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1 Boolean Stable Motifs

Here, we expand upon the concepts discussed in [22, 30].
A Boolean network is a discrete-time system composed
of variables or nodes Xi (t) that can take values in {0, 1}
along with update functions fi = fi ({Xj}). At each time-
step, a subset of {Xi (t)} is updated according to X∗

i =
fi ({Xj}), where X∗

i denotes the updated value of Xi (t).
The two most commonly considered update schemes are
synchronous update, in which all nodes are updated at
each time-step, or general asynchronous update, in which
only one randomly selected node is updated at each time-
step.

The expanded network of a Boolean system is built by
first constructing a pair of virtual nodes for each Boolean
variable corresponding to its two states. In a slight abuse
of notation, we denote these nodes Xi and ¬Xi. To pro-
ceed, we note that the Boolean update functions can be
written in disjunctive normal form (DNF)

fi =

N∨
j=1

 Mj∧
m=1

Xlm

Qj∧
q=1

¬Xpq

 . (1.1)

The negation ¬fi of each Boolean function can
also be written in DNF. Each term of the form∧Mj

m=1Xlm
∧Qj
q=1 ¬Xpq is called a prime implicant of fi

and either corresponds to an existing virtual node, or
else we identify the term with a composite node and
draw edges from each factor Xlm and ¬Xpq to the com-
posite node. From each node in the expanded network
that corresponds to a prime implicant of fi (or ¬fi), we
draw an edge to the virtual node Xi (or ¬Xi). This
scheme implies the following: if there is an edge in the ex-
panded network from

∧Mj

m=1Xlm
∧Qj
q=1 ¬Xpq to Xi, then

whenever
∧Mj

m=1Xlm
∧Qj
q=1 ¬Xpq = 1 holds, Xi will al-

ways update to 1 in the next update step. Similarly, if
there is an edge from

∧Mj

m=1Xlm
∧Qj
q=1 ¬Xpq to ¬Xi and∧Mj

m=1Xlm
∧Qj
q=1 ¬Xpq = 1 holds then Xi will update to

0 (i.e., ¬Xi becomes 1). Thus in either case, the edge
is both a maintenance and driving edge. As such, the
Boolean expanded network, as described above, is an ex-
panded network of the type described in the main text.
It is also noteworthy that the update functions fi can be
reconstructed from the expanded network.

A stable motif in the expanded network is a subgraph S
with the following properties: (i) all nodes in S have a par-
ent (regulator) in S or else have a self-loop, (ii) S does not

include any contradictory nodes (e.g., both Xi and ¬Xi),
(iii) S includes all the parents (regulators) of included
composite nodes, and (iv) S has no proper subgraphs sat-
isfying the first three properties (note that condition (iv)
implies that S is strongly connected). We call subgraphs
satisfying the first three conditions stable modules. Such
network components correspond to values of the Boolean
variables that are stable, independent of the rest of the
system.
As an example, consider the following Boolean network:

fA = A ∧B
fB = A ∨ C
fC = A ∧B ∨ ¬C (1.2)

For convenience, we give the negated update functions as
well:

¬fA = ¬A ∨ ¬B
¬fB = ¬A ∧ ¬C
¬fC = (¬A ∧ C) ∨ (¬B ∧ C) . (1.3)

We can now construct the expanded network, as the up-
date rules and their negations are written in DNF in Equa-
tions 1.2 and 1.3. By inspecting these rules, as written,
we see that in addition to the virtual nodes A, B, C, ¬A,
¬B, and ¬C, we will need to construct composite nodes
A ∧ B, ¬A ∧ ¬C, ¬A ∧ C, and ¬B ∧ C, for a total of
ten nodes. We draw edges to the composite nodes from
each of their factors (e.g., there are edges from A and B to
A∧B). We also draw edges to the virtual nodes according
to the prime implicants of the update rules (e.g., there are
edges from A and C to B, and edges from ¬A ∧ C, and
¬B ∧ C to ¬C). The completion of this procedure yields
the full Boolean expanded network.
We graphically represent the network given by Equations
1.2, construct its expanded network, and identify stable
modules and stable motifs in Figure 1.1. This network
has two attractors. The first is the steady state in which
all variables are true. The second is the one in which A
is false, and B and C oscillate. If A is ever false, it stays
false. Plugging A = 0 into the update rules for B and C
gives fB = C, fC = ¬C, so C oscillates. The timing of
when C is true and when it is false depends on the update
scheme, but the update scheme does not change the fact
that C oscillates. Node B follows C; thus it oscillates as
well. If A is true at some late time, it is not oscillating (be-
cause A = 0 self-stabilizes). If A = 1 is stabilized, it can
only be because B = 1 is also stabilized, which requires
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3 MATHEMATICAL FOUNDATIONS OF EXPANDED NETWORKS

