S3 Fig. Multiple sequence alignment (MSA) of MYRF protein domains.

а	X. laevis myrf D. rerio myrf	351 1 ikwophoonkwatlydanykelpmltyrvdai 1 ikwophoonkwatlydanykelpmltyrvdai 1 ikwophlonkwyslydasykelpmltykvdai 1 ikwophoonkwatlydanykelpmltyrvdai	DKGFNFSVGDDAFVCQKKN DKGFNFSTGDDSFVCQKKN DKGFNFSVGDDAFVCQKKN	HFQ <mark>VT</mark> HFQVT HFQVT
	D. discoideum mrfA	1 IRFSKFQEEQMSPLYDINAQPLQQLQVHVVAI 1 LKWQPYRSVPMHSLLNSQYEKLPDVGYRVVTI 1 FTWTDYKSEPMYTTFNTNGDEMPVPLLNIMA: 406 VYIGM	S <mark>KGF</mark> SYIGGQWIYCRR <mark>N</mark> (HFQLD G435R
	M. musculus Myrf5X. laevis myrf5D. rerio myrf5C. elegans myrf-15B. taurus MYRFL5	6 VYIGMLG 6 VYIGM	GEPKYVKTPEGLKPLDCFY GEPKYVKTPEGILPIECFF GEPKYVKTPEGLKPLDCFY MPPKYVNFNNRLVPIRDFK GSPKFVKTQMGLKPIEMFY	LKLHG LKLNG LKLHG LSFCG LKPFG
	H. sapiens MYRF 8 M. musculus Myrf 8 X. laevis myrf 8 D. rerio myrf 8	4 ITAVYPKLFQETQYGHNGVTLSNSSSSVDPT 436 5 VÄLEALNQSINIEOSQSDRSKR-PFNP 5 VÄLEALNQSINIEOSQSDRSKR-PFNP 5 VÄLEALNQAISIEOSQSDRSKR-PFNP 5 VÄLEALNQSINIEOSQSDRSKR-PFNP	L47 VTVNLPPEQVTKUTVGRLHI VTVNLPPEQVTKUTVGRLHI VTLSLPPDQVTKUTVGRLHI VTVNLPPEQVTKUTVGRLHI	79V FSETT FSETT FSETT FSETT
b	B. taurus MYRFL 8	3 VKAEMPSSEITIROSRADRKPH-THTP 5 VKVEATNQIIAIEOSQADRSKK-IFNP 9 IKNRADMSQQESEVELFQTNSKREKQGEHAP 587	IKINLLADQVTKVTLGRLH KPVAIQFGSLVSIORLH	ESETT Erkat
	 H. sapiens MYRF M. musculus Myrf X. tropicalis myrf X. laevis myrf C. elegans myrf-1 D. fasciculatum DFA_02247 D. discoideum DDB_G029218 E. phage K3 p37 T. phage S40 YS40_001 		/HYRYKPEFAASAGIEATA /HYHYKPEFASTVGLDENA /HYHYKPEFASTVGLDENA /DYRYKPEVADIWGLDEQQ /DYQLTDQWAKDTGITEK- /DYQLTDQWAKDTGITET- /IYDKAEYIG-GEAI	L-PETG L-AETG PRHRTG -KERG -KDRG ETEAG KRLAG
	 H. sapiens MYRF M. musculus Myrf X. tropicalis myrf X. laevis myrf C. elegans myrf-1 D. fasciculatum DFA_02247 D. discoideum DDB_G029218 E. phage K3 p37 T. phage S40 YS40_001 		NGKTIENFIVVNKERIFME NGATIENFIVVNKERIFME DYLTIDEGRVFYE OGTVLKDFIMVNKDAIFME NGRVIKDFIVVNKDAIFLE GNKILTVSSQAQIAL	NVGAV NVGAV NVGAV TVMAT NVGAT NVGAT LVEAV
	H. sapiens MYRF M. musculus Myrf X. tropicalis myrf X. laevis myrf C. elegans myrf-1 D. fasciculatum DFA_02247 D. discoideum DDB_G029218 E. phage K3 p37 T. phage S40 YS40_001			

Homologous protein sequences from UniProtKB/Swiss-Prot were searched by BLASTP (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). Selected ortholog sequences on DBD and ICA domains were aligned using Clustal Omega(Sievers, Wilm et al. 2011), and the resulting MSA were then visualized by BoxShade (https://embnet.vital-it.ch/software/BOX_form.html). Residues that are completely conserved are highlighted in black; changes to residues with similar biochemical properties are shaded in gray. Amino acid substitutions that result from *de novo* missense variants are shown above the MSA. Most substitutions affect highly conserved residues.