Supplementary Information

Development of selective, fluorescent cannabinoid type 2 receptor ligands based on a 1,8-naphthyridin-2-(1*H*)-one-3-carboxamide scaffold

Anna G. Cooper,[†] Caitlin R. M. Oyagawa,[‡] Jamie J. Manning,[‡] Sameek Singh,[†] Sarah Hook,[†] Natasha L. Grimsey,[‡] Michelle Glass,[‡] Joel D. A. Tyndall,[†] Andrea J. Vernall[†]*

[†] School of Pharmacy, University of Otago, Dunedin, New Zealand

[‡] Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research, School of Medical Sciences, University of Auckland, Auckland, New Zealand

* School of Pharmacy, 18 Frederick Street, Dunedin 9054, New Zealand.

Ph: 64 3 479 4518

Email: andrea.vernall@otago.ac.nz

clogP

cLogP of **2** and SR144528 were calculated in MarvinSketch 17.6 using the ChemAxon Method and electrolyte concentrations of 0.1 mol/dm³ of Cl⁻ and Na⁺ K⁺.

Synthesis of all other compounds not reported within manuscript

6-Bromo-*N*-(4-methylcyclohexyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-carboxamide (1)

To a stirred solution of 5 (22 mg, 59.9 µmol) in DMF (1 mL) was added caesium carbonate (55 mg, 0.17 mmol). After stirring for 1 h, 4-(2-chloroethyl)morpholine hydrochloride (22 mg, 0.12 mmol) was added. The mixture was stirred at 50 °C for 12 h and upon cooling was evaporated under reduced pressure. Saturated aq. NaHCO3 was added until pH 10-11 and then extracted with DCM (3 x 20 mL). The combined organics were washed with H₂O (1 x 60 mL), dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by crystallisation in ACN to yield 1 (10.5 mg, 22.0 µmol, 37%), as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (m, 1H, NH isomer A), 9.41 (m, 1H, NH isomer B) 8.80 (s, 1H, ArH), 8.69 (d, J = 2.3 Hz, 1H, ArH), 8.19 (t, J = 2.1 Hz, 1H, ArH), 5.04 – 4.58 (m, 2H, N1-CH₂), 4.32 – 3.91 (m, 1H, NHCH isomer A and NHCH isomer B), 3.92 – 3.55 (m, 4H, N-CH₂ morpholino), 3.40 – 2.22 (m, 6H, N1-CH₂CH₂ & O-CH₂ morpholino), 2.12 – 0.88 (m, 12H, CH & CH₂ cyclohexyl, CH₃). Isomers A and B represent cis/trans (in no defined order) isomers. Data matches the literature reference.^{1 13}C NMR (101 MHz, CDCl₃) δ 162.50, 162.36, 161.26, 152.67, 152.61, 148.21, 141.02, 140.10, 124.54, 116.46, 55.51, 53.40, 49.06, 45.76, 33.99, 33.07, 32.11, 31.24, 30.25, 29.84, 29.74, 22.36, 21.80. Isomers A and B resolved as separate peaks in some instances, but are not assigned. HRMS-ESI calculated for $C_{22}H_{30}BrN_4O_3$ [M+H]⁺ 477.1496, found *m/z* 477.1462. Analytical RP-HPLC $R_t = 15.57 \min(57\%)$ and $15.84 \min(43\%)$.

Methyl 5-{6-bromo-3-[(4-methylcyclohexyl)carbamoyl]-2-oxo-1,2-dihydro-1,8naphthyridin-1-yl}pentanoate (6)

To a stirred solution of 5^1 (319 mg, 0.88 mmol) in DMF (4 mL), was added caesium carbonate (799 mg, 2.5 mmol). After stirring for 1 h, methyl 5-bromovalerate (0.25 mL, 1.8 mmol) was added. The mixture was stirred at 50 °C for 12 h and upon cooling was evaporated under reduced pressure. The solid was taken up in ACN and filtered. The filtrate was evaporated and then purified by recrystallisation in ACN to yield **6** (94 mg, 0.20 mmol,

22%), as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.93 (d, *J* = 7.8 Hz, 1H, NH isomer A), 9.55 (d, *J* = 8.1 Hz, 1H, NH isomer B), 8.79 (s, 1H, ArH), 8.70 (d, *J* = 2.4 Hz, 1H, ArH), 8.17 (dd, *J* = 3.5, 2.4 Hz, 1H, ArH), 4.65 – 4.46 (m, 2H, N-CH₂), 4.25 (m, 1H, NHC<u>H</u> isomer A), 3.9 (m, 1H, NHC<u>H</u> isomer B), 3.67 (s, 3H, O-CH₃), 2.47 – 2.34 (m, 2H, C<u>H</u>₂COOMe), 2.11 – 0.87 (m, 16H, N-CH₂(C<u>H</u>₂)₂, CH & CH₂ cyclohexyl & CH₃). Isomers A and B represent cis/trans (in no defined order) isomers. ¹³C NMR (101 MHz, CDCl₃) δ 173.92, 173.87, 162.34, 162.29, 161.55, 161.53, 152.77, 152.72, 148.34, 148.28, 140.76, 140.58, 139.83, 139.79, 124.47, 124.38, 116.25, 116.24, 114.27, 114.21, 51.71, 51.70, 49.03, 45.83, 41.80, 41.72, 34.01, 33.83, 33.82, 33.07, 32.12, 31.21, 30.30, 29.72, 27.48, 27.47, 22.47, 22.45, 22.36, 21.67. Isomers A and B resolved as separate peaks in some instances, but are not assigned. HRMS-ESI calculated for C₂₂H₂₈BrN₃NaO4 [M+Na]⁺ 500.1155, found *m/z* 500.1117. Analytical RP-HPLC R_t = 23.16 min (50%) and 24.15 min (50%).

Methyl 4-({6-bromo-3-[(4-methylcyclohexyl)carbamoyl]-2-oxo-1,2-dihydro-1,8naphthyridin-1-yl}methyl)benzoate (7)

A solution of **5** (75 mg, 0.23 mmol), caesium carbonate (206 mg, 0.63 mmol) and methyl 4bromomethylbenzoate (104 mg, 0.45 mmol) in DMF (1.1 mL) was reacted as described in the procedure for **6**. The crude residue was purified by flash silica gel column chromatography (99:1 DCM/MeOH) and a portion (6 mg) of the solid obtained (20 mg) was further purified by semi-preparative RP-HPLC to yield **7** (3.54 mg, 6.93 µmol), as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.92 – 9.75 (m, 1H, NH isomer A), 9.49 – 9.38 (m, 1H, NH isomer B), 8.84 (s, 1H, ArH), 8.73 – 8.65 (m, 1H, ArH), 8.22 – 8.16 (m, 1H, ArH), 8.00 – 7.89 (m, 2H, ArH Ph), 7.48 – 7.38 (m, 2H, ArH Ph), 5.81 (d, J = 8.6 Hz, 2H, N1-CH₂), 4.37 – 4.16 (m, 1H, NHC<u>H</u>), 2.11 – 0.89 (m, 15H, CH & CH₂ cyclohexyl, CH₃). Isomers A and B represent cis/trans (in no defined order) isomers. HRMS-ESI calculated for C₂₅H₂₆BrN₃NaO₄ [M+Na]⁺ 534.0999, found *m*/z 534.1008. Analytical RP-HPLC R_t = 24.16 min (50%) and 24.44 min (50%).