C = 1 as well. This can also be seen from the fact that
the only solution of the steady state equations A = A∧B,
B = A ∨C, and C = A ∧B ∨ ¬C is A = B = C = 1. Be-
cause these attractors are characterized only by the value
of A, there can only be two attractors (one for each value).
We further note that the stable motifs that characterize
these attractors are independent of update scheme (this
is a general feature of stable motifs in Boolean systems
[30]). There are two stable motifs, each of which is a sta-
ble module, and node C can be added to one of the motifs
to create a larger stable module. The first consists of only
¬A, and this stable motif captures the behavior that if A
ever becomes false, it remains false. The other two stable
modules both contain A, B, and A∧B. One also contains
C. The A, B, and A ∧B motif indicates that if A and B
are both true, they both remain true, independent of C
(e.g., if C = 0 were held fixed by some external control,
A = B = 1 would remain stable). The stable module that
also contains C identifies A = B = C = 1 as a steady
state of the system.

2 Dynamical Properties of Biomolecular
Systems

The dynamics of biomolecular systems are almost always
bounded (i.e. the within-cell concentrations of proteins or
molecules do not increase without bound). Furthermore,
most biomolecular interactions and direct regulatory rela-
tionships are monotonic; it is infrequent that a regulator
such as a transcription factor or enzyme directly inhibits
certain processes (transcription or reactions) and activates
others. In many cases, apparent non-monotonic relation-
ships arise from the effects of as-of-yet unknown media-
tors. This situation is likely in biomolecular networks, in
which regulatory relationships are often not mapped to
the level of elementary reactions. For example, in con-
sidering the regulatory relationship ẋ = w3 − w − x, we
might at first believe that w is a non-monotonic regulator
of x, when in reality, a more accurate model of the system
might be ẋ = y−w−x, ẏ = α

(
w3 − y

)
, which consists of

an incoherent feed-forward loop involving monotonic regu-
lation. This example is especially believable when α� 1,
because y will respond extremely quickly to changes in w.
There is typically only one additional variable required
per instance of non-monotonic regulation. We note that
even when a hidden variable cannot be biologically moti-
vated, it may still be introduced without loss of fidelity in
order to make the relationships in the model monotonic.

For these reasons, we focus on ODE systems that take the
form

ẋi = Fi (x) , (2.1)

where Fi is continuous, monotonic in each of its argu-
ments, and bounded.

3 Mathematical foundations of expanded
networks

3.1 Expanded Networks and Stable Modules

In this section, we present the key definitions and results
of the main text in the more formal style of dynamical
systems theory. Throughout this section, we consider a
dynamical system (T,M,Φ), where Φ is a monoid action of
T on a state space M . That is, T is a set representing the
evolution variable (e.g., time), and we place an evolution
operator + on T that is associative and for which T has
an identity element, e. The space M plays the role of the
phase space or state space. The monoid action Φ describes
the evolution of the system by mapping a point x ∈M and
a “time” t ∈ T to a new point in M , which is denoted by
Φt (x). This function must obey Φa

(
Φb (x)

