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TABLE S1 – Application of the GEM reconstruction method to several experimental data sets.
Figure Reference Data Cell type Genomic range ResolutionN Normalization LSE1/2

Fig. S1 Rao et al. (2014) Hi-C GM12878 (human) Chr. 7 137:138 Mbp 5 kbp 200 uniform 0.023
Fig. S2 Rao et al. (2014) Hi-C GM12878 (human) Chr. 7 130:140 Mbp 10 kbp 1000 uniform 0.013
Fig. S3 Rao et al. (2014) Hi-C GM12878 (human) Chr. 8 133.6:134.6 Mbp 5 kbp 200 uniform 0.022
Fig. S4 Rao et al. (2014) Hi-C GM12878 (human) Chr. 10 90.5:91.5 Mbp 5 kbp 200 uniform 0.023
Fig. S5 Rao et al. (2014) Hi-C GM12878 (human) Chr. 14 94:96 Mbp 10 kbp 200 uniform 0.022
Fig. S6 Rao et al. (2014) Hi-C GM12878 (human) Chr. 14 86:96 Mbp 10 kbp 1000 uniform 0.014
Fig. S7 Rao et al. (2014) Hi-C GM12878 (human) Chr. 14 19:107.2 Mbp 100 kbp 882 uniform 0.013
Fig. S8 Rao et al. (2014) Hi-C GM12878 (human) Chr. 16 85.5:87.5 Mbp 5 kbp 400 uniform 0.019
Fig. S9 Rao et al. (2014) Hi-C GM12878 (human) Chr. 7 137:138 Mbp 5 kbp 200 matrix balancing 0.057
Fig. S10 Rao et al. (2014) Hi-C GM12878 (human) Chr. 7 130:140 Mbp 10 kbp 1000 matrix balancing 0.026
Fig. S11 Rao et al. (2014) Hi-C GM12878 (human) Chr. 8 133.6:134.6 Mbp 5 kbp 200 matrix balancing 0.056
Fig. S12 Rao et al. (2014) Hi-C GM12878 (human) Chr. 10 90.5:91.5 Mbp 5 kbp 200 matrix balancing 0.059
Fig. S13 Rao et al. (2014) Hi-C GM12878 (human) Chr. 14 94:96 Mbp 10 kbp 200 matrix balancing 0.056
Fig. S14 Rao et al. (2014) Hi-C GM12878 (human) Chr. 14 86:96 Mbp 10 kbp 1000 matrix balancing 0.026
Fig. S15 Rao et al. (2014) Hi-C GM12878 (human) Chr. 14 19:107.2 Mbp 100 kbp 882 matrix balancing 0.026
Fig. S16 Rao et al. (2014) Hi-C GM12878 (human) Chr. 16 85.5:87.5 Mbp 5 kbp 400 matrix balancing 0.042
Fig. S17 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 19 30:60 Mbp 30 kbp 1000 GAM 0.032
Fig. S18 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 19 3:61.2 Mbp 100 kbp 582 GAM 0.028
Fig. S19 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 19 3:60 Mbp 1 Mbp 57 GAM 0.021
Fig. S20 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 12 40:70 Mbp 30 kbp 1000 GAM 0.033
Fig. S21 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 12 30:120 Mbp 100 kbp 900 GAM 0.029
Fig. S22 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 12 3:120 Mbp 1 Mbp 117 GAM 0.025
Fig. S23 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 1 135:165 Mbp 30 kbp 1000 GAM 0.032
Fig. S24 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 1 90:190 Mbp 100 kbp 1000 GAM 0.029
Fig. S25 Beagrie et al. (2017) GAM mouse 46C line embryonic stem cells Chr. 1 3:196 Mbp 1 Mbp 193 GAM 0.026
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FIGURE S1 – GEM reconstruction for Hi-C data of human chromosome 7 (1) (5 kbp resolution), normalized by applying a global factor.
(A) Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned
with a ratio 1:4. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient.
(D) Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping, and
for different normalizations Nc of the Hi-C counts.
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FIGURE S2 – GEM reconstruction for Hi-C data of human chromosome 7 (1) (10 kbp resolution), normalized by applying a global factor.
(A) Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned
with a ratio 1:20. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient.
(D) Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping, and
for different normalizations Nc of the Hi-C counts.
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FIGURE S3 – GEM reconstruction for Hi-C data of human chromosome 8 (1) (5 kbp resolution), normalized by applying a global factor.
(A) Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned
with a ratio 1:4. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient.
(D) Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping, and
for different normalizations Nc of the Hi-C counts.
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FIGURE S4 – GEM reconstruction for Hi-C data of human chromosome 10 (1) (5 kbp resolution), normalized by applying a global factor.
(A) Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned
with a ratio 1:4. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient.
(D) Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping, and
for different normalizations Nc of the Hi-C counts.
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FIGURE S5 – GEM reconstruction for Hi-C data of human chromosome 14 (1) (10 kbp resolution), normalized by applying a global factor.
(A) Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned
with a ratio 1:4. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient.
(D) Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping, and
for different normalizations Nc of the Hi-C counts.
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FIGURE S6 – GEM reconstruction for Hi-C data of human chromosome 14 (1) (10 kbp resolution), normalized by applying a global factor.
(A) Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned
with a ratio 1:20. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient.
(D) Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping, and
for different normalizations Nc of the Hi-C counts.
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FIGURE S7 – GEM reconstruction for Hi-C data of human chromosome 14 (1) (100 kbp resolution), normalized by applying a global factor.
(A) Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned
with a ratio 1:20. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient.
(D) Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping, and
for different normalizations Nc of the Hi-C counts.
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FIGURE S8 – GEM reconstruction for Hi-C data of human chromosome 16 (1) (5 kbp resolution), normalized by applying a global factor.
(A) Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned
with a ratio 1:8. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient.
(D) Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping, and
for different normalizations Nc of the Hi-C counts.
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FIGURE S9 – GEM reconstruction for Hi-C data of human chromosome 7 (1) (5 kbp resolution), normalized by matrix balancing. (A)
Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a
ratio 1:4. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D)
Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S10 – GEM reconstruction for Hi-C data of human chromosome 7 (1) (10 kbp resolution), normalized by matrix balancing. (A)
Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a
ratio 1:20. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D)
Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S11 – GEM reconstruction for Hi-C data of human chromosome 8 (1) (5 kbp resolution), normalized by matrix balancing. (A)
Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a
ratio 1:4. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D)
Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S12 – GEM reconstruction for Hi-C data of human chromosome 10 (1) (5 kbp resolution), normalized by matrix balancing. (A)
Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a
ratio 1:4. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D)
Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S13 – GEM reconstruction for Hi-C data of human chromosome 14 (1) (10 kbp resolution), normalized by matrix balancing. (A)
Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a
ratio 1:4. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D)
Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S14 – GEM reconstruction for Hi-C data of human chromosome 14 (1) (10 kbp resolution), normalized by matrix balancing. (A)
Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a
ratio 1:20. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D)
Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S15 – GEM reconstruction for Hi-C data of human chromosome 14 (1) (100 kbp resolution), normalized by matrix balancing. (A)
Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a
ratio 1:20. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D)
Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S16 – GEM reconstruction for Hi-C data of human chromosome 16 (1) (5 kbp resolution), normalized by matrix balancing. (A)
Comparison between experimental (lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a
ratio 1:8. (C) Comparison of experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D)
Average contact probability as a function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S17 – GEM reconstruction for GAM data of mouse chromosome 19 (2) (30 kbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a ratio 1:20. (C) Comparison of
experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a
function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S18 – GEM reconstruction for GAM data of mouse chromosome 19 (2) (100 kbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a ratio 1:10. (C) Comparison of
experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a
function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S19 – GEM reconstruction for GAM data of mouse chromosome 19 (2) (1 Mbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B) Matrix of mean pair potentials. (C) Comparison of experimental and GEM
contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a function of the contour
length. (E) LSE as a function of the threshold ξ used for the GEM mapping.