Methyl 5-[6-(4-methoxyphenyl)-3-[(4-methylcyclohexyl)carbamoyl]-2-oxo-1,2-dihydro-1,8-naphthyridin-1-yl]pentanoate (8)

Compound **6** (16 mg, 32.8 μ mol), 4-methoxyphenylboronic acid (6.5 mg, 42.7 μ mol) and Na₂CO₃ (9.1 mg, 85.4 μ mol) were dissolved in a 1:4 *v*:*v* mixture of H₂O and DMF (1.5 mL). Pd(OAc)₂ (0.08 mg, 0.33 μ mol) was added and the reaction mixture heated to 110 °C and

stirred for 3 h, then cooled to rt and diluted with H₂O (1.5 mL). The aqueous phase was extracted with EA (4 x 1.5 mL) and the combined organics washed with H₂O (3 x 6 mL) and sat. aq. NaCl (1 x 6 mL), dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified by flash silica gel column chromatography (2:1 hexane/EA) to vield the desired 8 (9.2 mg, 18.1 μ mol, 55%), as a yellow solid (R_f 0.5, 1:1 hexane/EA). ¹H NMR (400 MHz, CDCl₃) δ 10.04 (d, J = 7.8 Hz, 1H, NH isomer A), 9.67 (d, J = 8.0 Hz, 1H, NH, isomer B), 8.91 (s, 1H, ArH), 8.89 (d, J = 2.4 Hz, 1H, ArH), 8.19 – 8.12 (m, 1H, ArH), 7.63 – 7.50 (m, 2H, ArH MeOPh), 7.11 – 6.99 (m, 2H, ArH MeOPh), 4.73 – 4.54 (m, 2H, N-CH₂), 4.26 (m, 1H, NHCH isomer A), 3.93 (m, 1H, NHCH isomer B), 3.88 (s, 3H, PhO-CH₃), 3.67 (s, 3H, COOCH₃), 2.52 – 2.40 (m, 2H, CH₂COOMe), 2.36 (m, 1H, CHCH₃) isomer A), 2.09 (m, 1H, CHCH3 isomer B), 1.90 - 0.87 (m, 15H, N-CH2(CH2)2, CH2 cyclohexyl CH₃). Isomers A and B represent cis/trans (in no defined order) isomers. ¹³C NMR (101 MHz, CDCl₃) δ 174.04, 173.99, 162.56, 162.52, 162.10, 160.07, 160.06, 150.63, 150.58, 148.57, 148.51, 142.07, 141.89, 135.46, 135.43, 132.28, 132.22, 128.96, 128.92, 128.27, 123.56, 123.47, 114.93, 114.83, 55.58, 51.73, 51.70, 48.94, 45.80, 41.66, 41.57, 34.21, 34.05, 33.93, 33.91, 33.61, 33.11, 32.14, 31.20, 30.34, 29.75, 28.21, 27.61, 22.56, 22.53, 22.39, 21.65, 21.36. Isomers A and B resolved as separate peaks in some instances, but are not assigned. HRMS-ESI calculated for C₂₉H₃₅N₃NaO₅ [M+Na]⁺ 528.2469, found m/z 528.2475. Analytical RP-HPLC $R_t = 24.33 \text{ min} (50\%)$ and 25.08 min (50%).

5-{6-Bromo-3-[(4-methylcyclohexyl)carbamoyl]-2-oxo-1,2-dihydro-1,8-naphthyridin-1yl}pentanoic acid (9)

A solution of **6** (60 mg, 0.13 mmol) and 10% NaOH (10 mL) was heated to 110 °C for 5 h. The mixture was cooled and conc. HCl added until pH 2-3. The precipitate was filtered and treated with diethyl ether to yield **9** (25 mg, 54.5 µmol, 43%) as a white solid (R_f 0.34, 1:1 hexane/EA). ¹H NMR (400 MHz, CDCl₃) δ 9.95 (d, *J* = 7.7 Hz, 1H, NH isomer A), 9.57 (d, *J* = 7.9 Hz, 1H, NH isomer B), 8.81 (s, 1H, ArH), 8.70 (d, *J* = 2.1 Hz, 1H, ArH), 8.18 (t, *J* = 2.7 Hz, 1H, ArH), 4.64 – 4.46 (m, 2H, N-CH₂), 4.25 (m, 1H, NHC<u>H</u> isomer A), 3.89 (m, 1H, NHC<u>H</u> isomer B), 2.56 – 2.35 (m, 2H, C<u>H₂</u>COOH), 2.15 – 0.87 (m, 16H, N-CH₂(C<u>H₂)</u>, CH & CH₂ cyclohexyl & CH₃). Isomers A and B represent cis/trans (in no defined order) isomers. ¹³C NMR (101 MHz, CDCl₃) δ 178.34, 178.28, 162.35, 162.30, 161.70, 161.69, 152.84, 152.80, 148.31, 148.26, 140.98, 140.81, 139.92, 139.88, 124.30, 124.21, 116.26, 116.25, 114.34, 114.28, 49.11, 45.91, 41.75, 41.67, 33.99, 33.65, 33.64, 33.04, 32.10, 31.20, 30.28, 29.84, 29.71, 27.40, 22.36, 22.21, 22.19, 21.68. Isomers A and B resolved as separate peaks in some instances, but are not assigned. HRMS-ESI calculated for $C_{21}H_{26}BrN_3NaO_4$ [M+Na]⁺ 486.0999, found *m/z* 486.1007.

tert-Butyl *N*-[8-(5-{6-bromo-3-[(4-methylcyclohexyl)carbamoyl]-2-oxo-1,2-dihydro-1,8naphthyridin-1-yl}pentanamido)octyl]carbamate (10)

