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I. Supplementary Discussion 
In order to facilitate the use of the structural variants that we identify in the 

commonly used cancer cell lines profiled as part of this study, we have examined 
SVs in each cell line and compared these with previously reported recurrent SVs 
in each cancer type.   

 
Prostate Cancer Cell Lines 
 It is estimated that greater than 50% of prostate cancers harbor gene 
fusions for ETS family transcription factors, namely ERG, ETV1, ETV4, and ETV5 
[1].  Our study examined two prostate cancer cell lines, LNCaP and PC-3.  
Interestingly, neither of these cell lines harbors an ETS family gene fusion.  
However, LNCaP cells harbor a gene fusion between the MIPOL1 gene on 
chromosome 14 and the DGKB gene on chromosome 7, which is immediately 
upstream from ETV1 [2], and ETV1 has been shown to be critical for LNCaP cell 
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invasion [3, 4]. Our Hi-C data indicates that the rearrangement resulting in the 
MIPOL1-DGKB gene fusion also results in the creation of a fusion TAD, which 
includes the downstream ETV1 gene, suggesting that ETV1 expression in these 
cells may be the result of repositioning of the gene into a novel regulatory 
environment (Supplementary Fig. 24a).   
 PC-3 cells have been shown previously to express high levels of ETV4 and 
lack expression of ERG, ETV1, and ETV5 [5].  Further, ETV4 is essential for 
anchorage independent growth and cell migration in PC-3 cells [5].  Interestingly, 
rapid amplification of cDNA ends (RACE) assays of the ETV4 transcript in PC-3 
cells do not identify any 5’ fusion partners, indicating the high levels of ETV4 
expression are not the result of a gene fusion [5].  We identify a translocation 
upstream of the ETV4 gene fusion its locus on chromosome 17 with a locus on the 
long arm of chromosome 15 (Supplementary Fig. 24b).  This appears to create a 
novel TAD fusion event as the result of this translocation.  
 
Neuroblastoma Cell Lines 
 We analyzed data from two neuroblastoma cell lines, SK-N-DZ and SK-N-
SH.  SK-N-SH carries a translocation between chromosomes 7 and 8 near the 
MYC gene that appears to create a gene fusion (Fig. 5f).  SK-N-DZ is a 
neuroblastoma cell line that expresses high levels of N-MYC and is reported to 
carry and MYCN amplification [6].  The MYCN gene is found on chromosome 2. 
Paradoxically, karyotyping data from the American Type Culture Collection 
(ATCC) and the European Collection of Authenticated Cell Cultures (ECACC) 
indicates that SK-N-DZ is a 44XX cell line that lacks both copies of chromosome 2.  
Interestingly, ATCC karyotyping also identifies several marker chromosomes, one 
of which contains a homogeneous staining region (HSR).  In addition, SNP array 
CNV typing of the SK-N-DZ cell line identified the presence of chromosome 2 with 
several copy number alterations [7].   

Our Hi-C data indicates that chromosome 2 in SK-N-DZ cells is the single 
most heavily rearranged chromosome in all of the cell lines we have analyzed in 
this study, with 46 independent rearrangements identified in chromosome 2 alone 
(Supplementary Fig. 24c,d).  Our interpretation is that chromosome 2 has 
undergone a complex chromosomal rearrangement in these cells, possibly due to 
processes such as chromothripsis, and has experienced an amplification of the 
MYCN gene within this heavily rearranged chromosome.  This would explain the 
apparent “loss” of chromosome 2 from karyotyping while still observing 
chromosome 2 genetic material from SNP array CNV analysis, and potentially 
explain the presence of a marker chromosome with an HSR. 

We have additionally profiled the SK-N-AS neuroblastoma cell line.  As 
mentioned in Fig. 5g, this cell line, like SK-N-SH, carries a translocation near the 
MYC gene that appears to create a TAD fusion event.  In addition, recurrent 
structural variations near the TERT gene have recently been identified in 
neuroblastoma samples [8, 9].  We find a ~50Mb inversion in chromosome 5 in 
SK-N-AS that maps downstream from the TERT gene which appears to create a 
TAD fusion in the vicinity of the TERT gene (Supplementary Fig. 24e).  This 
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indicates that the SK-N-AS cell line may serve as a useful model for study the 
effects of TERT rearrangements in neuroblastoma tumors. 
 
Pancreatic Cancer Cell Line 
 Our study examined one pancreatic cancer cell line (PANC-1), which we 
found harbors multiple rearrangements near known pancreatic cancer oncogenes, 
namely KRAS and ERBB2.  Recent whole genome sequencing studies have 
identified recurrent focal amplifications of the ERBB2 gene, suggesting it may be a 
driver of pancreatic cancer [10].  Our analysis of PANC-1 cells identified a ~3Mb 
deletion on chromosome 17 upstream of the promoter of the ERBB2 gene, such 
that the gene forms a neo-TAD with novel interactions with a region normally 
located more than 3Mb away (Supplementary Fig. 24f).   
 In addition, we find a translocation between chromosome 11 and 12 that 
occurs near the KRAS gene.  KRAS is mutated in ~90% of Pancreatic cancers 
[10].  Analyzing previously generated exome sequencing data shows that Panc-1 
carries the G12D potent activating mutation in KRAS.   There appears to be copy 
number change of the KRAS locus as well, as the G12D allele exists at roughly a 
2:1 ratio to the wild type allele.  Interesting, there is a further imbalance in the 
allelic fraction of RNA-seq data, with the G12D allele expressed at a 3:1 ratio at 
the RNA level.  Our Hi-C results identify a complex rearrangement near the KRAS 
gene.  Interestingly, the only Hi-C sequence read pair where we find the G12D 
mutation in the KRAS gene on chromosome 12 is a read that aligns between 
chromosomes 11 and 12, suggesting that the G12D allele may also be the 
translocated allele. 
 
Breast Cancer Cell Lines 
 Our study examined two commonly used breast cancer cell lines T47D and 
MCF7.  MCF7 carries a complex rearrangement between chromosomes 17 and 20 
with 13 unique rearrangements detected either within or between the two 
chromosomes (Supplementary Fig. 24g).  Interestingly, these rearrangements 
include regions that are recurrently amplified in breast cancer, such as the 
17q23.1 and 20q13.2 loci [11].   
 T47D contains a translocation between chromosomes 8 and 14 
(Supplementary Fig. 24h) where the breakpoint site on chromosome 8 lines in a 
one of the most frequently amplified regions in breast cancer genomes [11].  This 
rearrangement appears to create a novel TAD containing the known breast cancer 
oncogene ZNF703 [12]. 
 
Lymphoma Cell Line 
 We analyzed previously published Hi-C data from the RL cell line [13].  This 
is a B-cell lymphoma cell line that has been previously shown to harbor a t(14;18) 
IGH-BCL2 rearrangement [13].  We identify this rearrangement using our 
algorithm.  We also find several additional rearrangements in this cell line.  One of 
these rearrangements is a t(3;8) translocation where the chromosome 8 
breakpoints maps ~120kb upstream of the MYC promoter.  The presence of the 
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BCL2 and MYC rearrangements suggests that RL may in fact be a “double hit” 
lymphoma cell line [14].  
 
Ewing’s Family Tumor 
 We profiled the SK-N-MC cell line using Hi-C, Bionano optical mapping, 
WGS, and karyotyping.  SK-N-MC was originally described as a Neuroblastoma, 
but subsequent identification of the EWSR-FLI1 fusion gene has led to the 
reclassification of this cell line as a Ewing’s Family Tumor.  We identify the EWSR-
FLI1 fusion gene using multiple independent methodologies.  Beyond, the EWSR-
FLI1 fusion gene, we also identify multiple intra-chromosomal rearrangements 
near the MYC gene, indicating that the SK-N-MC cell line harbors a MYC 
rearrangement as a second hit mutation.  
 