)
= Φa+b (x)

so that Φ is consistent with the notion of time evolution.
It can be given explicitly (as in Boolean networks, where
Φ is the time-explicit update function) or implicitly (as
in ODE systems, in which Φ is given by the solutions to
the ODEs for each initial condition). In the main text, we
focus on the case in which T is one-dimensional and M
is finite-dimensional, however, the contents of this section
apply generally.
To apply our methods, we must have a rule for determin-
ing whether or not one “time” follows another. To do this
we define a total preorder on a submonoid S of T denoted
by . and satisfying e . s for all s ∈ S, where e ∈ S is the
identity. A total preorder is, by definition, a transitive
relation for which either or both x . y or y . x hold.
Of particular interest here is the case of autonomous first
order ODE systems, in which T is R+ (+), M is a box
in RN , Φ is the flow of the defining differential equations,
and we take S = T . We also consider Boolean systems, in
which T is Z+ (+), M is {0, 1}N , Φ is the Boolean update
function, and we again take S = T .
The objects of primary importance in the main text are
expanded networks, which are constructed for sets of
statements regarding the values of variables. These state-
ments may be viewed as subsets of M . To define these
networks requires that we have a more general notion of
what it means for a trajectory to be confined to a region
for a particular duration. We thus define the following
sets:

Definition 1. The persistence set of a point r in a subset
R of M is P (R, r) = {s0 ∈ S : s . s0 =⇒ Φs (r) ∈ R}.

Each element of the persistence set is a time for which
the trajectory starting at r is confined to R. Note that e
is always an element of P (R, r), so the persistence set is
never empty. With the above shorthand, we can formally
define the maintenance relation as follows:

Definition 2. For non-disjoint subsets R1 and R2 of M ,
we say R1 maintains R2 under S (denoted R1 → R2) if for
each r ∈ R1∩R2, P (R1, r) ⊆ P (R2, r) holds with equality
holding only when P (R1, r) and P (R2, r) are equal to S.
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Figure 1.1: From left to right: (i) schematic of the network from Equations 1.2 with its two attractors (blue is true,
red is false, and the gradient represents oscillation) (ii) the full expanded network of Equations 1.2 (iii) the three
stable modules that exist in the network. The “NOT A” stable module (motif) captures the behavior that if A ever
becomes false, it remains false. The other two stable modules identify the steady-state attractor of the system.

Informally, the above definition means that R1 maintains
R2 if any trajectory starting in R1∩R2 that is confined to
R1 for a certain duration is confined to R2 for a strictly
longer duration. The maintenance relation induces a di-
rected graph on any collection of regions of M . We next
develop the notion of expanded networks in the special
case in which there are no composite nodes. We then
prove the stabilization results of the main text for this
special case. We later show that the case in which com-
posite nodes are present follows as a simple extension of
that result.

Definition 3. The composite-free expanded network for a
collection R of regions in M is the directed graph G with
vertex set R and edges given by the maintenance relation.

We denote the intersection of all regions in a subgraph G
of G by I (G).

Definition 4. A subgraph G of G is source-free if for each
node Rj in G, there is an edge Ri → Rj in G for some Ri
in G. A subgraph G of G is consistent if the intersection
of all regions represented in G, I (G), is non-empty.

This leads to the definition of a stable module for a
composite-free expanded network and to a key result
about composite-free expanded networks.

Definition 5. A finite, source-free subgraph G of a
composite-free expanded network G with I (G) nonempty
is called a (composite-free) stable module of G with trap
space I (G).

Theorem 6. The trap space, I (G), of a (composite-free)
stable module G of G is closed under S, i.e., for any s ∈ S,
Φs (I (G)) ⊆ I (G) holds.

Proof. Because G is source-free, each node in G is reach-
able from some cycle in G. Suppose C1 → C2 → ...→ CN
forms a cycle in G. Consider any r ∈ I (G). Because no
P (Ci, r) can be its own proper subset it must be that
P (Ci, r) = S holds for all regions Ci that are part of any
cycle. Because R1 → R2 implies P (R1, r) ⊆ P (R2, r), it
follows that P (Ri, r) = S holds for all Ri ∈ V (G).

In order to fully align with previous work in Boolean sys-
tems, we require a formal notion of the “composite nodes”
discussed in the main text. To motivate the definition
of these composite nodes here, consider the following re-
mark:
Remark. If Rai → Rbi holds for finite sequences ai and bi
and

⋂
i (Rai ∩Rbi) is non-empty, then

⋂
iRai →

⋂
iRbi

holds also.

