
Demonstration - Need for Calibration
Daniel Kennedy

8 November 2018

Introduction
The following code is a simulation of whole blood methylation from ficticious cell-type methylation profiles
which are correlated, and simulated proportions. The purpose of the simulation is to show linear regression
estimates of the cell-sorted difference can show a position shift and/or scaling, and that this is easily corrected
by a post-hoc statistical calibration.

We load the library gtools, set the experiment parameters:
set.seed(353)

library(gtools)
#Set number of samples (I),
#set number of loci (J), and the noise
#standard deviation:
I <- 8
J <- 1000
sigma = 0.05

We then simulate some relative proportions for the ficticious cell-subtypes:
#Simulate I relative proportion/cell-subtype fractions:
props <- rdirichlet(I, 4 * c(0.6,0.2,0.2))

We simulate some cell-type methylation profiles, such that the first two are correlated:
#Simulate cell-type 1 between 0 and 1.
c1 <- runif(J,0,1)

#Simulate cell-type 2 as highly correlated with c1.
c2 <- c1 + runif(J,-0.1,0.1)

#Simulate cell-type 3 as uncorrelated with c1 and c2.
c3 <- runif(J,0,1)

#Bind cell-sorted values into a matrix:
cell_sorted_vals <- rbind(c1,c2,c3)

Finally, we simulate some whole blood methylation profiles for the I samples:
#Use linear mixing assumption to simulated whole blood methylation.
y <- props %*% cell_sorted_vals + matrix(rnorm(I*J,0,sigma),I,J)

We calculate the cell-sorted differences from the cell-type methylation profiles directly, and then estimate
them using linear regression:
#Calculate cell-sorted differences:
cell_sorted_diffs <- rbind(

cell_sorted_vals[1,] - apply(cell_sorted_vals[-1,],2,mean),
cell_sorted_vals[2,] - apply(cell_sorted_vals[-2,],2,mean),
cell_sorted_vals[3,] - apply(cell_sorted_vals[-3,],2,mean)

1



)

#Estimate cell-type differences by coefficients using linear regression:
est.coefs <- rbind(

(solve(t(cbind(1,props[,1])) %*% cbind(1,props[,1])) %*% t(cbind(1,props[,1])) %*% y)[2,],
(solve(t(cbind(1,props[,2])) %*% cbind(1,props[,2])) %*% t(cbind(1,props[,2])) %*% y)[2,],
(solve(t(cbind(1,props[,3])) %*% cbind(1,props[,3])) %*% t(cbind(1,props[,3])) %*% y)[2,]

)

The plots show that the values exhibit the incorrect scaling, which is extreme in the case of Cell-type 2:
#Plot estimates versus cell-sorted differences.
par(mfrow = c(2,2))
for(i in 1:3){
plot(x = cell_sorted_diffs[i,], y = est.coefs[i,],

xlab = "Cell-sorted Difference",
main = paste0("Cell-type ",eval(i)),
ylab = "Estimated difference")

abline(lm(est.coefs[i,] ~ cell_sorted_diffs[i,]),col = "red",lwd = 2)
#print(summary(lm(est.coefs[i,] ~ cell_sorted_diffs[i,])))
abline(0,1,col = "green")
}

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
0.

2

Cell−type 1

Cell−sorted Difference

E
st

im
at

ed
 d

iff
er

en
ce

−0.4 0.0 0.2 0.4

−
0.

4
0.

2

Cell−type 2

Cell−sorted Difference

E
st

im
at

ed
 d

iff
er

en
ce

−1.0 −0.5 0.0 0.5 1.0

−
1.

5
0.

5

Cell−type 3

Cell−sorted Difference

E
st

im
at

ed
 d

iff
er

en
ce

However, there is still a linear relationship between the estimate and the true value, which through a simple
calibration, as in the main analysis, results in a good correspondence:

2



#Create simple function to calibrate as in main analysis.
calibrate_y <- function(x,y){

coefs <- coef(lm(y ~ x))
return((y - coefs[1]) / coefs[2])

}

#Plot calibrated version.
plot(

x = cell_sorted_diffs[2,],
y = calibrate_y(x = cell_sorted_diffs[2,], y = est.coefs[2,]),
xlab = "Cell-sorted Difference",
ylab = "Calibrated estimated difference")

abline(
lm(

calibrate_y(
x = cell_sorted_diffs[2,],
y = est.coefs[2,]) ~
cell_sorted_diffs[2,]),col = "red",lwd = 2)

abline(0,1,col = "green")

−0.4 −0.2 0.0 0.2 0.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Cell−sorted Difference

C
al

ib
ra

te
d 

es
tim

at
ed

 d
iff

er
en

ce

3


	Introduction