Melanoma Cell Lines 
 We profiled two melanoma cell lines, SK-MEL-5 and RPMI-7951.  SK-MEL-
5 contains a 6Mb deletion on the p-arm of chromosome 9 in a region that spans 
the CDKN2A locus, a region frequently deleted in melanoma [15].  Interestingly, 
there are no Hi-C reads at all that align to this entire region, indicating that SK-
MEL-5 is either haploid for chromosome 9 or that the deletion is bi-allelic.  We find 
several rearrangements in RPMI-7951, but none of them have been previously 
shown to be associated with melanoma [15]. 
 
Lung Cancer Cell Lines 
 We profiled two lung cancer cell lines as part of our study.  MYC gene 
amplifications have been previously shown to be a frequent events in lung cancer 
samples [16].  In the NCI-H460 cell line, we find a chromosome t(8;12) 
translocation at the MYC locus.  Examining the raw coverage plots in the Hi-C 
data also shows that this region has likely undergone a high-level amplification as 
well.  In A549, we identified a previously described WDR72-SCAMP2 fusion gene 
[17].  We find several additional rearrangements, but none are known to be 
recurrent structural variants in lung cancer [16].  
 
Other cell lines 

KBM7, K562 are both myeloid leukemia cell lines contain the BCR-ABL1 
fusion gene.  We identify this rearrangement in both cell lines.  In addition, we find 
multiple additional rearrangements, but no recurrent alterations or known structural 
variants associated with myeloid leukemia.  

SJCRH30 is a Rhabdomyosarcoma cell line known to carry the PAX3-
FOXO1 fusion gene.  We identify this rearrangement, but we identify no additional 
structural variants known to be associated with Rhabdomyosarcoma in this cell 
line. 

Several additional cell lines were profiled as part of our study.  In most 
cases we identified multiple SVs in each cell line.  However, the SVs we identified 
did not match any known recurrent SVs in their respective tumor types.  These 
could represent either novel low frequency recurrent SVs or simple passenger 
mutations.  The cell lines in this group include Caki-2, G401, MHH-CALL-4.  
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II. Supplementary Methods 
 

II.a. Filtration and classification of SVs detected by optical mapping 
Duplicates of SVs can be generated during SV detection from different contigs 
mapping to the same region, and such duplicate SV calls are merged into a single 
SV call. For deletions and insertions, we further remove small indels with a size 
smaller than 50bp. Many of the deletions we detect overlap with genomic gaps.  
This is most likely the result of overestimation of gap sizes.  In this sense, these 
are not true deletions but instead assembly errors (or regions with polymorphic 
gap sizes). We classify deletions as gap errors if the deletion recurrently appears 
in different cell lines and at least 30% of the deletion overlaps with gaps, and at 
least 80% of the gap overlaps with the deletion. We remove these “gap errors” 
from the list of deletions and use them for gap size re-estimation analysis.  

We also developed strategies to filter SVs in close proximity to the 
centromere.  In peri-centromeric regions, we noticed that contigs can have 
ambiguous alignments to multiple regions due to redundant labeling patterns, 
which result in the appearance of deletions that cross the centromere. We 
therefore remove recurrent large deletions (80% reciprocal overlap, >1Mb) 
crossing centromeres.  We further stratify deletions larger than 100kb into two 
categories, one where sequences within the deleted region show reduced 
mappability and one where the sequences are mappable. We then filter deletions 
over mappable regions that are not supported by a loss of coverage in WGS data. 
Deletions that are supported by valley of WGS coverage are annotated as “High 
confidence” in Supplementary Table 4.  

Defining inversions by Irys: A simple inversion involves two breakpoints and 
each breakpoint is represented by a pair of loci. Figure A below shows an example: 
the left breakpoint of this inversion occurs between nicking sites a-1 and a, and the 
right breakpoint occurs between nicking sites b and b+1. The orange sequence in 
the middle is inverted and forms two breakpoint junctions: the left junction between 
(a-1 and b) and the right junction between (a and b+1). We use the distance 
between sites a and b to approximate the size of this inversion (distance=b-a, 
Supplementary Table 4). To compare with inversions detected by other methods 
such as WGS and Hi-C, we used the junction of breakpoints (a-1, b) and (a, b+1) 
(reported in Supplementary Table 8). Such inversions with both junction of 
breakpoints resolved and four loci available are called “paired inversions”.  

 

Feng Yue
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Due to technical limitations, Irys may also detect an incomplete inversion in 

cancer genomes. As shown below, at the left end, Irys detects the junction of 
breakpoints (a-1, b) in the cancer genome, but at the other end, its contig stops at 
loci c and cannot reveal the real junction of other breakpoint. Such inversions with 
only one junction of breakpoint resolved are named “partial inversions” by Bionano 
Iry (Supplementary table 4). In this scenario, we use the distance between loci b 
and c (b-c) to calculate the minimal size of this inversion (Supplementary table 4). 
To compare with WGS and Hi-C, we only use the resolved breakpoint junction (a-1, 
b). Therefore, the two columns of positions reported Supplementary table 8 only 
represent the breakpoint junctions and cannot be used to estimate the size of 
inversion.  

 

 
 
According to a recent study from Pendleton et al. [18], some inversions 

detected against hg19 were no longer detected against hg38, and they turned out 
to be inverted assembly of contigs in reference genome hg19, which were 
corrected in hg38. Those inversions have a unique feature that they are flanked by 
genomic gaps at each side. We scanned through inversions detected by our 
pipeline against hg38 and also found inversions flanked by gaps, which could 
represent inverted assembly of genome contig in hg38, or variations across 
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populations that could be in both orientations in human genome. We thus remove 
such inversions to ensure we focus on genomic rearrangements and not genome 
assembly anomalies.      

We observed that regions of the reference genome that harbor similar 
sequences distributed across multiple regions appear to harbor recurrent 
translocations in many samples. This is most likely due to misalignment of optical 
DNA reads leading to fixed false detection of translocations. A list of recurrent 
false-positive translocations was hence generated by comparing translocations 
detected across ten samples (with difference less than 1Mb away for both 
breakpoints), and the calls matching the list were removed. This list of recurrent 
translocation did not match any translocations detected by Hi-C or WGS, 
confirming that these are likely false positives.  

II.b. Breakpoint calling based on Hi-C 

II.b.i. Overview and rationale 
We have developed a computational algorithm for detecting structural variants 
based on Hi-C data.  Previous reports have noted that structural variations cause 
marked deviation in interaction frequencies in Hi-C datasets as a consequence of 
the altered linear proximity of regions of the genome due to the rearrangement.  
Our purpose was to use this signature as a means of finding structural variants de 
novo from Hi-C data.  In brief, we use an iterative or progressive approach where 
we initially identify SVs at a resolution of 1Mb (for inter-chromosomal 
rearrangements) or 100kb bins (for intra-chromosomal rearrangements).  After the 
initial set of SVs are found using this low resolution binning, we progressively 
decrease the bin size and re-run the algorithm focused on the regions identified in 
the previous low resolution SV call set.  In other words, we first identify SVs at a 
resolution of 1Mb, and then we identify SVs within the regions identified at 1Mb 
resolution using 100kb bins.  This process is repeated until the final minimum bin 
size is reached. This minimum bin size is largely defined based on the restriction 
enzyme used in the Hi-C experiment.  For 6-base cutting enzyme which would be 
expected to cut every ~4kb, we use a minimum bin size of 10kb.  For 4-kb cutting 
enzymes, which would be expected to cut every ~200-300 bp, we use a minimum 
bin size of 1kb.  Some SVs will not be able to be identified at higher resolution 
passes of the algorithm.  We have seen that this often occurs when the SV 
breakpoints appear to be near large repetitive regions. For instance, many 
rearrangements that whose “peak” signal is immediately adjacent to the 
centromeric region of a chromosome (and therefore the break potentially lies 
within the centromere), are identified only in low resolution passes of the 
algorithm, yet these rearrangements can be confirmed by FISH or karyotype 
analysis.  The reason we use this progressive approach is due to algorithmic 
complexity.  We use algorithms for finding SVs that rely on finding maximally 
summed submatrices in the large interaction matrix (see below for details).  The 
complexity of finding maximally summed submatrices scales with the linear size of 
the matrix to the third power ( O(n3)).  While the algorithm typically runs for <20 
minutes at a resolution of 1Mb, if this was instead run initially at 1kb, this would 
increase the run time by a billion fold.  Therefore, we chose the progressive 