To a solution of 9 (13 mg, 27.8 µmol) in anhydrous DMF (2 mL) were added DIPEA (14.5 µL, 85 µmol) and HATU (11 mg, 27.8 µmol). After stirring for 5 min, a solution of tertbutyl-N-(8-aminooctyl)carbamate (prepared according to a literature procedure)² (22 mg, 88.8 µmol) and DIPEA (14.5 µL, 85 µmol) in DMF (1.5 mL) was added. The reaction mixture was stirred for 14 hand then the solvent evaporated under reduced pressure. The crude residue was purified by flash silica gel column chromatography (1:1 hexane/EA) to yield 10 (14 mg, 19.6 μ mol, 71%) as a grey solid (R_f 0.484 1:2 hexane/EA). ¹H NMR (400 MHz, MeOD- d_4) δ 10.33 (d, J = 7.9 Hz, 1H, NH isomer A), 9.89 (d, J = 7.9 Hz, 1H, NH isomer B), 8.83 - 8.75 (m, 2H, ArH), 8.52 (dd, J = 4.2, 2.4 Hz, 1H, ArH), 4.65 - 4.51 (m, 2H, N1-CH₂), 4.21 (m, 1H, NHCH isomer A), 3.81 (m, 1H, NHCH isomer B), 3.14 (t, J = 7.0Hz, 2H, CH₂), 3.04 – 2.86 (m, 2H, CH₂), 2.32 – 2.20 (m, 2H, CH₂), 2.10 – 0.90 (m, 37H, CH, CH₂, CH₃). Isomers A and B represent cis/trans (in no defined order) isomers. ¹³C NMR (101 MHz, MeOD-d₄) δ 175.66, 163.62, 163.41, 154.11, 149.57, 142.26, 141.71, 124.66, 117.54, 117.51, 115.28, 115.24, 79.74, 50.33, 49.64, 49.43, 49.21, 49.00, 48.79, 48.57, 48.36, 46.69, 42.76, 42.66, 41.35, 40.76, 40.34, 40.23, 36.71, 36.67, 34.96, 33.82, 33.16, 32.69, 31.08, 30.95, 30.74, 30.35, 30.32, 30.09, 30.02, 28.80, 28.53, 28.39, 28.36, 27.91, 27.81, 27.77, 27.34, 24.43, 24.40, 22.56. Isomers A and B resolved as separate peaks in some instances, but are not assigned. HRMS-ESI calculated for C₃₄H₅₂BrN₅NaO₅ [M+Na]⁺ 712.3044, found *m*/*z* 712.3065.

tert-Butyl *N*-(2-{2-[2-(5-{6-bromo-3-[(4-methylcyclohexyl)carbamoyl]-2-oxo-1,2dihydro-1,8-naphthyridin-1-yl}pentanamido)ethoxy]ethoxy}ethyl)carbamate (11)

Compound **9** (8.9 mg, 19.2 µmol), DIPEA (20.1 µL, 0.12 mmol), HATU (7.3 mg, 19.2 µmol) and *tert*-butyl *N*-{2-[2-(2-aminoethoxy)ethoxy]-ethyl}carbamate (prepared according to literature procedure)³ (15 mg, 62.0 µmol) in DMF (1.8 mL) were used as described in the procedure for **10**. The crude product was purified by flash silica gel column chromatography (1:7 hexane/EA) to yield **11** (10 mg, 14.7 µmol, 77%) as a grey solid (R_f 0.19 1:2 hexane/EA). ¹H NMR (400 MHz, CDCl₃) δ 9.95 (d, *J* = 7.7 Hz, 1H, NH isomer A), 9.57 (d, *J*

= 8.0 Hz, 1H, NH isomer B), 8.76 (s, 1H, ArH), 8.69 (d, J = 2.1 Hz, 1H, ArH), 8.20 – 8.12 (m, 1H, ArH), 6.16 (s, 1H, NH), 4.98 (s, 1H, NH), 4.62 – 4.43 (m, 2H, N1-CH₂), 4.22 (m, 1H, NHC<u>H</u> isomer A), 3.87 (m, 1H, NHC<u>H</u> isomer B), 3.74 – 3.38 (m, 10H, CH₂), 3.36 – 3.20 (br m, 2H, CH₂), 2.36 – 2.21 (br m, 2H, CH₂), 2.10 – 0.85 (m, 25H, CH, CH₂, CH₃). Isomers A and B represent cis/trans (in no defined order) isomers. ¹³C NMR (101 MHz, CDCl₃) δ 162.31, 162.27, 161.65, 152.89, 152.86, 148.27, 140.83, 140.66, 139.86, 139.82, 124.33, 124.24, 116.24, 114.31, 114.25, 70.47, 70.36, 70.25, 70.10, 49.07, 45.88, 41.87, 39.60, 36.14, 33.99, 33.07, 32.11, 30.29, 29.71, 28.55, 27.53, 23.33, 22.36, 21.69. Isomers A and B resolved as separate peaks in some instances, but are not assigned. HRMS-ESI calculated for C₃₂H₄₉BrN₅O₇ [M+H]⁺ 694.2810, found *m/z* 694.2870.

1-{4-[(8-Aminooctyl)carbamoyl]butyl}-6-bromo-*N*-(4-methylcyclohexyl)-2-oxo-1,2dihydro-1,8-naphthyridine-3-carboxamide (12)

Compound **10** (11 mg, 16.1 µmol) was dissolved in DCM (0.9 mL) and TFA (0.9 mL) was added. After 1 h stirring, the reaction mixture was evaporated under N₂ stream, followed by reduced pressure. The crude was purified by semi-preparative RP-HPLC to yield the TFA salt of **12** (11.9 mg, 14.6 µmol, 91%) as a white solid. HRMS-ESI calculated for $C_{29}H_{45}BrN_5O_3$ [M+H]⁺ 590.2700, found *m/z* 590.2703. Analytical RP-HPLC R_t = 18.12 min (40%) and 18.27 min (60%).

1-[4-({2-[2-(2-Aminoethoxy)ethoxy]ethyl}carbamoyl)butyl]-6-bromo-*N*-(4methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide (13)

A solution of **11** (8.0 mg, 11.5 μ mol) and TFA (1.2 mL) in DCM (1.2 mL) was reacted as described in the procedure for **12**. The crude was purified by semi-preparative RP-HPLC to yield the TFA salt of **13** (8.1 mg, 9.8 μ mol, 86%) as a white solid. HRMS-ESI calculated for C₂₇H₄₁BrN₅O₅ [M+H]⁺ 594.2286, found *m/z* 594.2294. Analytical RP-HPLC R_t = 16.84 min (51%) and 17.01 min (49%).