Proof. Take r ∈
⋂
i (Rai ∩Rbi). The case in which

P
(⋂

iRai , r
)

= φ is vacuous. Hence, take P
(⋂

iRai , r
)

non-empty. Note that P
(⋂

iRai , r
)

is equal to⋂
i P (Rai , r). This implies that P

(⋂
iRai , r

)
is a subset

of P
(⋂

iRbi , r
)
. Because the sequence of maintenance re-

lations is finite, we may choose Rak such that P (Rak , r) ⊆
P (Rai , r) holds for all Rai , and thus P

(⋂
iRai , r

)
=

P (Rak , r) holds. We can similarly choose Rbm such
that P

(⋂
iRbi , r

)
= P (Rbm , r) holds. If P (Rak , r) =
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P (Rbm , r), then P (Ram , r) = P (Rak , r) = S follows from
the fact that P (Rak , r) ⊆ P (Ram , r) and Ram → Rbm
both hold.

With this in mind, we introduce the notion of composite
nodes as a shorthand for considering intersections of re-
gions. Suppose that

⋂
iRbi → R holds for some R, but

that each Rbi is already under separate consideration. By
the previous remark,

⋂
iRbi , and thus R, will be main-

tained if each Rbi is maintained. If
⋂
iRbi is considered

explicitly as a region, then the intersections of regions
that maintain each Rbi must also be considered explicitly
and separately (and the regions that maintain these must
then be considered, etc.). To avoid this, we introduce the
composite node C ({Rbi}):

Definition 7. For a finite sequence of regions {Rbi}, the
composite node or composite region is denoted C ({Rbi}).
The regions Rbi are called the factors of C ({Rbi}). We
say that C ({Rbi}) maintains a region R of M if and only
if
⋂
iRbi → R holds.

With this definition, we are now able to define the ex-
panded network as discussed in the main text:

Definition 8. For a given collection R of regions in M
and collection C of composite nodes with factors in R, the
expanded network G is the directed graph on the node-
set V (G ) = C ∪ R with edges placed according to the
following two rules: i) if R ∈ R is maintained by V ∈
V (G ), then (V,R) is an edge of G ii) if C ∈ C has a
factor R ∈ R, then (R,C) is an edge in G .

Definition 9. Let G be a subnetwork of an expanded
network G . G is source-free if every node of G has a parent
node in G. G is consistent if the intersection of all regions,
including those represented by composite nodes, in G is
non-empty (i.e., I (G) is non-empty). G is complete if the
factors of each composite node in G are also in G; if G is
complete then G is also an expanded network. A source-
free, consistent, and complete expanded (sub) network is
called a stable module.

Corollary 10. If an expanded network G is a stable mod-
ule, then I (G ) is closed under S.

Proof. Let G have composite nodes C and regions R. Let
R be the set of all possible intersections of regions in R
and let G be the composite-free expanded network con-
structed on R. Note that because G is complete and
consistent, I (G) = I (G ) is non-empty. Consider any⋂
iRbi ∈ R. Because G is source-free, each Rbi has

at least one parent region Rai for which Rai → Rbi
holds, and

⋂
iRai ∈ R maintains

⋂
iRbi . Therefore, the

composite-free expanded network G constructed on R is
source-free and consistent. Thus G is a composite-free sta-
ble module, implying that I (G) = I (G ) is closed under
S.

It is important to note that the expanded network for
a dynamical system is not unique. Rather, a collection

of regions and composite nodes must first be specified.
After this is done, the expanded network is uniquely de-
fined, but in practice, this network need not be fully iden-
tified. It suffices to find the edges between regions and
composite nodes that form a stable module, which yields
a trap space. The identification of additional edges can-
not invalidate the closure of the resulting trap space under
S, although these added edges may lead to the discovery
of smaller trap spaces contained within the initial trap
space. Therefore, trap spaces can be discovered by iden-
tifying stable modules without explicitly constructing an
expanded network that the stable module is embedded
within.