 8 

strategy we have outlined in the methods in order to optimize run time while still 
allowing for high-resolution identification of breakpoints. 
 The primary challenge in using Hi-C data to find SVs is to distinguish signal 
derived from a rearrangement from signal derived for normal deviations in Hi-C 
interaction frequencies that result from cell biological features of nuclear 
organization. To this end, we developed a probabilistic model of Hi-C interaction 
frequencies to account for certain cell type variable or invariant patterns of 
chromatin interactions. Several cell-type invariant features impact the ability to 
identify re-arrangements.  With regard to inter-chromosomal interactions, this is 
most clearly observed as preferential interactions between small chromosomes 
and between the ends of heterologous chromosomes. With regard to intra-
chromosomal interaction, the clearest cell type invariant feature that influences our 
ability to detect re-arrangements are the Topologically Associated Domain (TAD) 
patterns.  In addition, cell type variable patterns in interaction frequency can 
influence the ability to detect re-arrangements in Hi-C data, most notably the A/B 
compartment patterns.  Lastly, there are a variety of inherent genomic features, 
including mappability, GC-content, restriction enzyme density, and copy number 
that must be taken into consideration.  The details of how these features are 
modeled and used to identify re-arrangements are as follows: 

II.b.ii. Calculation of expected interaction frequencies 
 Previous Hi-C studies have demonstrated that there are certain largely cell-
type invariant patterns in chromatin interaction frequencies.  The three most 
prominent features that we have identified which can impact the ability to identify 
structural variants in the genome are the increased association between small 
chromosomes [19], the increased frequency of interactions between the ends of 
heterologous chromosomes [20], and the intra-chromosomal TAD patterns of the 
genome [21, 22].  The first two features, namely the association of small 
chromosomes and the interactions between heterologous chromosome ends, 
impact identification of inter-chromosomal re-arrangements, whereas TAD 
patterns impact the ability to identify intra-chromosomal re-arrangements.  
 To account for the impact of small chromosome and chromosome end 
association, we estimated an average inter-chromosomal interaction frequency 
matrix across nine karyotypically normal cell lines (GM12878, H1 hESC, Mes, 
MSC, NPC, Troph, IMR90, HUVEC, HMEC).  As inter-chromosomal interactions 
are influenced by A/B compartment patterns, we perform this averaging on an A/B 
subtracted matrix for each cell line.  This is accomplished by taking the normalized 
interaction matrix, ! (described above), and subtracting the matrix " (described 
above), representing the additive increase or decrease in interaction frequency 
due to A/B compartment patterns, to generate a new matrix, #, for each cell type: 
 

# = ! − " 
 
Each element &',)	of the matrix # is then normalized by the global average of all 
elements within #, and then averaged across all 9 cell lines.  This generates a new 
final matrix as follows:  
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&+',) =
1
-
.&',)

/

0

 

 
As a result, the value &+',) represents the expected fold change in interaction 
frequency relative to the mean between any two bins i and j as a result of these 
cell type invariant inter-chromosomal interaction patterns.  Of note, this step is 
performed only using a bin size of 1Mb, as the effect of these features is 
diminished at higher bin sizes. 
 We take a similar approach with regards to intra-chromosomal interaction to 
account for TAD patterns.  Specifically, within a given cell type, we calculate the 
average interaction frequency of all bins i and j separated by a given distance d.  
Each interaction is then divided by this distance based average to produce a 
distance normalized interaction frequency: 
 

4',) =
-',)
56

 

 
where 4',) is the distanced normalized interaction frequency between bins i and j, 
-',) is the normalized interaction frequency, and 56 is the average interaction 
frequency between all bins separated by a distance d.  The value 4',)  is then 
averaged across the nine normal cell lines: 
 

4'̅,) =
1
-
.4',)

/

0

 

 
where 4'̅,) represents that expected fold change in interaction frequency between 
bins i and j separated by distance d relative to the average interaction frequency 
at distance d.  This is performed only for bins at 100kb, as our initial search for re-
arrangements starts using 100kb bins and then progresses to smaller bin sizes, 
and as a result, TAD interactions are largely accounted for in this initial search 
(see below for details). 
 

II.b.iii. Modeling of Hi-C interaction frequencies 
To model Hi-C interaction frequencies, we developed a probabilistic model 

using a negative binomial distribution parameterized by a mean m, and dispersion 
parameter, r.  These are calculated from the observed normalized interaction 
frequencies at a given bin size for all inter-chromosomal interactions and for all 
intra-chromosomal interactions at a given distance, d.  For the parameter m, this is 
simply the mean.  For inter-chromosomal interactions, this is given by: 
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:'/;<= = 5'/;<= =
1
-
. -',)

/

',)>0

 

 
where -',) is the normalized interaction frequency between all bins i and j not on 
the same chromosome.  For intra-chromosomal interactions at a given distance d, 
this is given by: 
 

:6 = 56 =
1
-
. -',)

/

',)>0

 

 
where -',) is the normalized interaction frequency between all bins i and j 
separated by a given distance d.  We similarly compute the variance of the data, 
σ2, for inter-chromosomal interactions and all intra-chromosomal interactions at a 
given distance d.  This can then be used to compute the dispersion parameter 
given by: 
 

A'/;<= =
5'/;<=B

C'/;<=B −	5'/;<=
 

 
for all inter-chromosomal interactions, and: 
 

A6 =
56B

C6B −	56
 

 
for all intra-chromosomal interactions separated by a distance d.   
 While this approach can be used as a very general model of Hi-C 
interaction frequencies, various cell type variant and invariant features of Hi-C data 
can influence the interaction frequencies beyond this simple approach, as 
mentioned above.  To account for this, the parameter m is modified for each pair 
of bins, i and j, to generate a bin specific parameter, mi,j.  For inter-chromosomal 
interactions, this is given by the following equation: 
 

:',) = D:'/;<= × F',) + H',)I × J' × J) 
 
and for intra-chromosomal interactions this is given by: 
 

:',) = :6 × F',) × J' × J) 
 
where :'/;<=  and :6 are the parameter m for either inter-chromosomal 
interactions or intra-chromosomal interactions at a distance d, respectively.  F',) is 
the expected fold change in interaction frequency given the cell type invariant 
features of genome organization.  H',) is the additive change in interaction 
frequency due to A/B compartment patterns, and J' and J) are the intrinsic 
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coverage biases of bins i and j.  The features H',) and F',) are only used when 
calculating :',) for inter-chromosomal interactions at a bin size of 1Mb.  At higher 
resolutions for inter-chromosomal interactions, these terms are omitted, leaving: 
 

:',) = :'/;<= × J' × J) 
 
Likewise, F',) is only used for intra-chromosomal modeling at a bin size of 100kb, 
and at higher resolution bin sizes this term is omitted, leaving: 
 

:',) = :6 × J' × J) 
 
 As a result, we can use these parameters to then calculate the probability of 
observing K',), the given number of sequence reads between bins i and j, using the 
following equations: 
 

LDK',) = M|:',), AI = O
Γ(A + M)

M! Γ(A)
TO

:',)

A +	:',)
T
U

O
A

A +:',)
T
=

 

 
In this, the probability	L can be considered as L'/;<= , the probability of observing 
K',) given that the interaction is an inter-chromosomal interaction, if the parameter 
:',) was calculated from :'/;<= . Likewise, L can be considered as L6, the 
probability of observing K',) given that the interaction is intra-chromosomal and 
separated by distance d, if the parameter :',)  was calculated from :6. 
 For the purpose of finding re-arrangements, the reason for modeling Hi-C 
interactions with this approach is to assign a probability of observing the number of 
reads arising between any two bins i and j given that i and j are on different 
chromosomes or are on the same chromosome and separated by a distance d.  
This can be then compared with the probability of observing the same number of 
reads given that bins i and j are in fact re-arranged.  If i and j are re-arranged, then 
we would expect the number of reads between them to reflect interaction 
frequencies between bins that are proximal along the linear distance of the 
chromosome.  In this regard, we also need to calculate the probability of observing 
K',) given that i and j are “local” along the linear distance of the genome.  While we 
were previously modeling the probability of observing a specific number of reads 
given that two regions are intra-chromosomal and separated by a given distance 
d, we can generalize this to a value LVWXYV, as a mixture model: 
 