6-Bromo-1-{4-[(8-acetamidooctyl)carbamoyl]butyl}-*N*-(4-methylcyclohexyl)-2-oxo-1,2dihydro-1,8-naphthyridine-3-carboxamide (14)

To a solution of the TFA salt of **12** (2.4 mg, 2.9 μ mol) and DIPEA (1.9 μ L, 10.9 μ mol, added as a 1:10 solution in DCM) in DCM (500 μ L) was added acetic anhydride (0.28 μ L, 3.0 μ mol, added as a 1:10 solution in DCM) and the mixture stirred at rt for 1 h. The reaction

solvent was evaporated under N₂ stream. The product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **14** (1.76 mg, 2.8 μ mol, 95%) as a white solid. HRMS-ESI calculated for C₃₁H₄₆BrN₅NaO₄ [M+Na]⁺ 654.2625, found *m/z* 654.2612. Analytical RP-HPLC R_t = 21.04 min (40%) and 21.20 min (60%).

6-Bromo-1-[4-({2-[2-(2-acetamidoethoxy)ethoxy]ethyl}carbamoyl)butyl]-*N*-(4methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide (15)

The TFA salt of **13** (1.53 mg, 1.9 μ mol), DIPEA (1.2 μ L, 6.9 μ mol), and acetic anhydride (0.18 μ L, 1.9 μ mol) in DCM (437 μ L) were treated as in the procedure for **14**. The product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **15** (1.14 mg, 1.8 μ mol, 96%) as a white solid. HRMS-ESI calculated for C₂₉H₄₂BrN₅NaO₆ [M+Na]⁺ 658.2211, found *m/z* 658.2191. Analytical RP-HPLC R_t = 18.90 min (53%) and 19.11 min (47%).

6-Bromo-1-[4-({8-[6-(2-{4-[(*E*)-2-[2,2-difluoro-4-(thiophen-2-yl)-1λ4,3-diaza-2λ4boratricyclo[7.3.0.0^{3,7}]dodeca-1(12),4,6,8,10-pentaen-12-

yl]ethenyl]phenoxy}acetamido)hexanamido]octyl}carbamoyl)butyl]-N-(4-

methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide (16)

To a solution of the TFA salt of **12** (4.9 mg, 6.0 μ mol) in anhydrous DMF (500 μ L), was added a solution of DIPEA (2.6 μ L, 14.9 μ mol) in anhydrous DMF (41.6 μ L), followed by a solution of BODIPY 630/650-X-OSu (1.25 mg, 1.89 μ mol) in anhydrous DMF (300 μ L). The mixture was swirled, left standing for 12 h, then evaporated under reduced pressure. The crude product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **16** (1.98 mg, 1.7 μ mol, 92%) as a bright blue solid. HRMS-ESI calculated for C₅₈H₇₀BBrF₂N₈NaO₆S [M+Na]⁺ 1157.4285, found *m/z* 1157.4175. Analytical RP-HPLC R_t = 25.44 min (cis trans isomers resolved as one peak in standard analytical method). 6-Bromo-1-(4-{[2-(2-{2-[6-(2-{4-[(*E*)-2-[2,2-difluoro-4-(thiophen-2-yl)-1λ4,3-diaza-2λ4boratricyclo[7.3.0.0^{3,7}]dodeca-1(12),4,6,8,10-pentaen-12-

yl]ethenyl]phenoxy}acetamido)hexanamido]ethoxy}ethoxy)ethyl]carbamoyl}butyl)-*N*-(4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide (17) The TFA salt of 13 (5.32 mg, 6.5 µmol), DIPEA (2.8 µL, 15.9 µmol), BODIPY 630/650-X-OSu (1.25 mg, 1.89 µmol) and DMF (844 µL) were reacted as described in the procedure for 16. The crude product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding 17 (1.9 mg, 1.7 µmol, 88%) as a bright blue solid. HRMS-ESI calculated for C₅₆H₆₆BBrF₂N₈NaO₈S [M+Na]⁺ 1161.3870, found *m/z* 1161.3780. Analytical RP-HPLC R_t = 24.39 min (55%) and 24.50 min (45%).

Compounds 19, 20 detailed in manuscript.

trans-N-(4-Hydroxycyclohexyl)-6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide (21)

To a stirred solution of 19 (800 mg, 2.0 mmol) in anhydrous DMF (40 mL) was added DIPEA (2 mL, 11.8 mmol) and HATU (743 mg, 2.0 mmol). The reaction mixture was stirred for 5 min, then trans-4-aminocyclohexanol hydrochloride (675 mg, 5.9 mmol) in DMF (40 mL) was added and the mixture stirred for 42 h. The DMF was evaporated under reduced pressure and the residue taken up in H₂O (50 mL) and extracted with DCM (3 x 50 mL). The combined organics were washed with H₂O (2 x 60 mL), dried over MgSO₄, filtered and evaporated under reduced pressure. The crude was purified by precipitation in ACN, yielding **21** (815 mg, 1.6 mmol, 82%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.72 (d, J = 7.9 Hz, 1H, NH), 8.91 (s, 1H, ArH), 8.89 (d, J = 2.4 Hz, 1H, ArH), 8.17 (d, J = 2.4 Hz, 1H, ArH), 7.60 – 7.51 (m, 2H, ArH MeOPh), 7.10 – 7.00 (m, 2H, ArH MeOPh), 4.83 – 4.71 (m, 2H, N-CH₂), 4.07 – 3.93 (m, 1H, CH), 3.87 (s, 3H, O-CH₃), 3.75 – 3.64 (m, 5H, CH & O-CH₂ morpholino), 2.78 – 2.69 (m, 2H, N-CH₂), 2.68 – 2.57 (m, 4H, N-CH₂ morpholino), 2.18 -2.09 (m, 2H, CH₂), 2.09 -1.99 (m, 2H, CH₂), 1.54 -1.36 (m, 4H, CH₂). ¹³C NMR (101) MHz, CDCl₃) δ 162.57, 162.30, 160.11, 150.64, 148.65, 142.24, 135.44, 132.36, 128.85, 128.26, 123.24, 114.95, 114.78, 69.93, 67.15, 56.04, 55.58, 54.05, 47.94, 39.13, 34.04, 30.67. HRMS-ESI calculated for C₂₈H₃₅N₄O₅ [M+H]⁺ 507.2602, found *m/z* 507.2571. Analytical RP-HPLC $R_t = 13.85$ min.

tert-Butyl *N*-[(1s,4s)-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2dihydro-1,8-naphthyridine-3-amido]cyclohexyl]carbamate (22)

