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Computer simulation. Our simulations are based on a previously proposed model6, which was 
extended in the present work in order to incorporate the flattening of epidermal cells. The 
equations forming the complete model are given below. An attempt to incorporate the flattening 
of epidermal cells has been reported21, but we employed a different approach.
  In our model, a cell is represented as a spheroid. A cell i has ten variables (xi(t), ri(t), ,Si(t), i(t), 
ci(t), Pi(t), hi(t), vi

(p)(t), vi
(r)(t), ni(t) ): xi(t) denotes the position of the cell, ri(t), the original radius 

of the cell, Si(t) the differentiation state variable, i(t) the phase of the cell division cycle, ci(t) the 
intracytoplasmic calcium concentration, Pi(t) the IP3 concentration, hi(t) the inactivation factor, 
vi

(p)(t) and vi
(r)(t) the synthesized and secreted lipid quantity and ni(t) the direction of the symmetry 

axis of the cell. The differentiation state of the cell is determined by Si(t): the cell is in the basal 
layer if Si(t) = 0, a prickle cell if 0 < Si(t) < Sg, and a granular cell if Sg ≤ Si(t) < Sc. The cell 
cornifies when Sc ≤ Si(t). Here, the threshold values Sg and Sc are set as Sg = 3.0 and Sc = 22.0. 
We fix the radius ri(t) to a constant value: ri = 2.0. The length of the symmetry axis of the cell is 
ri /2 

i and the other two axes are i ri. The parameter i = i(S) is called the flattening rate of the 
cell, which depends on the differentiation state variable Si and is governed by equation (1.1). We 
set (max) 

flat  = 1.6 and flat = 1.0. The direction ni(t) is always normalized and evolves according to 
equation (1.2), where we denote by vi the velocity of the i-th cell. We set n = 0.001 and n = 1.0. 

The cell movement model. The position of the i-th cell xi(t) is defined in a three-dimensional 
box  = [0, Lx] × [0, Ly] × [0, Lz], where we set Lx = Ly = 60 and Lz = 100. The movement of the 
cell depends on the cell type: the governing differential equations are equations (1.3), (1.4) and 
(1.5) when the cell is a stem cell, transit amplifying (TA) cell and supra-basal cell, respectively. 
Here we denote by j the set of all neighbouring cells and particles forming the basal membrane 
neighbouring the j-th cell. We consider the k-th cell as neighbouring the j-th cell if the distance 
between these cells is less than or equal to 1.2(��� + �̃�), where ��� and ���  are the effective radii 

of the j-th and k-th cells, respectively, defined as in (1.9). The set of all neighbouring basal 
membrane particles is denoted by memb 

j . 
  fcontact is the interacting force between neighbouring cells. This force is divided into a Lennard-
Jones type repulsive force fLJ and an adhesion force fadhesion, as shown in equation (1.6).  
  The Lennard-Jones type force fLJ is introduced in order to express the excluded volume effect 
and is given by equations (1.7) and (1.8). Here �̃� and �̃� are called the effective radii of cells j

and k defined according to equation (1.9). This quantity is introduced because the cell is assumed 
to be spheroidal. We set LJ = 0.02 and Fmax = 50.  
  The adhesion force fadhesion is given by equations (1.10), (1.11) and (1.12). Here l∗ is a parameter 
which gives the region encompassed by the adhesion force, and is chosen as l∗ = 1.2. The 
coefficient Kadhesion depends on whether both cells are granular cells or not. The coefficients Ktotal
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and Kdesmosome are set as Ktotal = 7.0 and Kdesmosome = 0.21, respectively.  
  The forces f (s)

basal and f (d)
basal represent the interaction force of the stem cell and the TA cell from 

the basal membrane, respectively. These forces are defined according to equations (1.13) and 
(1.14). We set Ks = 25.0 and Kd = 5.0.   
  The force fpair acts when a cell is undergoing division and represents the interaction force with 
the paired cell. The parameter j is equal to 1 if cell division is underway and 0 otherwise. fpair is 
defined according to equation (1.15) and we set Kdiv = 5.0, Rmax = 2.0 and εL = 0.14.  

The cell differentiation model. Cell differentiation is driven by the intracytoplasmic calcium 
concentration. The differentiation state variable Si is governed by (1.16), which changes its 
behaviour according to whether the cell is cornified or not. cout reflects the advance of 
differentiation in the presence of extra-cellular calcium and is set as cout = 1.0 × 10−3. We set S = 
1.5, s = 20, cd = 0.1 and c = 20. A cornified cell desquamates if Si exceeds SSC = 31.3 and if the 
number of neighbouring cells is less than 17. It should be noted that we determine the 
correspondence between the time-scale in real skin and that in our simulation by assuming that a 
cornified cell desquamates 14 days after it has cornified. 

The cell division model. Cell division is governed by the phase parameter i(t), satisfying the 
differential equation (1.17). Cell division occurs with a certain probability if (t) exceeds the 
threshold Sdiv. We set the averaged cell cycle as 4 days in TA cells and 18 days in stem cells. 
  When the i-th cell is divided into two cells labelled j and k at time t0, the initial positions are 
the same: xj(t0) = xk(t0). We assume that the division is complete if‖xj(t) − xk(t)‖> 1.8Rmax .  
  A stem cell can reproduce an infinite number of times, while a TA cell can reproduce only a 
finite number of times. We set this maximum reproducing number of TA cells to be 10.  
  We also assume that a stem cell is tightly bound to the basal membrane. On the other hand, a 
TA cell is comparatively loosely bound and can migrate to the supra-basal layer. We consider that 
once a TA cell leaves the basal layer, it starts its differentiation process.  