LVWXYV = . Z6

6[\]

6>0

× L6 

 
In this case, L6 is the probability of observing K',)  between bins i and j at distance 
d, Z6 is the weight applied to each distance, and ^_Y` is the maximum intra-
chromosomal distance considered for “local” interactions.  The weight Z6 is related 
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to the fraction of bins in a given matrix separated by the distance d.  If we consider 
d as the distance in bins between two loci instead of as the genomic distance, then 
we can simply calculate Z6 as follows: 
 

Z6 =
2 × (^_Y` − ^)

^_Y`
B − ^

 

 
The value of the parameter ^_Y` is arbitrary, and can be modified to adjust the 
sensitivity or specificity of the calls. We typically use a value of ^_Y` that is 10 
times larger than the bin size.   
 Having calculated the values for LVWXYV, L'/;<= , or L6, for a given pair of bins, 
we can now represent these probabilities as an odds ratio.  This gives the 
relatively likelihood of a given interaction resulting from a re-arrangement or from 
the expected genomic structure.  For inter-chromosomal interactions, this is 
represented as: 
 

a',) =
LVWXYV
L'/;<=

 

 
where a',) is the odds ratio for the interaction between bins i and j.  For intra-
chromosomal interactions, this can be represented as: 
 

a',) =
LVWXYV
L6

 

 
In practice, we consider this as a log-odds ratio, such that this value will be 
positive if the interaction is more likely to result from a re-arrangement and 
negative if more likely to result from the expected genomic structure.  In summary, 
our probabilistic model allows us to convert the original matrix of observed 
interaction frequencies into a matrix of log-odds ratios. 

II.b.iv. Breakpoint calling (inter-chromosomal) 
In the event of a re-arrangement, the observed interaction frequencies of regions 
in the immediate proximity of the re-arrangement will more closely resemble local 
intra-chromosomal interactions than inter-chromosomal interactions.  As a result, 
the log-odds ratios of interacting regions in the immediate proximity of the re-
arrangement will be positive.  Therefore, in order to find re-arrangements, we can 
search through the matrix of log-odds ratios for sub-matrices with positively 
summed log-odds ratios.  Mathematically, the sum of the log-odds ratios of the 
elements of a sub-matrix will yield the log-odds ratio of the entire sub-matrix: 
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log	(ae→;,g→h) =..log	(a',))

h

)>g

;

'>e

= log	(
Le,gVWXYV × Lei0,gVWXYV × Le,gi0VWXYV × …× L;,hVWXYV
Le,g'/;<= × Lei0,g'/;<= × Le,gi0'/;<= × …× L;,h'/;<=

) 

 
where aU→V,_→/ is the odds ratio of the rectangular sub-matrix from bin k to l and m 
to n.  This term represents the likelihood of all bins within the sub-matrix deriving 
from local intra-chromosomal interactions relative to the likelihood of the bins 
deriving from inter-chromosomal interactions. This can therefore represents the 
relatively likelihood of the sub-matrix resulting from a translocation or from the 
expected genomic structure. 

Algorithmically, we search for sub-matrices with the maximal sum.  We 
begin by considering the matrix of log-odds ratios at 1Mb between any pair of 
heterologous chromosomes.  Within this matrix, we search for the maximally 
summed sub-matrix.  The coordinates of this sub-matrix are saved, and their 
values are then set to a number below zero.  This process is repeated iteratively 
so long as the sum of the maximum sum sub-matrix is above a pre-defined 
threshold.  This threshold is determined by converting the odds-ratio of the 
maximally summed sub-matrix into a p-value.  This p-value is defined as one 
minus the overall probability to the log-odds from the maximally summed sub-
matrix, defined by the logistic function: 
 

m − n&oaF = 1 − L;=Y/eVWXY;'W/ = 1 −
Fe

p

1 + Fep
=

1

1 + Fep
 

 
where L;=Y/eVWXY;'W/ is the probability that the sub-matrix is translocated.  The term 
q′ is given by: 
 

qs = log	(ae→;,g→h) + log	(
LAtKAVWXYV

1 − LAtKAVWXYV
) 

 
Where log	(ae→;,g→h) is the odds ratio calculated above for the sub-matrix from bin 
k to l and m to n, and LAtKAVWXYV is our assumed prior probability of a given region 
being translocated.  Our prior assumption is that the likelihood of any region being 
involved in a translocation is rare. We therefore assign this prior a value of 10-6.  
This value is arbitrary, and as we shall see, this term has a relatively small affect 
on the final p-value.   
 As the term qs increases, the term 1 + Fep can be approximated by Fep.  
Therefore, at large values of qs, the log of the p-value approaches negative one 
times q′.  Since we identify the maximally summed sub-matrix and therefore the 
maximal value of q′, this approximation is reasonable in most cases we have 
considered thus far.  However, considering this value alone is not sufficient.  There 
are many possible sub-matrices within a given matrix, and therefore multiple 
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testing must be considered.  Specifically, for a matrix with m columns and n rows, 
the number of possible sub-matrices is given by the following equation: 

 

uY,v =
: × (: − 1) × - × (- − 1)

4
 

 
where uY,v is the number of possible sub-matrices in the matrix between 
chromosomes a and b.  Considering only the matrix between chromosomes 1 and 
2 at a resolution of 1Mb, this still contains more than 800 million possible sub-
matrices.  We compute this term for each matrix between heterologous 
chromosomes, and summing these values across all chromosomes gives a 
genome wide value, uz</W_<, for the number of possible sub-matrices. We use a 
Bonferroni correction for multiple testing correction, such that our predefined 
threshold for our p-value must be below 0.05/uz</W_<.  As a result, we can define 
a minimum threshold for log	(ae→;,g→h) as follows: 
 

log	(ae→;,g→h)_'/ = −1 × log(0.05) + logDuz</W_<I + 	log	(
1 − LAtKAVWXYV
LAtKAVWXYV

) 

 
In practice, the term logDuz</W_<I dominates, as this value is greater than 20 
considering only the matrix between chromosome 1 and chromosome 2 alone, 
and adjusting the value of LAtKAVWXYV has only modest effects on the final threshold 
value.  We then consider any sub-matrix whose log-odds sum is greater than 
log	(ae→;,g→h)_'/ as being the result of a translocation.  As mentioned previously, 
we search iteratively for maximally summed sub-matrices in the event that there is 
more than 1 re-arrangement on a given chromosome.  However, in the event that 
we find a re-arrangement on the first iteration, we now expect there to be regions 
between the two chromosomes in question that result from intra-chromosomal 
interactions.  Therefore, to limit the likelihood of subsequently identifying weaker, 
non-breakpoint proximal re-arrangements, we increase this minimum threshold by 
a factor of 2 with each iteration.  This was determined empirically as most re-
arranged regions have maximally summed log-odds that greatly exceed this 
threshold, and that subsequent iterations can easily find additional “weak” intra-
chromosomal interactions after finding the maximally summed sub-matrix.  Lastly, 
in the event that more than 1 maximally summed sub-matrices are identified for a 
given pair of chromosomes, we also check if the merged union of the two matrices 
would also be above this initial threshold.  This is because our method of finding 
the maximal summed sub-matrix will occasionally split a re-arrangement into 
multiple sub-matrices, particularly if there are sub-sequent mutations such as 
deletions of on the re-arranged allele. 
 The above process describes the method used as a first pass to find re-
arrangements between chromosomes at 1Mb.  After this initial pass, we further 
analyze the data with increasingly smaller bin sizes.  Each iteration uses the 
coordinates derived from the prior iteration as limits on the search space.  In this 
regard, we search for sub-matrices at 100kb resolution only within regions 
identified in the initial 1Mb step.  This limits the total space that each iteration must 
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search and allows for a computationally tractable solution for identifying re-
arrangements even at high resolutions. Furthermore, by beginning at large bin 
sizes, this allows for the use of even low depth sequencing to find re-
arrangements.  Computationally, the steps at higher bin sizes are identical except 
for limiting the search space to the regions defined in a previous iteration.  
Typically, we decrease the bin size by a factor of 10 for each iteration, from 1Mb, 
to 100kb, to 10kb, and possibly down to 1kb depending on the restriction enzyme 
used in the Hi-C experiment. 