Compound 19 (experimental detailed in manuscript) (50 mg, 0.12 mmol), DIPEA (128 µL, 0.73 mmol), HATU (46 mg, 0.12 mmol) and 1-N-Boc-cis-1,4-cyclohexyldiamine (79 mg, 0.37 mmol) in DMF (2.5 mL) were used as described in the procedure for 10. The reaction mixture was evaporated under reduced pressure and the residue taken up in EA (5 mL), washed with H₂O (3 x 5 mL), dried over MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by flash silica gel column chromatography (4:1 EA/hexane) to yield 22 (53 mg, 87.2 μ mol, 71%) as a yellow solid (R_f 0.34, 100% EA). ¹H NMR (400 MHz, CDCl₃) δ 10.00 (d, J = 7.8 Hz, 1H, NH), 9.01 – 8.81 (m, 2H, ArH), 8.25 – 8.11 (m, 1H, ArH), 7.62 – 7.44 (m, 2H, ArH MeOPh), 7.09 – 6.95 (m, 2H, ArH MeOPh), 4.77 (t, J = 7.2 Hz, 2H, N1-CH₂), 4.72 - 4.59 (m, 1H, NH), 4.28 - 4.14 (m, 1H, CH), 3.86 (s, 3H, O-CH₃), 3.68 (t, J = 4.5 Hz, 5H, CH, N-CH₂ morpholino), 2.74 (t, J = 7.2 Hz, 2H, N1-CH₂CH₂), 2.64 (t, J = 4.4 Hz, 4H, O-CH₂ morpholino), 1.82 (d, J = 14.6 Hz, 6H, CH₂), 1.68 -1.54 (m, 2H, CH₂), 1.45 (d, J = 1.4 Hz, 9H, tBu CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 162.61, 162.11, 160.09, 155.28, 150.60, 148.63, 142.13, 135.39, 132.33, 128.81, 128.23, 123.26, 114.93, 114.76, 79.33, 67.12, 56.00, 55.55, 54.02, 47.41, 45.60, 39.09, 28.91, 28.64, 28.57. HRMS calculated for $C_{33}H_{44}N_5O_6$ [M+H]⁺ 606.3286, found *m/z* 606.3246.

Compound 23 detailed in manuscript.

trans-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 2-{[(*tert*-butoxy)carbonyl]amino}acetate (24)

A stirred solution of Boc-glycine (10 mg, 59 µmol) and TFFH (16 mg, 59 µmol) in anhydrous DCM (1.6 mL) was cooled to 0 °C and Et₃N (41 µL, 0.30 mmol) was added. The mixture was warmed to rt and stirred for 30 min and then **21** (30 mg, 59 µmol) and DMAP (0.7 mg, 5.9 µmol) were added. The mixture was stirred for 14 h at rt and then evaporated under reduced pressure. The residue was taken up in EA (3 mL) and washed with H₂O (3 x 3 mL) and sat. aq. NaCl (1 x 3 mL), dried over MgSO₄, filtered and evaporated under reduced pressure. The crude residue was purified by flash silica column chromatography (100% EA) to yield **24** (8.5 mg, 12.8 µmol, 22%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (d, *J* = 7.9 Hz, 1H, NH), 8.97 – 8.86 (m, 2H, ArH), 8.17 (d, *J* = 2.4, 1H, ArH), 7.61 – 7.52 (m, 2H, ArH MeO<u>Ph</u>), 7.11 – 7.00 (m, 2H, ArH MeO<u>Ph</u>), 5.05 – 4.98 (m, 1H, NH), 4.78 (t, *J* = 7.1 Hz, 2H, N1-C<u>H</u>₂), 4.51 – 4.33 (m, 1H, CH), 4.07 – 3.91 (m, 2H, CH₂), 3.87 (s, 3H, O-CH₃), 3.74 - 3.64 (m, 5H, CH, N-CH₂ morpholino), 2.76 (t, J = 7.2 Hz, 2H, N1-CH₂C<u>H₂</u>), 2.66 (t, J = 4.5 Hz, 4H, O-CH₂ morpholino), 2.19 – 1.99 (m, 4H, CH₂), 1.70 – 1.06 (m, 13H, CH₂, *t*Bu CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 171.12, 162.56, 162.31, 160.13, 150.68, 148.61, 142.31, 135.48, 132.41, 128.84, 128.27, 123.22, 114.96, 114.80, 84.41, 69.94, 66.98, 55.91, 55.58, 53.90, 47.95, 47.47, 38.91, 34.03, 30.66, 28.47 (one quaternary carbon was not observed). HRMS-ESI calculated for C₃₅H₄₆N₅O₈ [M+H]⁺ 664.3341, found 664.3339.

cis-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 7-{[(*tert*-butoxy)carbonyl]amino}heptanoate (25)

A solution of **20** (50 mg, 99 µmol), 7-{[(tert-butoxy)carbonyl]amino}heptanoic acid (48 mg, 0.20 mmol), TFFH (49 mg, 0.20 mmol), Et₃N (137 µL, 0.99 mmol) and DMAP (1.2 mg, 9.9 µmol) in DCM (4 mL) was reacted as described in the procedure for **24**. The crude residue was purified by flash silica column chromatography (1:2 hexane/EA) to yield **25** (48 mg, 66 µmol, 66%) as a yellow brown oil. ¹H NMR (400 MHz, CDCl₃) δ 9.85 (d, *J* = 7.8 Hz, 1H, NH), 8.97 – 8.88 (m, 2H, ArH), 8.17 (d, *J* = 2.4 Hz, 1H, ArH), 7.60 – 7.52 (m, 2H, ArH MeOPh), 7.09 – 7.01 (m, 2H, ArH MeOPh), 4.98 (s, 1H, NH), 4.80 (t, *J* = 7.1 Hz, 2H, N1-CH₂), 4.68 – 4.49 (m, 1H, CH), 4.17 – 4.05 (m, 1H, CH), 3.88 (s, 3H, O-CH₃), 3.69 (t, *J* = 4.6 Hz, 4H, N-CH₂ morpholino), 3.11 (q, *J* = 6.7 Hz, 2H, CH₂), 2.76 (t, *J* = 7.1 Hz, 2H, N1-CH₂CH₂), 2.70 – 2.52 (m, 4H, O-CH₂ morpholino), 2.33 (t, *J* = 7.5 Hz, 2H, CH₂), 1.93 – 1.60 (m, 10H, CH₂), 1.51 – 1.32 (m, 15H, CH₂ and *t*Bu CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 173.28, 162.66, 162.18, 160.14, 156.12, 150.67, 148.66, 142.30, 135.45, 132.41, 128.85, 128.27, 123.29, 114.97, 114.81, 69.19, 67.13, 56.06, 55.59, 54.06, 47.05, 40.68, 39.16, 34.74, 30.11, 29.84, 28.98, 28.66, 28.58, 27.84, 26.63, 25.14. HRMS-ESI calculated for C₄₀H₅₆N₅O₈ [M+H]⁺ 734.4123, found *m/z* 734.4144.