The lipid dynamics model. The synthesized and secreted lipid quantities v(p) 
i  and v(r) 

i  satisfy 
equations (1.19) and (1.20). The parameters are chosen as follows: v(p) 

max = 1, c0 = 0.45, k(p)=0.6, 
r1 = 0.1, r2 = 0.1 and k(r) = 0.2, p = 1.0, s = 1.0.

The extracellular stimulant dynamics model. In (6), we assumed that an extra-cellular 
stimulant is released by a cell when it cornifies and that this stimulant induces calcium excitation. 
The concentration of this stimulant ( , ) is governed by the diffusion equation (1.21). The 
parameters are chosen as follows: db = 0.00126, Kbb = 0.025, S1 = 21.5 and S2 = 24. We impose 
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the periodic boundary condition in the x and y directions and the Neumann condition in the z
direction to solve this partial differential equation. 

The calcium dynamics model. The dynamics of ci(t), Pi(t) and hi(t) is governed by the equations 
(1.21). Here A(t, x) denotes the extracellular ATP concentration, and wij the activity of the gap-
junctions between cell i and cell j. The constants in this model are chosen as follows: dA = 1.4, 
Kaa = 0.5, Kac = 0.002, dc = 0.01, I = 1.5, Kf = 8.1, 0 = 0.567, 1 = 0.1, K = 0.05, 0 = 0.11, K1

= 0.7, = 2.0, K = 0.1,  = 0.02, Kbc = 0.48, Hb = 0.01, H0 = 0.5, K2 = 0.7, w0 = 0.1, wd0 = 0.1 , 
g = 0.2, s = 1.0, t = 1.0, I = 1.5, kg = 4.0, ks = 6.0 and k = 1.0. When calculating A(t, x), we 
impose the periodic boundary condition in the x and y directions and the Neumann boundary 
condition in the z direction.  

Basement membrane. The basement membrane is expressed as a set of particles whose radii are 
all equal to 1.0. In the flat case, the membrane is fixed at the plane z = 0; in the curved case, the 
coordinate (x, y, z) of the membrane particle satisfies z = 5.0 cos (6x/Lx) cos (6y/Ly). The number 
of membrane particles is fixed to 16560.  

Numerical simulation. For numerical simulation, we set the time step t = 0.01. For particle 
dynamics, we impose the periodic boundary condition in the x and y directions. We confirmed 
that Lz is sufficiently large that the uppermost particles desquamate before reaching z = Lz. The 
timescale of calcium dynamics is far faster than that of cell division, migration and differentiation. 
Accordingly, we calculate the dynamics of cells and the stimulant B(t, x) with the calcium levels 
kept constant. The calcium dynamics is calculated when a certain number of cells (we choose 20 
in our simulations) cornify. In calcium calculation, we regarded xi(t), Si(t), i(t), B(t, x) as constant 
and the calculation is continued until the system reaches a steady state. The two phases of cell 
dynamics calculation and calcium calculation are repeated.  
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Supplement Figure 1. Evaluation of thickness and inter-fiber interval (undulation) of textile 
samples and human skin papillary layer. (A) Overhead view of textile #255 (upper image) and 
cross section of the textile (lower image). White arrows indicate the inter-fiber interval 
(undulation) of the textile and the thickness of the undulation is indicated by black arrowheads. 
White bar = 100 m. (B) Corresponding parameters of human epidermis. The undulation interval 
is indicated by a white arrow and the thickness is indicated by a black arrow.  
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Supplement Figure 2 Merged images of immunostaining with tight junction markers ZO-1 (Red) 
and claudin 1 (Green) of control (A) and #300 textile (B) models. Bars = 50 m. In the control, 
ZO-1 was expressed in the uppermost layer and claudin 1 was expressed in the cell membranes 
throughout the layers (A). In the case of #300, claudin 1 was expressed in the cell membranes 
throughout the layers and a little ZO-1 was expressed in the upper layer of the epidermis (B: 
arrows). 
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Supplement figure 3. Merged images of co-immunostaining with K14 (red, basal cell marker, 
anti-cytokeratin 14 antibody, 1/1000, clone RCK107, # MAB3232, EMD Millipore, Burlington, 
USA) and BrdU (green) of #255 textile (A) and control (B) models. BrdU-positive cells were 
localized at the K14-positive area, even on top of the #255 fibers (A: arrows). Bars = 50 m. 
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Supplement figure 4. Effect of YAP siRNA on the control epidermal model. Control epidermal 
models after YAP siRNA (A) and control siRNA (B) treatment were stained with YAP antibody 
(brown color). RT-PCR showed that YAP siRNA decreased YAP expression by 87+2%. The YAP 
siRNA-treated model showed few YAP-stained nuclei, and structure formation was disrupted (A). 
The control siRNA-treated model exhibited YAP-positive nuclei at the basal layer (B). Bars = 50 
m. 