II.b.v. Breakpoint calling (intra-chromosomal) 
The process of finding intra-chromosomal re-arrangements if nearly identical to the 
process described above for inter-chromosomal re-arrangements with only a few 
notable differences.  First, the sub-matrices use the term L6 instead of L'/;<=  to 
compute the maximal sum sub-matrix: 
 

log	(ae→;,g→h) =..log	(a',))

h

)>g

;

'>e

= log	(
Le,gVWXYV × Lei0,gVWXYV × Le,gi0VWXYV × …× L;,hVWXYV

Le,g6 × Lei0,g6 × Le,gi06 × …× L;,h6
) 

 
Furthermore, as the local interaction frequencies can increase dramatically as the 
distance between bins decreases, the ability to identify small local re-
arrangements suffers.  In addition, biological variation, such as cell-type specific 
looping events and changes in intra-TAD interaction frequency, can create false 
positive signals.  Our experience indicates that these events are much more likely 
for any distances less than 1Mb in size.  As a result, we do not consider any bins 
separated by less than 1Mb.  Most rearrangements identified by our method are 
larger than 1Mb, so this removes a limited number of calls.  Lastly, as the search 
space for intra-chromosomal interactions is considerably smaller than the search 
space for inter-chromosomal interactions, our first pass begins with a bin size of 
100kb instead of 1Mb.  We then proceed to smaller bin sizes in a similar manner 
to what was described above for inter-chromosomal interactions.  

II.b.vi. Post-Processing Strand Determination 
The above description of breakpoint finding makes no determination of 

which direction or strand the re-arrangement occurs with.  However, this pattern is 
often readily apparent as a “peak” of signal in one of the corners of the sub-matrix.  
We use this pattern to identify the direction of the re-arrangement.  Our experience 
suggests that simple peak finding or correlation can yield inaccurate strand 
predictions.  Therefore, we estimate the strandedness using multiple different 
correlation metrics, and use an aggregated result for strand prediction.  
Specifically, we compute 12 separate spearman correlations of the interaction 
frequencies within the sub-matrix.  The simplest of these are row-wise and 
column-wise correlations.  For example, in column-wise correlation, we compute 
the average of all normalized interaction frequencies within a given column of the 
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sub-matrix and then compute the correlation between this average and the bin 
position of the column.  Positive correlations suggest that the distal aspect, or the 
“right” side of the sub-matrix, is where the re-arrangement has occurred (we term 
these positive stranded), while negative correlations indicate that the “left” side of 
the sub-matrix is involved in the re-arrangement (we term these negative 
stranded).  The same can be applied to row wise correlations.  For column and 
row wise correlations, we compute a spearman correlation using the average of 
the normalized interaction frequencies and the average of the log of the 
normalized interaction frequencies.  This gives four of the 12 correlation 
coefficients we calculate.   

The remaining eight correlations are computing using the diagonal of the 
matrix as the distance value.  There are two diagonal axis in each sub-matrix, one 
extending from the upper-left hand to the lower right hand portion of the matrix, 
and one from the lower left hand to the upper right hand portion of the matrix.  In 
this case, the distance of each bin from is equal to the sum of the distance of the 
row-wise and column-wise bin from the corner of the matrix.  We then compute an 
average interaction frequency at each distance using the normalized interaction 
frequencies and use this for calculating the spearman correlation. Similar to what 
we do for column or row-wise correlation, we also compute an average of the log-
transformed normalized interaction frequencies.  In addition, we also express the 
data as binary variables, with the data represented as 1 if the signal from that bin 
is greater than zero and as zero otherwise.  We compute the correlation for these 
normalized, log-transformed normalized, and binary matrices for both diagonal 
axis, giving us six more correlation coefficients.  Finally, we also compute 
spearman correlation considering all values instead of for distanced averaged 
values.  This is done for both diagonal axes using the normalized values.  This 
yields an additional 2 correlation coefficients.   

To aggregate these correlation coefficients into a final strandedness score, 
we sum all correlation coefficients that are informative for left/right strandedness 
and all correlation coefficients that are information for upper/lower strandedness.  
For left/right strandedness, this includes all column wise correlations and all 
diagonal correlations.  If the sum of these values is less than zero, we consider 
this sub-matrix with a left-handed (negative) strand, and if it is positive we consider 
this as having a right-handed (positive) strand.  For upper/lower strandedness, we 
consider all row-wise correlations and all diagonal correlations.  Any correlation 
coefficient derived from the lower left hand to upper right hand diagonal is 
multipled by -1.  This score is then summed, and negative values are considered 
upper (negative) and positive values are considered lower (positive) stranded.  
Our experience is that this additive approach is less sensitive to any anomaly in 
interaction frequency or breakpoint calls and more reliably identifies the 
strandedness patterns seen in the Hi-C data. 
 All software for calling re-arrangements in Hi-C data is available through 
https://github.com/dixonlab/hic_breakfinder. 
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II.c. Cross-method comparison and integration of structural variants 
The methods that we use to identify SVs appear to have different sensitivity for 
detecting SVs of different sizes.  Specifically, Hi-C only rarely identifies SVs 
smaller than 1Mb. Therefore, we perform comparisons of SVs by dividing SVs into 
three different categories, namely, 1) inter-chromosomal translocations identified 
by Hi-C, WGS and optical mapping, 2) large intra-chromosomal SVs (≥1Mb) 
identified by Hi-C, WGS, and optical mapping 3) and intra-chromosomal SVs < 
1Mb that involves WGS and optical mapping. For the first two groups, we also 
included SV calls from additional methods, including karyotyping [23-31],  fusion 
transcripts, and paired-end tag sequencing (PET-seq)[32, 33]. Data from all six 
methods are available only for the T47D and K562 cell lines, we hence perform 
the cross-six-method comparisons in these samples. For six cell lines (Caki2, 
A549, NCI-H460, PANC-1, LNCaP and SK-N-MC), we have data from Hi-C, WGS, 
optical mapping, karyotyping, and RNA-seq, therefore we perfom a five-method 
comparison. For MCF7 cells, we have Hi-C, PET-seq (from two separate studies), 
and RNA-seq data, so we compared between these three methods in MCF7 cells. 
Finally, we have Hi-C data and fusion transcript data for PC3, SK-N-SH, SK-N-DZ, 
RPMI-7951 and G401 cells lines. Finally, we have Hi-C, optical mapping, and 
WGS data for the karyotypically normal cell line NA12878 that we use as a non-
cancer cell line control. The details of which methods were obtained from each cell 
line are available in Supplementary Table 1. 

We converted the strand orientation for SVs detected from different 
methods to a unified system, in which “+” indicates the breakpoint locates at the 3’ 
end of the joined arm, and “-” indicates the breakpoint at the 5’ end of the joined 
arm. For WGS data, this dictates that SV originally classified as deletions are 
given the strand orientation of “+-”, inversions as “++ and - -”, duplications as “-+” 
and unclassified intra-chromosomal rearrangement as “++” or “- -”. Optical 
mapping originally reports deletions, which are assigned a strand orientation of “+-
”, inversions, which are assigned as “++” or “- -”.  Optical mapping also reports 
intra-chromosomal rearrangements >5Mb as “unclassified intra-chromosomal 
rearrangements” for which the software reports the strand orientation.  