3.2 Worst case systems

To motivate the use of “worst-case” subsystems, as used
in the algorithm presented in the main text for biologi-
cal ODE systems, consider a family of dynamical systems
{(T,M,Φf ) : f ∈ F} with a shared submonoid S. We al-
low f to be a discrete or continuous index (i.e., F can be
any set). If the maintenance relations of a stable module
G hold for all members of the family, then straightfor-
ward application of the stable module theorem indicates
that the corresponding trap space of the stable module
is closed under each ΦSf . If a total preorder . can be
placed on F such that f1 . f2 and ΦSf1 (I (G)) ⊆ I (G)

imply that I (G) is closed under ΦSf2 , then it suffices to
show that ΦSfmin

(I (G)) ⊆ I (G) holds for any fmin sat-
isfying fmin . f for all f ∈ F . This is the concept
underlying the selection of a “worst-case” system. The
actual system under consideration together with all ex-
ternally controlled versions of that system are taken to
form {(T,M,Φf ) : f ∈ F}, and the worst-case system is
one described by the monoid action ΦSfmin

. In our appli-
cations, F is the set of fixed regulatory effects and their
values, and f1 . f2 only if for all initial conditions r in
a candidate stable module, ΦSf1 (r) has a smaller mini-
mum distance to each of the candidate thresholds than
ΦSf2 (r) does (informally, Φf1 is “closer to violating” the
candidate stable module). Rather than explicitly con-
structing {(T,M,Φf ) : f ∈ F}, we rely on the proper-
ties of monotone systems to identify the ODEs governing
Φfmindirectly, as is described in the main text.

4 Sign-Consistent Networks

Following Sontag [20], sign-consistent networks are those
to which we can assign σi = ±1 to each node of the asso-
ciated regulatory network such that the product σiσj is 1
whenever nodes i and j are connected by a positive edge,
and −1 whenever they are connected by a negative edge.
Such networks represent systems for which any effect of
one variable on another is unambiguously monotonic, im-
plying a lack of negative feedback loops and incoherent
feed-forward loops. These notions are equivalent: in a
graph that lacks negative cycles and feed-forward loops,
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6 EXAMPLE: COMPARISON OF PHASE-PORTRAIT AND STABLE MODULE ANALYSES

starting from any node of each weakly connected compo-
nent, one may assign σi = 1 and perform a breadth-first
traversal ignoring edge direction, assigning subsequent σi
values by alternating sign whenever a negative edge is
used.

Consider the subnetwork of the regulatory network which
corresponds to a candidate stable module, Sc (which, as
described in the main text, is source free, composite-
closed, and consistent). The nodes of this subnetwork
are the nodes characterized by the statements that make
up the virtual nodes of Sc, and the edges of the subnet-
work determine the maintenance or driving edges among
virtual nodes of Sc. Importantly, edges among the nodes
of this subnetwork that do not contribute to the stable
module are not included in this subnetwork. It is not
difficult to realize that a subnetwork defined this way is
sign-consistent. Indeed, variables represented by virtual
nodes of the form xi < Tαi can be assigned σi = −1 and
all others can be assigned σi = 1. This is possible because
the only sources of negative regulation in the subnetwork
arise from nodes of this first type, which, due to the con-
sistency of Sc, always contribute pairs of negative edges
to Sc and the associated modified regulatory subnetwork.

5 Example: Identification of a Stable
Module

Consider the system

ẇ = H (z)− w
ẋ = H (w)− x
ẏ = H (x)− y
u̇ = x− u
ż = 1 +H (y)H (u)−H (u)− z

H (·) =
[·]2

[·]2 + 1/4
. (5.1)

By inspection, we note that the following structure is
present in the expanded network, for unspecified thresh-
olds:

(z > Tz)→ (w > Tw)→ (x > Tx)→ (y > Ty) . (5.2)

We therefore conjecture the existence of a stable module
that includes this structure and (y > Ty)→ (z > Tz). The
only edge in the regulatory network incident to a variable
represented in this candidate stable module that is not
represented in this candidate stable module is the regula-
tion of z by u. This is a negative edge because H (y) < 1,
and makes the network sign-inconsistent. To search for
valid thresholds for this candidate stable module, we fix
the effect of this edge at the “worst case” value. In this ex-
ample, the worst case corresponds to the value of u that
most greatly inhibits z. Because u will be bounded by
supx = supH (w) = 1, that value is u = 1. This yields
the following modified system:

ẇ = H (z)− w
ẋ = H (w)− x
ẏ = H (x)− y
ż = 1 +H (y)H (1)−H (1)− z. (5.3)

Note that this is a monotone, sign-consistent system be-
cause we are holding the sign-inconsistent regulation fixed.
We now find the steady states of this modified system
following the MIOS procedure outlined in [20, 29]. The
steady states correspond to the roots of the function feed-
back function

k (z) = 1 +H (H (H (H (z))))H (1)−H (1)− z, (5.4)

which is obtained by considering the regulation of (e.g.,)
z by its inputs when the regulatory effect of z (on w) is
held fixed (i.e., w will approach H (z), so x will approach
H (H (z)), and so on until z approaches k (z) + z). There
are three roots of this equation in the interval (0, 1). We
consider the largest root, which we call r and find numer-
ically to be r = 0.68, though the following discussion is
equally valid with either other root used in place of r. The
modified subsystem has a steady state

w = H (r) , x = H (H (r)) , y = H (H (H (r))) , z = r,
(5.5)

and so (z > r) → (w > H (r)) → (x > H (H (r))) →
(y > H (H (H (r)))) → (z > r) is a stable module (we
may, by inspection of the original system, extend the mod-
ule to include (x > H (r))→ (u > H (r))).
We interpret this result as follows. If w, x, y > H (r) and
z > r hold at any time, then these will continue to hold
for all time. This is true even if u is externally controlled,
provided u remains smaller than one. If we are unsatisfied
with this restriction on u, we may instead take the “worst-
case” value for u to be infinity (rather than one), in which
case the resulting characteristic has only one root, 1/2,
in (0, 1); this corresponds to the stable motif

(
z > 1

2

)
→(

w > 1
2

)
→
(
x > 1

2

)
→
(
y > 1

2

)
→
(
z > 1

2

)
, which has a

similar interpretation.

6 Example: Comparison of Phase-
Portrait and Stable Module Analyses

We consider the system given in Equations 6.1:

ẋ = 1−H (y)− x,
ẏ = H (z) (1−H (x))− y (6.1)

where H (x) = x2

x2+1/16
. In this example, z = z (t) is not

specified beyond being constrained to the interval [0, 1].
In this section, we will analyze this system using a tra-
ditional visual approach (phase portraits) and compare
with the results obtained using the methods of the main
text. To study this system using phase portraits requires a
straightforward adjustment to account for the presence of
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7 PARAMETERS AND VARIABLES FOR THE SEGMENT POLARITY MODEL
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Figure 6.1: Phase-portrait slices and nullclines of the sys-
tem given in Equations 6.1. Because z = z (t) is not fixed,
the system trajectories can travel between slices. We have
chosen to display z = 0.5125 in addition to the regularly
spaced examples, as the number of intersections of the
nullclines changes at approximately this value (there is
only one intersection each in the z = 0, z = 0.25, and
z = 0.5 panels, and there are three intersections each in
the z = 0.75 and z = 1.0 panels).

the unknown function z: we examine only the projection
of each vector of the vector field onto the xy-plane, with
the understanding that the z-component of system trajec-
tories varies in some unknown way. To visualize the result-
ing three-dimensional phase portrait, we produce slices of
constant z. In Figure 6.1 we show cross-sections at equal
intervals, and also at z = 0.5125, as this is approximately
the value at which the number of intersections of x and y
nullclines in each slice changes (these intersections do not
necessarily correspond to equilibria, as z is not constant).
We can interpret this series of phase-portrait cross-
sections as a collection of phase portraits for systems in
which z is held fixed as a constant parameter. Despite
the lack of information regarding z, we can extract sev-
eral conclusions from these figures. For example, we see
that there is always an intersection of nullclines in which
x is low (below about 0.1) and y is high (above about
0.95). One may hypothesize that x being low and y being
high is robust to variations in z and test this hypothesis
through careful examination of the vector field in a box
bounding all of these qualitatively similar nullcline inter-
section points. Alternatively, one may follow our proposed
methods.
The first step is to identify the causal relationships be-
tween variables. For example, if y is less than or greater
than some threshold for sufficiently long, this will drive
x above or below 1 − H (y). In the language of virtual
nodes, this statement implies that any virtual node y ≶ T
has an edge to x ≶ 1−H (T ) in the expanded network. It
is therefore reasonable to study candidate stable modules

