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Supplementary Note 1: Organization of the macaque pulvinar 1 
The primate pulvinar is anatomically and functionally heterogeneous. It is sensitive to a variety of visual 2 
features 1, 2, 3 and cognitive states 4, 5, 6, 7, 8, 9, 10. Traditionally, the pulvinar has been anatomically divided into 3 
lateral (PL), inferior (PI), medial (PM), and anterior (oral) regions in non-human primates 11, although more 4 
recent studies have identified finer segmentations within lateral and inferior regions 12, 13, 14, 15. Inferior, lateral, 5 
and medial subdivisions of the pulvinar are interconnected with cortical regions involved in visual processing. 6 
The lateral pulvinar and lateral subdivisions of the inferior pulvinar are interconnected with occipital cortex 12, 7 
16, 17. Medial subdivisions of the inferior pulvinar are interconnected with several middle temporal areas 8 
including MT, MST, and FST 18, 19, 20, 21. The medial pulvinar and dorsal sections of the lateral pulvinar are 9 
anatomically connected with parietal, frontal, and cingulate cortex 18, 22, 23. 10 
 11 
Supplementary Note 2: Organization of cortical coupling in motion-sensitive cortex 12 

Functional coupling of motion-sensitive cortical areas TO1/2 was localized to the ventral pulvinar 13 
(Figure 6b). While anatomical subregions could not be resolved within the human ventral pulvinar, the foci of 14 
these correlations were medial to the correlations of area V1 and anterior to ventral temporal areas, consistent 15 
with the location of medial subdivisions within the inferior pulvinar (PIcm, PIm, and Pip) that are anatomically 16 
interconnected with motion sensitive areas (MT complex) in monkeys 19, 24. Interestingly, TO1/2 (possible 17 
homologue to monkey MT complex) were clustered with human occipital and temporal areas based on the 18 
network-level analyses of pulvino-cortical connectivity (Figure 2). The MT complex is traditionally associated 19 
with the dorsal stream 18, 25, 26. However, comparable network-level analyses have not been performed based on 20 
pulvino-cortical connectivity in monkeys. A similar analysis based solely on cortico-cortical anatomical 21 
connectivity in macaques found a close link between MT and dorsal areas V3A and V3 27 whereas an analysis 22 
of cortico-cortical functional coupling in humans found a closer link between TO1/2 and ventral stream areas 23 
LO1/2 28. Future work will be needed to resolve the relationship of MT to TO1/2 and their connectivity with the 24 
pulvinar across species. 25 

The functional coupling between the pulvinar and TO1/2 appears to be situated within a broader 26 
topography linking lateral temporal regions and the ventral medial pulvinar. The foci of functional coupling for 27 
lateral temporal cortical regions, EBA and pSTS, were also found within medial portions of the ventral 28 
pulvinar, proximal to the TO foci. Though monkey homologues of these regions remain to be resolved, cortical 29 
regions surrounding MT in monkeys (e.g., FST and STP) are interconnected with parts of the pulvinar proximal 30 
to MT connections (i.e., adjacent to PIm) 18. These data suggest that discrete pulvinocortical connections (such 31 
as between MT and PIm 19, 20, 21) are embedded within a larger framework that preserves cortical topography 23. 32 
 33 
Supplementary Note 3: - V1 cortical distance 34 
To evaluate the influence of individual areas on the relationship between cortical distance and pulvino-cortical 35 
functional coupling, comparisons were made relative to a single reference area. V1 as the reference area (i.e., 36 
the distances between each area and V1) yielded the strongest correlation between cortical distance and the 37 
peaks of functional connectivity (Supplementary Figure 3a). To illustrate this relationship, we plotted the 38 
distances of peak correlations for all occipital-temporal areas (Supplementary Figure 3b) and for the subset of 39 
occipital, face-, and scene-selective ventral temporal areas (Supplementary Figure 3c) relative to V1. The 40 
distances for occipital-temporal areas fell close to a line between V1 and the maximally distant temporal area, 41 
AT. 42 
 43 
 44 
Supplementary Methods:  45 
 46 
Retinotopic Mapping.  All subjects participated in a single scan session in which polar angle and eccentricity 47 
representations were measured across cortex using a standard traveling wave paradigm consisting of a wedge or 48 
annulus, respectively 29. A subset of these subjects participated in two additional scan sessions in which polar 49 



 

 2 

angle and eccentricity representations were measured within the pulvinar using a similar paradigm, but scanning 50 
protocols optimized for subcortical structures 30. Stimuli mapped the central 15° of the visual field. Due to 51 
limitations of the scanner bore size and viewing angle, peripheral representations beyond 15° were not mapped 52 
nor included in any analyses. Each run consisted of eight 40s cycles. For each subject, 2-5 runs were collected 53 
for cortical mapping and 8-10 runs were collected for pulvinar mapping. Fourier analysis 31, 32, 33 was used to 54 
identify voxels that were sensitive to the spatial position (i.e., polar angle) of a peripheral cue during the task. 55 
Early visual and extrastriate areas V1, V2, V3, hV4, V3A–B, VO1–2, PHC1-2, LO1-2, TO1-2 were defined 56 
using standard criteria reported previously 32, 34, 35, 36, 37. Pulvinar visual field maps, vPul1 and vPul2, and other 57 
subcortical visual field maps were defined using standard criteria previously published 30, 38, 39. 58 