To determine whether the SVs detected by different methods reflect the 
same event, we set criteria for SV matching when comparing inter-chromosomal 
translocations and large intra-chromosomal SVs: 1) They have the same loci for 
both ends of the breakpoint. 2) They have the same strand orientation. Because 
the different methods have very different resolutions for SV detection, we use 
variable criteria for determining whether two methods identify SVs at the “same 
loci”. This overlap is set such that break ends within +/- 500Kb are considered as 
overlapping when comparing Hi-C, WGS, optical mapping, fusion transcripts and 
PET-seq. For karyotyping, an overlap of +/- 10Mb was set to accommodate for its 
low resolution. For specifically comparing deletions smaller than 1Mb, for calling to 
deletions as overlapping, we require that at least 50% of deletion defined by WGS 
must overlap with the deletion defined by optical mapping, and the size of the 
deletion detect by optical mapping must be within 80-120% of total length detected 
by WGS.  
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After identifying matched SVs between methods, we can resolve some 
unclassified SV types. Since we require SVs to have the same orientation, we can 
confirm certain Hi-C-detected intra-chromosomal SVs to be deletions, insertions or 
inversions if the same event was specified by optical mapping or WGS. Likewise, 
we can resolve unclassified intra-chromosomal variants from WGS to be 
inversions detected by optical mapping or Hi-C, and we can determine the SV type 
for unclassified large intra-chromosomal SVs identified by optical mapping as 
deletions, inversions and duplications if the orientation and SV type are 
determined by WGS or Hi-C. In addition, in our comparison of smaller scale of SVs, 
we found that insertions detected by optical mapping may be resolved as 
duplications in WGS, which we annotate as duplications.  

We then calculated confidence levels for each SV and refine the SV 
coordinates based on the integration of different methods. Confidence levels are 
presented as the number methods by which each SV is detected. For refining the 
SV breakpoint coordinates, we choose loci determined by the highest resolution 
method for final breakpoint refinement. We consider WGS as the highest 
resolution method, followed by optical mapping, fusion transcripts, PET-seq, Hi-C, 
and then karyotyping.  

II.d. Circos genome profiling 
Genome profiles of cancer cell lines and GM12878 were generated using Circos 
[71]. Copy number is plotted according to the normalized CNV predicted by 
Control-freec for each 50Kb region. Duplications and deletions plotted if identified 
as high-confidence calls detected by at least two methods between Hi-C, WGS 
and optical mapping. Plotted rearrangements includes inter-chromosomal 
translocations, intra-chromosomal inversions and unclassified intra-chromosomal 
rearrangements, all of which are high-confidence calls that are identified at least 
twice between Hi-C, WGS, optical mapping, karyotyping, fusion transcripts, or 
PET-seq. 
 

II.e. Size distribution of deletions and un-mappable translocations 
transitions 

II.e.i. Deletions 
The size of deletion detected by WGS is simply the distance between the start and 
end of a deletion event. The size of deletion detected by optical mapping is 
calculated as: qt4F6<V<;'W/ = qt4F=<~<=</X< − qt4FeY_�V< = (ÄFÅFAF-ÇF</6 −
ÄFÅFAF-ÇFe;Y=;) − (ÉK-ÑtÖ</6 − ÉK-ÑtÖe;Y=;). The size of final merged deletions 
detected by both WGS and optical mapping was defined by the size from WGS. 
Then we performed Wilcoxon rank sum test to examine the difference of deletion 
size detected by WGS and optical mapping.  
 

II.e.ii. Translocation un-mappable transition 
In the detection of translocations, certain SVs will include a “transition” region 
between the two resolved portions of the rearrangement.  The size of the un-
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mappable transition of a translocation detected by WGS is the number of 
basepairs that fail to align to either of the two rearranged regions. For a 
translocation detected by optical mapping between two chromosomes, chrA and 
chrB, is the distance between the closest two labels (LA, LB) that map to chrA and 
chrB respectively. There may be multiple un-mappable labels between LA, LB, 
which are LA+1, LA+2, LA+3…LA+M, LB-N … LB-3,LB-2, LB-1. To provide minimum size 
estimation of un-mappable transitions, we assume that the DNA from the last 
mappable labels to their nearest un-mappable labels (LA to LA+1, LB to LB-1) are all 
mappable. Therefore, the size of an un-mappable transition in a translocation with 
no or one un-mappable label will be calculated as zero basepairs. For 
translocations with at least two un-mappable lables, the minimal size of the 
unmappable transition will be |LB-1- LA+1|. If an un-mappable region is detected by 
in a translocation by both WGS and optical mapping, we defined the size of the 
un-mappable regions as the size defined by WGS.  
 
 

II.f. Characterization of deletions 

II.f.i. Overall disruption of genes, repeats, enhancers and insulators 
We evaluated the disruption of number genes, repeats, enhancers, and insulators 
that were deleted by high confidence deletions.  High confidence deletions are 
defined as those that are detected by at least two methods out of WGS, Hi-C and 
optical mapping from in each cell lines: A549, T47D, Caki2, K562, LnCAP, PANC-
1, SK-N-MC, NCI-H460, and NA12878. The number deleted genes or repetitive 
elements are simply calculated by intersecting the positions of deletions with gene 
annotations (NCBI RefSeq) and repeat annotations (UCSC repeatMasker) in the 
hg38 reference genome in each cell line.  

In contrast to genes and repetitive elements, enhancers and insulators can 
potentially have cell type specific annotations. Therefore, to identify the number of 
deleted enhancers in each cell line, we first match each cancer cell line with a 
control normal cell type from the same or similar tissue type. We use H3K27ac as 
a mark for enhancers and CTCF binding sites as insulators.  Specifically, we use 
human normal mammary epithelial (HMEC) cells as a control for T47D cells, blood 
mononuclear cells as a control for K562 and NA12878 cells, primary pancreatic 
tissue as a control for PANC-1 cells, and Normal human lung fibroblasts (NHLF) 
as a control for NCI-H460 and A549 cells. The only exception is that we use CTCF 
binding sites from NA12878 to annotate insulators in K562 cells, as no CTCF is 
available in mononuclear cells. By intersecting high confidence deletions in cancer 
cell lines with enhancers or insulators in matched control cell lines or tissues, we 
can evaluate how many enhancers or insulators are disrupted in the cancer cell 
line by deletions. Further, since the  overall abundance of deletions can vary in 
each cancer cell line, we calculate the number of lost enhancers per 100Kb of 
deleted genome, and then normalize this number to a constant value of 100,000 
enhancers per genome.  
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II.f.ii. Estimates of enhancer deletion enrichment relative to random controls 
To estimate whether enhancers were preferentially deleted or retain, we 
performed simulation by randomly distributing the high confidence deletions each 
cancer genome 1000 times and then examining their overlap with enhancers. The 
distribution of the overlap between deletions and enhancers can then be 
summarized and plotted. The empirical P value is calculated based on how many 
times the simulated number of deleted enhancer is smaller than that number in 
fact observed from a given cell line.  
 

II.f.iii. Identifying polymorphic and novel deletions 
High confidence deletions are stratified into two categories: known polymorphc 
deletions and novel variants.  This is accomplished by intersecting deletions with 
variants reported in DGV SVs annotated as “deletion”, “loss”, and “loss and gain” 
using bedtools [75]. A detected deletion must have at least 90% reciprocal overlap 
between the detected deletion and deletions documented in DGV dataset to be 
considered as polymorphic. Some deletions reported in DGV are overlapping with 
each other.  In such cases, if these deletions overlapped with exactly same region 
across the nine cell lines, these were treated as a single deletion event. Deletions 
that do not overlap with variants reported in DGV are defined as novel variants.   
 