trans-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 7-{[(*tert*-butoxy)carbonyl]amino}heptanoate (26)

A solution of **21** (28 mg, 55 μ mol), 7-{[(tert-butoxy)carbonyl]amino}heptanoic acid (27 mg, 0.11 mmol), TFFH (27 mg, 0.11 mmol), Et₃N (77 μ L, 0.55 mmol) and DMAP (0.7 mg, 5.5 μ mol) in DCM (1 mL) was reacted as described in the procedure for **24**. The crude residue was purified by flash silica column chromatography (100% EA) to yield **26** (32 mg, 44 μ mol, 80%) as a yellow brown oil. ¹H NMR (400 MHz, CDCl₃) δ 9.77 (d, *J* = 7.9 Hz, 1H, NH),

8.93 – 8.86 (m, 2H, ArH), 8.17 (d, J = 2.4 Hz, 1H, ArH), 7.61 – 7.50 (m, 2H, ArH MeO<u>Ph</u>), 7.08 – 7.00 (m, 2H, ArH MeO<u>Ph</u>), 4.84 – 4.71 (m, 3H, NH and N1-C<u>H</u>₂), 4.58 – 4.46 (m, 1H, CH), 4.12 – 3.97 (m, 1H, CH), 3.88 (s, 3H, O-CH₃), 3.69 (t, J = 4.6 Hz, 4H, N-CH₂ morpholino), 3.11 (q, J = 6.7 Hz, 2H, CH₂), 2.74 (t, J = 7.2 Hz, 2H, N1-CH₂C<u>H₂</u>), 2.69 – 2.58 (m, 4H, O-CH₂ morpholino), 2.29 (t, J = 7.5 Hz, 2H, CH₂), 2.20 – 1.96 (m, 4H, CH₂), 1.66 – 1.47 (m, 8H, CH₂), 1.44 (s, 9H, *t*Bu CH₃), 1.37 – 1.30 (m, 4H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 173.38, 162.58, 162.37, 160.14, 156.11, 150.69, 148.69, 142.26, 135.46, 132.39, 128.87, 128.28, 123.22, 114.97, 114.78, 71.78, 67.16, 56.05, 55.59, 54.07, 47.63, 40.66, 39.15, 34.67, 30.27, 30.07, 30.04, 28.92, 28.59, 26.60, 25.07 (one quaternary carbon was not observed). HRMS-ESI calculated for C₄₀H₅₅N₅O₈ [M+H]⁺ 734.4123, found *m/z* 734.4072.

tert-Butyl N-({[(1s,4s)-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2dihydro-1,8-naphthyridine-3-amido|cyclohexyl|carbamoyl}methyl)carbamate (27) A solution of 22 (43 mg, 71.3 µmol) and TFA (0.3 mL) in DCM (3 mL) was reacted as described in the procedure for 12, to yield the TFA salt of 6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-N-[(1s,4s)-4-aminocyclohexyl]-1,2-dihydro-1,8-naphthyridine-3-carboxamide (60 mg) as a yellow solid. HRMS calculated for C₂₈H₃₆N₅O₄ [M+H]⁺ 506.2762, found *m/z* 506.2767. This TFA salt (55 mg, 65.3 µmol), DIPEA (68 µL, 0.39 mmol), HATU (25 mg, 65.3 µmol) and Boc-glycine (34 mg, 0.20 mmol) in DMF (2 mL) were used as described in the procedure for 10. The reaction mixture was evaporated under reduced pressure and the residue taken up in EA (5 mL), washed with H_2O (3 x 5 mL), sat. aq. NaCl (3 mL) and sat. NaHCO₃ (1 mL), dried over MgSO₄, filtered and evaporated under reduced pressure. The crude product was purified by flash silica gel column chromatography (95:5 EA/MeOH) to yield 27 (13.4 mg, 20.3 µmol, 31%) as a yellow solid (Rf 0.10, 100%) EA). ¹H NMR (400 MHz, CDCl₃) δ 10.01 (d, J = 7.5 Hz, 1H, NH), 8.94 – 8.87 (m, 2H, ArH), 8.17 (d, J = 2.4 Hz, 1H, ArH), 7.59 – 7.51 (m, 2H, ArH MeOPh), 7.08 – 7.01 (m, 2H, ArH MeOPh), 6.24 (d, J = 7.7 Hz, 1H, NH), 5.31 – 5.16 (m, 1H, NH), 4.79 (t, J = 6.8 Hz, 2H, N1- CH_2 , 4.29 – 4.16 (m, 1H, CH), 4.03 – 3.90 (m, 1H, CH), 3.88 (s, 3H, O-CH₃), 3.78 (d, J = 5.8 Hz, 2H, COC<u>H</u>₂NH), 3.69 (t, J = 4.6 Hz, 4H, N-CH₂ morpholino), 2.82 – 2.72 (m, 2H, N1-CH₂CH₂), 2.71 – 2.57 (m, 4H, O-CH₂ morpholino), 1.90 – 1.75 (m, 6H, CH₂), 1.68 – 1.56 (m, 2H, CH₂), 1.47 (s, 9H, *t*Bu CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 168.81, 162.67, 162.22, 160.14, 156.30, 150.68, 148.65, 142.23, 135.46, 132.42, 128.82, 128.27, 123.24, 114.97,

114.80, 80.47, 67.14, 56.05, 55.58, 53.98, 46.50, 45.56, 44.85, 39.07, 29.83, 28.65, 28.49. HRMS calculated for $C_{35}H_{47}N_6O_7 [M+H]^+$ 663.3501, found *m/z* 663.3508.

cis-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 2-acetamidoacetate (28)

A solution of **23** (7.0 mg, 10.4 µmol) and TFA (0.2 mL) in DCM (0.8 mL) was reacted as described in the procedure for **12**. The crude residue was purified by semi-preparative RP-HPLC to yield the TFA salt of *cis*-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8-naphthyridine-3-amido]cyclohexyl 2-aminoacetate (4.3 mg, 4.75 µmol, 45%) as a yellow solid. Analytical RP-HPLC R_t = 12.83 min. This TFA salt (1.5 mg, 1.7 µmol), DIPEA (0.87 µL, 5.0 µmol), and acetic anhydride (0.17 µL, 1.8 µmol) in DCM (503 µL) were treated as in the procedure for **14**. The product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **28** (0.97 mg, 1.6 µmol, 96%) as a yellow solid. HRMS-ESI calculated for $C_{32}H_{40}N_5O_7$ [M+H]⁺ 606.2922, found *m/z* 606.2933. Analytical RP-HPLC R_t = 14.73 min.