 All subjects participated in a single scan session in which a memory-guided saccade task was used to 59 
localize topographically organized areas in parietal and frontal cortex 40, 41. This task incorporates covert shifts 60 
of attention, spatial working memory, and saccadic eye movements in a traveling wave paradigm. The detailed 61 
description of the design and scanning parameters is provided in 40, 41. Briefly, subjects had to remember and 62 
attend to the location of a peripheral cue over a delay period while maintaining central fixation. After the delay 63 
period, subjects had to execute a saccade to the remembered location and then immediately back to central 64 
fixation. The target cue was systematically moved on subsequent trials either clockwise or counterclockwise 65 
among eight equally spaced locations. Each run was composed of eight 40 s cycles of the eight target position 66 
sequence. A total of eight runs were collected in a single scan session for each subject. Fourier analysis 31, 32, 33 67 
was used to identify voxels that were sensitive to the spatial position (i.e., polar angle) of a peripheral cue 68 
during the task. Parietal and frontal areas IPS0-5, SPL, FEF, and IFS were defined using criteria previously 69 
published 41, 42.  70 

 71 

Object localizer. Sixteen subjects participated in a single scan session in which a standard object category 72 
localizer was used to define the occipital face area OFA; 43, fusiform face area FFA; 44, 45, anterior temporal 73 
face-selective area AT; 46; the posterior superior temporal face area pSTS46; extrastriate body area EBA; 47, 74 
fusiform body area FBA; 48, parahippocampal place area PPA; 49, 50, transverse occipital sulcus TOS; 51, and 75 
retrosplenial cortex RSC; 52, and lateral occipital complex LOC53. Briefly, grayscale pictures of images (~12° x 76 
12°) from five different categories (faces, headless bodies, inanimate objects, scrambled images, and scenes) 77 
were presented in 15s blocks, each containing 20 stimuli (350ms duration, 400ms interstimulus interval). 78 
Subjects viewed 12 blocks per stimulus category over the course of 4 runs. During stimulus presentation, 79 
subjects maintained central fixation and performed a one-back task indicating the repeated presentation of an 80 
object. Stimuli for each block were drawn from one of five categories: faces, scenes, headless bodies, intact 81 
generic objects, and scrambled pictures of generic objects. The OFA was defined as a region within the 82 
occipitotemporal sulcus that showed significantly stronger activity during the presentation of faces compared 83 
with intact object stimuli (p < 0.0001). The FFA was defined as a region within the lateral fusiform sulcus based 84 
on the same statistical criteria. For many subjects, this region included two distinct sub-regions in close 85 
anatomical proximity FFA-1/2; 46 pFus/mFus; 54. AT was defined as a region within anterior temporal cortex 86 
based on the same contrast, though with a slightly lower threshold (p < 0.01). The pSTS was defined as a region 87 
within the posterior superior temporal sulcus that showed significantly stronger activity during the presentation 88 
of faces compared with intact object stimuli (p < 0.0001). The EBA was defined as a region within the lateral 89 
occipitotemporal cortex that showed significantly stronger activity during the presentation of headless bodies 90 
compared with intact object stimuli (p < 0.0001). The EBA partially overlapped retinotopic areas LO2 and TO1. 91 
The FBA was defined as a region within the fusiform sulcus based on the same statistical criteria. In several 92 
subjects, the FBA partially overlapped the FFA. Overlapping voxels were assigned to either the FFA or FBA 93 
based on contrasting activity during face and headless body presentations. The PPA was defined as a region 94 
within the posterior parahippocampal cortex within the collateral sulcus and along the medial fusiform sulcus 95 
that showed significantly stronger activity during the presentation of scenes compared with intact object stimuli 96 
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(p < 0.0001). The PPA largely overlapped with retinotopic areas PHC1-2. Since the PPA was localized using a 97 
different experiment and may represent functional dissociations within this part of cortex, voxels were not 98 
restricted to non-overlapping portions. The TOS was defined as a region within the transverse occipital sulcus 99 
based on the same statistical criteria as the PPA. TOS partially overlapped with retinotopic areas V3B, IPS0, 100 
and LO1. The RSC was defined as a region within retrosplenial cortex based on the same statistical criteria as 101 
the PPA. LOC was defined as a region within the posterior superior temporal sulcus that showed significantly 102 
stronger activity during the presentation of intact objects compared with scrambled stimuli (p < 0.0001). Since 103 
the areas EBA, PPA, LOC, and TOS were localized separately from retinotopic mapping and may represent 104 
functional dissociations, voxels were not restricted to portions of cortex non-overlapping with retinotopic areas. 105 
Group-level regions were identified using a mixed effects meta-analysis (AFNI’s 3dMEMA). 106 
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Supplementary Figures 276 

 277 
Supplemental Figure 1. Category localizer responses in the pulvinar and cortex. (a) Individual subject and group mean 278 
betas for face, headless body, object, scrambled, and scene categories in the posterior pulvinar. (b) Cortical activity for 279 
face vs. scene stimuli (p < 0.05, FDR-corrected, n = 16). Bar graphs show the group average and S.E.M for each 280 
category. Grey circles illustrate individual subjects. 281 
 282 
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Supplementary Figure 2. Resting state pulvino-cortical coupling predicts functional tuning within the pulvinar. 284 
Correlation between the spatial pattern of face-minus-scene betas and each cortical areas funcitonal coupling within the 285 
pulvinar. The functional coupling at rest for face-selective cortical areas pSTS, AT, and FFA were most predictive of the 286 
face-minus-scene contrast within the pulvinar. 287 
 288 
 289 

 290 
Supplementary Figure 3. Pulvino-cortical coupling reflects cortical distance from V1. (a) Graph shows the cortical 291 
distance correlation relative to each of the ventral areas. (b) A plot of the cortical distance relative to V1 vs. distance of 292 
peak location relative to V1 in the pulvinar for all 24 areas in Figure 6c. (c) Same plot as in (b), but for the subset of 293 
areas reported in Figure 6d. 294 