II.f.iv. Enrichment analysis of polymorphic deletions and novel deletions 
 To evaluate the enrichment of various genomic featurs with polymorphic or 
novel deletions, we first began by sorting and merging all polymorphic and novel 
deletions detected by both WGS and optical mapping in K562, T47D, Caki2, and 
GM12878 cells. The number of polymorphic and novel deletions were then 
counted in each cells, and the proportion of polymorphic vs. novel deletions was 
then compared between cancer cell lines and NA12878 cells. The overall loss of 
DNA content caused by polymorphic deletions or novel deletions was also 
calculated by summing the length of all non-redundant deletions identified in each 
cell. To determine if there is an enrichment of either class of deletion with genes, 
polymorphic and novel deletions from the nine cell lines were intersected with 
RefSeq genes. Genes were further annotated using the list of COSMIC-tumor 
related genes, considering only genes with clear annotations as oncogenes or 
tumor suppressors. The overlap of different classes of deletions with exons was 
evaluated by comparing polymorphic and novel deletions with non-redundant 
exons from refFlat records of GENCODE24. The overlap of different classes of 
deletions with repetitive elements was evaluate by comparing deletions with non-
redundant repetitive elements obtained from the UCSC repeatMasker. For 
example, for polymorphic deletions in K562 cells containing i events, if the size of 
each deletion is DELi, and if the size of overlap with repeats from each deletion is 
Repi, the enrichment of repeats (Enrichrepeats)was calculated as: 

Ü-AtÇℎ=<�<Y;e =
∑ÄFm'
∑"Üâ'
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We also determined whether there was an enrichment for deletion of 
enhancers by polymorphic or novel enhancers.  This was accomplished by 
randomly permuting deletions 1000 times in each cell type, and calculating the 
overlap with H3K27ac defined enhancers in the same control normal cell lines 
listed above. The empirical P-value was calculated based the random shuffling. 
The results from the two classes of deletions was then compared across each cell 
type to test whether the enhancer loss is preferentially associated with novel or 
polymorphic deletions. 

II.g. Fluorescence in situ hybridization (FISH) 
FISH probes were prepared from BAC clones targeting breakpoint proximal 
regions and ordered from the Children’s Hospital of Oakland Research Institute 
(CHORI).  Probes were generated using nick translation using amino-allyl-dUTP 
and directly labeled using amine-reactive dyes as previously described [34].   For 
detection of re-arrangements, cells were grown in the presence of nocodazole for 
4 hours to induce mitotic arrest.  Cells were then fixed in 3:1 methanol acetic acid 
and metaphase spreads were prepared as previously described [35].  FISH was 
performed as previously described using 20ng of each labeled probe [36].  Slides 
were visualized using Zeiss Axioimager Z1 microscope. 
 
Clone Name Genomic Coordinates (GRCh38) 
RP4-591B8  chr1:114317729-114460280 
RP11-549D23  chr6:136684046-136869512 
RP11-552O4  chr18:26699051-26869173 
RP5-1184F4  chr20:32435227-32554099 
RP11-510J16  chr16:81921455-82098760 
RP1-259A10  chr6:17166672-17317191 
RP11-136C6  chr6:39145400-39247240 
RP11-548O1  chr3:138878614-138950820 
 

II.h. Breakpoint PCR 
PCR across predicted breakpoints was performed using the Qiagen Long-Range 
PCR kit.  PCR products amplified from K562 template were cloned into TOPO-XL 
cloning vectors and sequenced using conventional Sanger sequencing.  In the 
event that the breakpoint did not fall within the Sanger sequenced regions, primers 
were re-designed and the process was repeated. 
 
Cell SV type Name Sequence 
K562 Translocation K_chr9_22_F AAAGAGCCTTTTGTTGGCTATGTTGTT 
K562 Translocation K_chr9_22_R CAGAAGGAAGAGCTATGCTTGTTAGGG 
K562 Translocation K_chr3_10_F CTGCCATAAAGAGTTCACAAACACACC 
K562 Translocation K_chr3_10_R CTGAGACCTGGAAAACAGAGCAAGAC 
K562 Translocation K_chr5_6_F AGCAATTTTAGAGGCACTTCTCCTTGT 
K562 Translocation K_chr5_6_R AGGCATTTGGGATCTTGCTGGATTATG 
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K562 Translocation K_chr9_13_F TTGAGATGTCTGTTTCATTTCCCGACT 
K562 Translocation K_chr9_13_R GAACCACTGCTCCTGGACTTCATCTT 
T47D Translocation T_[chr6_chr22]_F CACATAACCAAGGGAGAGTT 
T47D Translocation T_[chr6_chr22]_R GTGAGGTGAATTCAAATGTT 
T47D Translocation T_chr4]_chr5]_F TTGCACACCGGCTCCATGAG 
T47D Translocation T_chr4]_chr5]_R GATCTCTACTTAATCTGCAT 
T47D Translocation T_9]_[15_F TAAAAGATAAAGGCATCTGT 
T47D Translocation T_9]_[15_R ACCAACCAAAAAAAGCCCAG 
T47D Translocation T_5]_[5_F CTTCCCGTCTAAGCAGACCT 
T47D Translocation T_5]_[5_R CTTTCATCATGTTAGTCATG 
T47D Translocation T_9]_[9_F GGTTTGGGCATTCTATTTTC 
T47D Translocation T_9]_[9_R GCCTTCAGAAAGTTCTCAGT 
T47D Translocation T_chr10]_[chr10_F ATATAAATGCGATGCTTTTTCCT 
T47D Translocation T_chr10]_[chr10_R GAGTTGTTTTGAGTTCCTTGGAG 
T47D Translocation T_chr10]_[chr3_F GCAAAGTTCTTCTTAAGAATGT 
T47D Translocation T_chr10]_[chr3_R ACAGATTAATTGACTCCCTTC 
T47D Translocation T_chr3]_[chr9_F GTGCTAGGATTACAGGAATGAGC 
T47D Translocation T_chr3]_[chr9_R GGAAACCCTTGTACACTATTGGT 
Caki2 Translocation C_chr12]_[chr4_F TTCCCTTTAAAAGCACAATGCCC 
Caki2 Translocation C_chr12]_[chr4_R ATTTCCTATAATTGGGTTTTCCT 
Caki2 Translocation C_chr9]_[chr19_F AGTCAGTCTTGTACCTTGGGATG 
Caki2 Translocation C_chr9]_[chr19_R AGAAAGCTTCCAGTCACAAAACT 
Caki2 Translocation C_ [chr6_[chr8_F GGTATGGAGATGATCAACCCAAG 
Caki2 Translocation C_ [chr6_[chr8_R TTGACAAAAGAATAAACAAATAGAT 
T47D Deletion T_chr2_212590110_F GTGGGATAAACAAGTGACTAACC 
T47D Deletion T_chr2_212720073_R ACCACGAAGCCACCAGAAGGAAG 
T47D Deletion T_chr2_97188517_F AATTAACTCCTAAAATGGTAATT 
T47D Deletion T_chr2_97190465_R ATCAATGTGGATATGCCGAGTGA 
T47D Deletion T_chr14_104948976_F GCATCTGCAGCTTGGGCAGGTGC 
T47D Deletion T_chr14_104951429_R AAAGTGGACCTCAAGGGCCCCCA 
T47D Deletion T_chr3_58586154_F TTTCCTGAATAGAAAAGAAACAC 
T47D Deletion T_chr3_58586217_R CAATCCTCACGTCATTCTTTTTA 
T47D Deletion T_chr4_165081464_F CCACCTAGGAACCTCCCACTCTT 
T47D Deletion T_chr4_165083902_R GAAAAAAACATGACTGGGCGCGG 
T47D Deletion T_chrX_42652746_F CCACTGCAAAAACATGCCAA 
T47D Deletion T_chrX_42656304_R AGTTTTCAAAGGGAATGCTT 
T47D Deletion T_chr2_28466613_F AATTATAAAAGTATCATGGG 
T47D Deletion T_chr2_28469693_R CCAGGCAAATCAGAGGTGTC 
T47D Deletion T_chr7_6861596_F CTTTACTGGTGTTGGACTCG 
T47D Deletion T_chr7_6887316_R ATTAAAGCAGTTGGATTTTT 
T47D Deletion T_chr1_207523594_F AAAAGCAATAGGACAAAGGC 
T47D Deletion T_chr1_207546536_R GCTCATCTCCTTTCAAGTCT 
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T47D Deletion T_chr12_58325913_F TGAGTTCCCTTAGTATTTAT 
T47D Deletion T_chr12_58339245_R ATAGGTGGGGATTATGGGAG 
T47D Deletion T_chr11_107361838_F GAAGCCTCAGGAGCTGATGA 
T47D Deletion T_chr11_107374676_R GTCACCAATCTTGTCTTCCT 
T47D Deletion T_chr7_97762466_F ACTGGATCCCTTCCTTACAG 
T47D Deletion T_chr7_97773481_R GGCAAGCTGCTGAATTGCCT 
T47D Deletion T_chr7_70969523_F TGAGCCAATTAAACCTCTAT 
T47D Deletion T_chr7_70979773_R GTATTCATGCTTCAAAGAAG 
T47D Deletion T_chr6_85998091_F TGCAGTGTTTGGTTTTCTAT 
T47D Deletion T_chr6_86007304_R AAAAAGTGGGCAAAGGATAT 
T47D Deletion T_chr1_53126296_F GGACTACAGGTGCCCACCAT 
T47D Deletion T_chr1_53129986_R CCAGTGGTGGCTTCATCTGT 
T47D Deletion T_chr13_69400712_F CTACAGAAAGACTGAATAGC 
T47D Deletion T_chr13_69404714_R ATTATATTTGGGGAATCTAC 
 