trans-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 2-acetamidoacetate (29)

A solution of **24** (4.1 mg, 6.2 µmol) and TFA (0.2 mL) in DCM (0.8 mL) was reacted as described in the procedure for **12**. The crude was purified by semi-preparative RP-HPLC to yield the TFA salt of *trans*-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8-naphthyridine-3-amido]cyclohexyl 2-aminoacetate (3.1 mg, 3.42 µmol, 55%) as a yellow solid. Analytical RP-HPLC $R_t = 12.83$ min. This TFA salt of (1.4 mg, 1.5 µmol), DIPEA (0.81 µL, 4.6 µmol), and acetic anhydride (0.16 µL, 1.7 µmol) in DCM (496 µL) were treated as in the procedure for **14**. The product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **29** (0.9 mg, 1.49 µmol, 96%) as a yellow solid. Low resolution MS-ESI calculated for $C_{32}H_{40}N_5O_7$ [M+H]⁺ 606.2922, found 606.2. Analytical RP-HPLC $R_t = 14.70$ min.

cis-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 7-acetamidoheptanoate (30)

A solution of 25 (22 mg, 29.6 μ mol) and TFA (0.25 mL) in DCM (1 mL) was reacted as described in the procedure for 12. The crude was purified by semi-preparative RP-HPLC to

yield the TFA salt of *cis*-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2dihydro-1,8-naphthyridine-3-amido]cyclohexyl 7-aminoheptanoate (13 mg, 13.3 µmol, 45%) as a yellow solid. HRMS-ESI calculated for $C_{35}H_{48}N_5O_6$ [M+H]⁺ 634.3599, found *m/z* 634.3595. Analytical RP-HPLC R_t = 14.41 min. This TFA salt (3.3 mg, 3.4 µmol), DIPEA (1.77 µL, 10.2 µmol), and acetic anhydride (0.35 µL, 3.7 µmol) in DCM (610 µL) were treated as in the procedure for **14**. The product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **30** (2.23 mg, 3.3 µmol, 98%) as a yellow solid. HRMS-ESI calculated for $C_{37}H_{50}N_5O_7$ [M+H]⁺ 676.3705, found *m/z* 676.3710. Analytical RP-HPLC R_t = 16.76 min.

trans-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 7-acetamidoheptanoate (31)

A solution of **26** (15 mg, 20.8 µmol) and TFA (0.25 mL) in DCM (1 mL) was reacted as described in the procedure for **12**. The crude was purified by semi-preparative RP-HPLC to yield the TFA salt of *trans*-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8-naphthyridine-3-amido]cyclohexyl 7-aminoheptanoate (11.1 mg, 11.4 µmol, 55%) as a yellow solid. HRMS-ESI calculated for $C_{35}H_{48}N_5O_6$ [M+H]⁺ 634.3599, found *m/z* 634.3583. Analytical RP-HPLC R_t = 14.42 min. This TFA salt (3.5 mg, 3.6 µmol), DIPEA (1.87 µL, 10.8 µmol), and acetic anhydride (0..7 µL, 4.0 µmol) in DCM (622 µL) were treated as in the procedure for **14**. The product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **31** (2.36 mg, 3.5 µmol, 97%) as a yellow solid. HRMS-ESI calculated for $C_{37}H_{50}N_5O_7$ [M+H]⁺ 676.3705, found *m/z* 676.3737. Analytical RP-HPLC R_t = 16.81 min.

Compound 32 detailed in manuscript.

$trans-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8-naphthyridine-3-amido]cyclohexyl 2-[6-(2-{4-[(E)-2-[2,2-difluoro-4-(thiophen-2-yl)-1\lambda4,3-diaza-2\lambda4-boratricyclo[7.3.0.03,7]dodeca-1(12),4,6,8,10-pentaen-12-yl]ethenyl]phenoxy}acetamido)hexanamido]acetate (33)$

The TFA salt of *trans*-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2dihydro-1,8-naphthyridine-3-amido]cyclohexyl 2-aminoacetate (1.7 mg, 1.9 μmol), DIPEA (1.3 μL, 7.6 μmol), BODIPY 630/650-X-OSu (1.25 mg, 1.89 μmol) and DMF (721 μL) were reacted as described in the procedure for **16**. The crude product was purified by semipreparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **33** (1.51 mg, 1.36 µmol, 72%) as a bright blue solid. HRMS-ESI calculated for $C_{59}H_{64}BF_2N_8O_9S$ [M+H]⁺ 1109.4582, found *m/z* 1109.4580. Analytical RP-HPLC R_t = 20.39 min.

cis-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 7-[6-(2-{4-[(E)-2-[2,2-difluoro-4-(thiophen-2-yl)- $1\lambda 4,3$ -diaza- $2\lambda 4$ -boratricyclo[7.3.0.0^{3,7}]dodeca-1(12),4,6,8,10-pentaen-12-yl]ethenyl]phenoxy}acetamido)hexanamido]heptanoate (34)

A solution of **26** (15 mg, 20.8 µmol) and TFA (0.25 mL) in DCM (1 mL) was reacted as described in the procedure for **12**. The crude was purified by semi-preparative RP-HPLC to yield the TFA salt of *trans*-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8-naphthyridine-3-amido]cyclohexyl 7-aminoheptanoate (11.1 mg, 11.4 µmol, 55%) as a yellow solid. HRMS-ESI calculated for $C_{35}H_{48}N_5O_6$ [M+H]⁺ 634.3599, found *m/z* 634.3583. Analytical RP-HPLC R_t = 14.42 min. This TFA salt (3.7 mg, 3.8 µmol), DIPEA (2.0 µL, 11.4 µmol), BODIPY 630/650-X-OSu (1.25 mg, 1.89 µmol) and DMF (732 µL) were reacted as described in the procedure for **16**. The crude product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **34** (1.74 mg, 1.48 µmol, 78%) as a bright blue solid. HRMS-ESI calculated for $C_{64}H_{74}BF_2N_8O_9S$ [M+H]⁺ 1179.5366, found *m/z* 1179.5276. Analytical RP-HPLC R_t = 21.39 min.

trans-4-[6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2-dihydro-1,8naphthyridine-3-amido]cyclohexyl 7-[6-(2-{4-[(E)-2-[2,2-difluoro-4-(thiophen-2-yl)- $1\lambda 4$,3-diaza- $2\lambda 4$ -boratricyclo[7.3.0.0^{3,7}]dodeca-1(12),4,6,8,10-pentaen-12-yl]ethenyl]phenoxy}acetamido)hexanamido]heptanoate (35)

The TFA salt of *trans*-4-[6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-1,2dihydro-1,8-naphthyridine-3-amido]cyclohexyl 7-aminoheptanoate (4.2 mg, 4.3 μ mol), DIPEA (2.2 μ L, 12.5 μ mol), BODIPY 630/650-X-OSu (1.25 mg, 1.89 μ mol) and DMF (735 μ L) were reacted as described in the procedure for **16**. The crude product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **35** (2.16 mg, 1.83 μ mol, 97%) as a bright blue solid. HRMS-ESI calculated for C₆₄H₇₄BF₂N₈O₉S [M+H]⁺ 1179.5366, found *m/z* 1179.5275. Analytical RP-HPLC $R_t = 21.43$ min.