of the form y ≶ T1 ↔ x ≷ T2. Note that the direction of
the inequalities is opposite for the two statements; this is
a general feature of stable modules supported by mutual
inhibition feedback loops.
We consider that z (t) varies between 0.5125 and 1, cor-
responding to the region of bistability for fixed z (t) (Fig-
ure 6.1). We can analyze this case by considering the
“worst-case” system for each of our two candidate stable
modules (one candidate has y > T1 and x < T2, while
the other has the inequalities reversed). The construction
of the worst-case system relies on the observation that
an increase (decrease) in z increases (decreases) y, while
decreasing (increasing) x.
In one stable module candidate, x is bounded below
while y is bounded above. A decrease in z perturbs x
and y toward violation of these bounds. Therefore, the
worst-case system for the first candidate stable module
is characterized by ẏ = H (0.5125) (1−H (x)) − y and
ẋ = 1−H (y)−x. The steady state of this worst-case sys-
tem with the lowest value of x (and thus the highest value
of y) is given by x ≈ 0.16 and y ≈ 0.58. Therefore, one sta-
ble module for this system is x < 0.16 ↔ y > 0.58. Note
that this corresponds to an intersection of nullclines in the
z = 0.5125 panel of Figure 6.1. In the other candidate sta-
ble module, x is bounded below and y is bounded above.
In this case, the worst-case system is characterized by a
large value of z, i.e., we set z to its maximum value, one.
We then find the stable module x > 0.96 ↔ y < 0.052
from the steady state of this worst-case system with the
largest value of x (and thus lowest value of y). These
two stable modules describe positive invariant sets (i.e.,
trap spaces) that are valid for as long as z remains in
the interval [0.5125, 1]. We may uncover less restrictive
(i.e., bigger) trap spaces by considering the other steady
states of the two worst-case systems we have already con-
structed; any steady state of a worst case system provides
valid bounds for a candidate stable module.
In this section, we have used traditional techniques along-
side the methods of the main text to analyze the system
of Equations 6.1. We wish to emphasize that traditional
visual methods, such as phase portraits and bifurcation
diagrams become cumbersome as the system dimension
becomes large, whereas the difficulty in solving the in-
equalities required for identifying thresholds for each can-
didate stable module scales linearly with the subsystem
dimension. The crux of the method of our approach is to
identify a simple “worst-case” subsystem that can be eas-
ily analyzed, and to pick out properties of the worst-case
subsystem that are preserved within the real system. In
this way, we can study a large, complex system by bound-
ing the behavior of its simpler constituent subsystems.

7 Parameters and Variables for the Seg-
ment Polarity Model

Using the model and notation of [35], equations (3) and
(11)-(23) the parameters we have used in our considera-
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tion of the Drosophila segment polarity gene regulatory
network are as follows:
For all time constants (H): H = 1

For all Hill functions (Φ): K = 0.25, ν = 2

For all modified regulatory functions (Ψ): K = 0.5, ν = 4,
a0 = 0.1

For wingless diffusion: C0 = 0.5, Kin,WG = Kout,WG =
0.05

In addition, we provide the full names of the variables for
convenience in Table 7.1.

Variable Description
en engrailed mRNA
EN engrailed protein
sp sloppy-paired mRNA
SP sloppy-paired protein
hh hedgehog mRNA
HH hedgehog protein, internal
Hnbr hedgehog protein, neighboring cells
ci cubitus interuptus mRNA
CA cubitus interuptus protein, activating form
CR cubitus interuptus protein, repressing form
wi wingless mRNA
WI wingless protein, internal
WE wingless protein, external
Enbr wingless protein, neighboring cells

Table 7.1: Table of variable abbreviations for the
Drosophila segment polarity gene regulatory network of
[35].
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