can be obtained in the closed form under the following simplifying assumptions (1) the
Joule heating occurs only in the channel (2) the temperature drop across the contacts is much less than maximum
overheating in the channel. Both conditions are justified by the small length of the contacts Lcont � L. Under these
assumptions, the expression for the photo-thermoelectric voltage acquires a physically appealing form

eVpte = (Sch − Scont)
lcont
χcont

∫ L

0

2Reσω|Exω|2
sinh x−L/2

LT

sinh L
2LT

dx. (32)

The quantity χcont/lcont is the thermal conductance of the contact, while the integral is the difference of heat
fluxes traveling toward the source and toward the drain. The kernel of the integral is anti-symmetric with respect to
the middle of the channel x = L/2, therefore, the PTE signal appears only due to asymmetric heating q(x). Final
evaluation of PTE voltage is performed by substituting the solution for electric field (12) into (32):

eVpte = (Sch − Scont)
2LcontLTReσω

χcont

|q|2V 2
a

eq
′′L+θ′′r /2|1− rsrde2iqL|2

×[
sin 2α′

2q′LT cos q′L− coth L
2LT

sin q′L

1 + (2q′LT )2
+ sinh 2α′′

2q′′LT cosh q′′L− coth L
2LT

sinh q′′L

1− (2q′′LT )2

]
, (33)

where α = θr + qL/2.

Supplementary Note 9: Dyakonov-Shur rectification in Fabri-Perot cavity

The so-called Dyakonov-Shur rectification includes two physically different nonlinearities. One contribution to the
rectified current appears due to simultaneous modulation of 2d channel conductivity and application of longitudinal
field. This effect, also known as resistive self-mixing, results in the rectified voltage

Vrsm = 2Re

∫ L

0

1

σω=0

dσω
dVgc

V−ω(x)
∂Vω(x)

∂x
dx. (34)

Here σω=0 = ne2τ/m is the dc conductivity of a 2D channel, n is the carrier density, e and m are the elementary
charge and effective mass of charge carriers respectively, τ is the momentum relaxation time, and σω = σω=0/(1−iωτ)
is the high-frequency conductivity. Evaluation of the integral leads us to the result

Vrsm =
V 2
a /Vg√

1 + ω2τ2

q′′

q′ [cos θ′r − cos(θ′r + 2q′L)] + q′

q′′ [cosh θ′′r − cosh(θ′′r + 2k′′L)]

2eθ
′′
r +2q′′L|1− rsrde2iqL|2

(35)
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Supplementary Figure 7. Dyakonov-Shur photoresponse. Calculated Dyakonov-Shur responsivity of BLG FET detector as
a function of gate voltage at different values of antenna impedance. All curves are normalized by their maximum value reached
in the vicinity of NP. Parameters: channel length L = 6 µm, momentum relaxation time τ = 2 ps, radiation frequency f = 2
THz, gate-channel separation d = 80 nm, residual carrier density n∗ = 5× 1010 cm−2.

Another contribution to rectified voltage stems from the difference of kinetic energies of electron fluid at the source
and drain side (Bernoulli law). The underlying nonlinearity is manifested by convective term (u∇)u in the Euler
equation for electron fluid9. The corresponding rectified voltage is

eVnl =
e2

m∗(ω2 + τ−2)

[
|Exω(L)|2 − |Exω(0)|2

]
, (36)

where Exω is the complex amplitude of high-frequency longitudinal field in the channel given by (12). Using the result
for electric field (12), we find

Vnl =
1

4

V 2
a /Vg√

1 + ω−2τ−2

∣∣1 + rsrde
2iqL

∣∣2 − ∣∣(1 + rsrd)e
iqL
∣∣2

|1− rsrde2iqL|2
. (37)

Equations (35) and (37) generalize the known results of Dyakonov and Shur for arbitrary loading of the plasmonic
FET at the terminals. Naturally, they reduce to the result of Ref. 9 for high-impedance drain load θr = 0, yielding
the photovoltage given by:

∆U = −1

4

V 2
a

Vg

1 +
2√

1 + (ωτ)−2
−

1 + 2 cos 2q′L√
1+(ωτ)−2

sinh2 q′′L+ cos2 q′L

 , (38)

The factor in square brackets peaks when the length of the FET channel matches odd multiples of the plasmon
quarter-wavelength.

We note that Eqs. (35), (37) and (38) diverge as the dc gate voltage Vg tends to zero. In fact, this divergence stems
from the gradual-channel approximation, relating carrier density and gate voltage CVg = en, that fails near the charge
neutrality point. The account of ambipolar transport involving electrons and holes leads to a simple replacement in
Eqs. (35), (37) and (38):

1

Vg
→

n/m2
n − p/m2

p

n/mn + p/mp

1

s2
, (39)

where n and p are electron and hole densities, mn and mp are their effective masses, and s2 = (n/mn + p/mp)e
2/C

is the plasma wave velocity in ambipolar system.
In the main text, the experimental photoresponse was compared with the DS photovoltage from eq. (38) corrected

by eq. (39). The full picture of calculated Dyakonov-Shur photovoltage vs gate voltage is shown in Supplementary
Fig. 7. Along with the result for perfect reflection from the drain and ideal voltage source (Za = 0, red line), it
also shows the effect of finite antenna impedance on resonance width (green and blue lines). In accordance with
the discussed antenna-induced ”renormalization” of input voltage, eq. 13, the resonances at high carrier density are
highly broadened due to finite Za. The width of resonances at low density, on the contrary, is mainly determined by
momentum relaxation time.
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Supplementary Note 10: Detector operation outside the linear regime

The data reported in the main text were obtained in the regime where the detector’s photovoltage grew linearly
with the power P of incoming radiation. With increasing P outside the linear regime, the heating of graphene’s
electronic system by high-frequency ac capacitive currents flowing between the source and gate terminals may affect
the resulting responsivity. In order to reveal the role of heating, we have studied the response of our detectors at
varying P and found that outside the linear regime, Ra decreases with increasing P . We attribute this decrease to the
modification of the channel conductivity with increasing electronic temperature. To support this statement, we plot
the FET-factor obtained by measuring the samples conductivity at different T inside the sample chamber. Clearly, Ra

acquired at different P follows the evolution of the FET-factor F with T . This is reflected in the shift and decrease of
the responsivity extrema with increasing P . We also refer to Fig. 2a of the main text which shows Ra(Vg) at different
T that resembles the behaviour shown in Supplementary Fig. 8.

Supplementary Figure 8. Role of electron heating. Normalized to unity responsivity as a function gate voltage measured in
one of our BLG detectors at given T and f for different P . P0 = 4 µW. Inset: FET-factor as a function of Vg for different T .
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