6-(4-Methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-N-[(1s,4s)-4-{2-[6-(2-{4-[(E)-2-[2,2-difluoro-4-(thiophen-2-yl)-1λ4,3-diaza-2λ4-boratricyclo[7.3.0.0^{3,7}]dodeca-1(12),4,6,8,10-pentaen-12-yl]ethenyl]phenoxy}acetamido)hexanamido]acetamido}cyclohexyl]-1,2-dihydro-1,8-naphthyridine-3-carboxamide (36) A solution of 27 (12 mg, 18.1 µmol) and TFA (0.4 mL) in DCM (1.6 mL) was reacted as described in the procedure for 12. The crude was purified by semi-preparative RP-HPLC to yield the TFA salt of 6-(4-methoxyphenyl)-1-[2-(morpholin-4-yl)ethyl]-2-oxo-N-[(1s,4s)-4-(2-aminoacetamido)cyclohexyl]-1,2-dihydro-1,8-naphthyridine-3-carboxamide (9.27 mg, 10.3 μ mol, 57%) as a yellow solid. HRMS calculated for C₃₀H₃₉N₆O₅ [M+H]⁺ 563.2904, found m/z 563.2943. Analytical RP-HPLC R_t = 12.47 min. This TFA salt (3.39 mg, 3.8 μmol), DIPEA (1.85 μL, 10.6 μmol), BODIPY 630/650-X-OSu (1 mg, 1.51 μmol) and DMF $(731 \ \mu L)$ were reacted as described in the procedure for 16. The crude product was purified by semi-preparative RP-HPLC and passed through an Amberlyst A21 ion exchange resin to remove TFA, yielding **36** (2.29 mg, 2.07 µmol, quantitative yield*) as a bright blue solid. HRMS calculated for C₅₉H₆₅BF₂N₉O₈S [M+H]⁺ 1108.4742, found *m/z* 1108.4777. Analytical RP-HPLC $R_t = 20.12$ min. *The greater than 100% calculated yield for 36 (137%) was likely due to the commercially supplied container of BODIPY 630/650-X-OSu containing more than the stated 1 mg. Previous synthesis of dye compounds have used a larger container of BODIPY 630/650-X-OSu (e.g. 5 mg) split between three or four reactions, and therefore any excess in BODIPY 630/650-X-OSu would be spread across compounds.

cAMP assays in wild-type cells not expressing hCB₂

Linker-conjugate **30** and fluorescent ligand **32** invoked a small but significant response at 10 μ M but not at 1 μ M in the WT HEK-Flp line (control for CB₂ response; Supplementary Table 1). Fluorescent ligand **32** and smaller ligand **6** showed a significant response at 10 μ M in the HEK293 WT cells (control for CB₁ response), but not at 1 μ M. The potencies of **30** at CB₂ receptor and **32** at CB₂ and CB₁ receptor are too low to be able to exclude the 10 μ M data point from the concentration response curve, therefore the potencies are an estimate and the E_{max} values will be slightly augmented by these non-specific effects. The response of **32** at 10 μ M in the HEK293 WT cells (parental CB₁ line; 166.6% ± 11.1) was slightly greater than the 10 μ M response in the HEK293-CB₁ cells (157% ± 2.1), therefore the E_{max} of **32** at 1 μ M is reported for CB₁ receptor (Table 2). SR144528 was also screened for activity in WT cells and demonstrated no significant response in either cell line.

	% response ± SEM, HEK-Flp WT		% response ± SEM, HEK WT	
	line (for comparison with hCB ₂		line (for comparison with hCB1	
	cAMP response)		cAMP response)	
Compound	10 µM	1 µM	10 µM	1 µM
1	109.5 ± 3.9	95.8 ± 4.7	-	-
6	100.6 ± 3.0	94.3 ± 2.2	121.5 ± 3.5 *	95.7 ± 3.6
8	97.4 ± 3.3	96.4 ± 1.9	107.2 ± 2.8	97.9 ± 2.6
20	111.9 ± 5.4	95.3 ± 1.4	-	-
28	109.8 ± 5.2	92.2 ± 1.1	-	-
30	122.9 ± 6.2 *	98.3 ± 2.5	-	-
32	139.5 ±10.0 *	100.5 ± 2.5	166.6 ± 11.1 *	105.4 ± 2.9
SR144528	97.4 ± 5.9	98.5 ± 3.8	94.5 ± 1.6	99.8 ± 2.2

Supplementary Table 1: Forskolin stimulated cAMP response in wild type HEK293 cells.

cAMP levels measured in a BRET assay using a CAMYEL sensor. Data represent mean values \pm SEM for at least three independent experiments conducted in duplicate. Values are normalised to basal (0%) and forskolin (100%) response. Data was analysed for normality in a D'Agostino & Pearson normality test and then analysed using a one sample *t* test for significant difference to forskolin only (100%) response and values marked with * demonstrated significant difference.

References

- V. Lucchesi, D. P. Hurst, D. M. Shore, S. Bertini, B. M. Ehrmann, M. Allarà, L. Lawrence, A. Ligresti, F. Minutolo, G. Saccomanni, H. Sharir, M. Macchia, V. Di Marzo, M. E. Abood, P. H. Reggio and C. Manera, *J. Med. Chem.*, 2014, **57**, 8777–8791.
- 2 M. L. Bolognesi, N. Calonghi, C. Mangano, L. Masotti and C. Melchiorre, J. Med. Chem., 2008, **51**, 5463–5467.
- 3 H. Y. Song, M. H. Ngai, Z. Y. Song, P. A. Macary, J. Hobley and M. J. Lear, *Org. Biomol. Chem.*, 2009, 7, 3400–3406.