III. Public datasets used in this study 
 
Cell Type Data Type Accession Source 
A549 Hi-C ENCSR444WCZ ENCODE 
B-ALL Hi-C GSM1906333 GEO 
Caki2 Hi-C ENCSR401TBQ ENCODE 
G401 Hi-C ENCSR079VIJ ENCODE 
K562 Hi-C GSM1551618  GEO 
K562 Hi-C GSM1551619  GEO 
K562 Hi-C GSM1551622  GEO 
KBM7 Hi-C GSM1551624 GEO 
KBM7 Hi-C GSM1551625  GEO 
KBM7 Hi-C GSM1551626 GEO 
KBM7 Hi-C GSM1551627  GEO 
KBM7 Hi-C GSM1551628 GEO 
LNCaP Hi-C ENCSR346DCU ENCODE 
MCF7 Hi-C GSM1631185  GEO 
MCF7 Hi-C GSM1942100  GEO 
MCF7 Hi-C GSM1942101  GEO 
MHH-CALL-4 Hi-C GSM1906334  GEO 
NCI-H460 Hi-C ENCSR489OCU ENCODE 
Panc1 Hi-C ENCSR440CTR ENCODE 
PC3 Hi-C GSM1902605  GEO 
PC3 Hi-C GSM1902606  GEO 
RL Hi-C GSM1906332 GEO 
RPMI-7951 Hi-C ENCSR862OGI ENCODE 
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SJCRH30 Hi-C ENCSR998ZSP ENCODE 
SK-MEL-5 Hi-C ENCSR312KHQ ENCODE 
SK-N-DZ Hi-C ENCSR105KFX ENCODE 
SK-N-MC Hi-C ENCSR834DXR ENCODE 
SK-N-SH Hi-C GSM1826481  GEO 
SK-N-SH Hi-C GSM1826482 GEO 
T47D Hi-C ENCSR549MGQ ENCODE 
H1 hESC Hi-C GSM1267196 GEO 
Mes Hi-C GSM1267199 GEO 
MSC Hi-C GSM1267200  GEO 
NPC Hi-C GSM1267202 GEO 
Troph Hi-C GSM1267205  GEO 
HMEC Hi-C GSM1551608 GEO 
HMEC Hi-C GSM1551609 GEO 
HMEC Hi-C GSM1551610 GEO 
HMEC Hi-C GSM1551611 GEO 
HMEC Hi-C GSM1551612 GEO 
HUVEC Hi-C GSM1551630 GEO 
IMR90 Hi-C GSM1551602 GEO 
GM12878 Hi-C GSM1551597 GEO 
AA86 Hi-C GSM2176962 GEO 
GB176 Hi-C GSM2176966 GEO 
GB180 Hi-C GSM2176967 GEO 
GB182 Hi-C GSM2176968 GEO 
GB183 Hi-C GSM2176969 GEO 
GB238 Hi-C GSM2176970 GEO 
A549 RNA-seq ENCFF000EJJ ENCODE 
A549 RNA-seq ENCFF000EJV ENCODE 
Caki2 RNA-seq ENCFF185BLE ENCODE 
Caki2 RNA-seq ENCFF859XNV ENCODE 
Caki2 RNA-seq ENCFF917KJE ENCODE 
Caki2 RNA-seq ENCFF272LRD ENCODE 
G401 RNA-seq ENCFF757UTO ENCODE 
G401 RNA-seq ENCFF780REB ENCODE 
HMEC RNA-seq ENCFF000GDZ ENCODE 
HMEC RNA-seq ENCFF000GEO ENCODE 
HMEC RNA-seq ENCFF000GDA ENCODE 
HMEC RNA-seq ENCFF000GDT ENCODE 
K562 RNA-seq ENCFF001RFE ENCODE 
K562 RNA-seq ENCFF001RFF ENCODE 
LNCaP RNA-seq ERR361060_1 ENA 
LNCaP RNA-seq ERR361060_2 ENA 
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MCF7 RNA-seq ENCFF002DKR ENCODE 
MCF7 RNA-seq ENCFF002DKU ENCODE 
NCI-H460 RNA-seq ENCLB297PER_1 ENCODE 
NCI-H460 RNA-seq ENCLB297PER_2 ENCODE 
NCI-H460 RNA-seq ENCLB794DVD_1 ENCODE 
NCI-H460 RNA-seq ENCLB794DVD_2 ENCODE 
PANC-1 RNA-seq SRR1736496_1 SRA 
PANC-1 RNA-seq SRR1736496_2 SRA 
PC-3 RNA-seq ENCFF186UTV ENCODE 
PC-3 RNA-seq ENCFF884SCR ENCODE 
Primary Kidney RNA-seq SRR2087309_1 SRA 
Primary Kidney RNA-seq SRR2087309_2 SRA 
Primary Kidney RNA-seq SRR2087322_1 SRA 
Primary Kidney RNA-seq SRR2087322_2 SRA 
T47D RNA-seq SRR5808857_1 SRA 
T47D RNA-seq SRR5808857_2 SRA 
T47D RNA-seq SRR925736_1 SRA 
T47D RNA-seq SRR925736_2 SRA 
SK-N-MC RNA-seq SRR1594020_1 SRA 
SK-N-MC RNA-seq SRR1594020_2 SRA 
RPMI-7951 RNA-seq ENCFF002DLX ENCODE 
RPMI-7951 RNA-seq ENCFF002DLY ENCODE 
SK-N-DZ RNA-seq ENCFF482SFO ENCODE 
SK-N-DZ RNA-seq ENCFF691TRA ENCODE 
SK-N-SH RNA-seq ENCFF000IMC ENCODE 
SK-N-SH RNA-seq ENCFF000IMS ENCODE 
HG00268-FIN-F WGS SRR1293236_1 SRA 
HG00268-FIN-F WGS SRR1293236_2 SRA 
HG00096-GBR-M WGS SRR1291026_1 SRA 
HG00096-GBR-M WGS SRR1291026_2 SRA 
HG00419-CHS-F WGS SRR1295433_1 SRA 
HG00419-CHS-F WGS SRR1295433_2 SRA 
NA12878 WGS ERR194147_1 ENA 
NA12878 WGS ERR194147_2 ENA 
NA19625-AA-F WGS SRR1295538_1 SRA 
NA19625-AA-F WGS SRR1295538_2 SRA 
LNCaP WGS SRR1977632_1 SRA 
LNCaP WGS SRR1977632_2 SRA 
 

IV. New deposit of dataset to SRA under project PRJNA380394: 
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Cell lines Data type 
T47D WGS 
Caki2 WGS 
K562 WGS 
A549 WGS 
PANC-1 WGS 
SK-N-MC WGS 
NCI-H460 WGS 
K562 Hi-C 
SK-N-AS Hi-C 
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