23



FIGURE S20 – GEM reconstruction for GAM data of mouse chromosome 12 (2) (30 kbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a ratio 1:20. (C) Comparison of
experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a
function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S21 – GEM reconstruction for GAM data of mouse chromosome 12 (2) (100 kbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a ratio 1:20. (C) Comparison of
experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a
function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S22 – GEM reconstruction for GAM data of mouse chromosome 12 (2) (1 Mbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B) Matrix of mean pair potentials. (C) Comparison of experimental and GEM
contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a function of the contour
length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S23 – GEM reconstruction for GAM data of mouse chromosome 1 (2) (30 kbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a ratio 1:20. (C) Comparison of
experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a
function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S24 – GEM reconstruction for GAM data of mouse chromosome 1 (2) (100 kbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B)Matrix of mean pair potentials, binned with a ratio 1:20. (C) Comparison of
experimental and GEM contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a
function of the contour length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S25 – GEM reconstruction for GAM data of mouse chromosome 1 (2) (1 Mbp resolution). (A) Comparison between experimental
(lower left) and GEM (upper right) contact probabilities. (B) Matrix of mean pair potentials. (C) Comparison of experimental and GEM
contact probabilities (2d-histogram). We give the Pearson correlation coefficient. (D) Average contact probability as a function of the contour
length. (E) LSE as a function of the threshold ξ used for the GEM mapping.
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FIGURE S26 – Brownian dynamics (BD) of the reconstructed GEM for Hi-C data of human chromosome 8 (1) (5 kbp resolution). (A)
Contact probability matrices obtained through BD simulation of: (i) the GEM, (ii) the GEM with bending rigidity, and (iii) the GEM with
bending rigidity and with excluded volume. The contact probabilities were computed from BD trajectories and are compared with the
theoretical values for the GEM. (B) Snapshot of a configuration obtained by BD of the reconstructed GEM with bending rigidity and excluded
volume. The couplings are represented by tie lines, from weak couplings (in blue) to strong couplings (in red). (C) LSE as a function of the
threshold ξ between contact probabilities computed from the BD trajectory and the theoretical values.
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FIGURE S27 – Brownian dynamics (BD) of the reconstructed GEM for GAM data of mouse chromosome 19 (2) (30 kbp resolution).
(A) Contact probability matrices obtained through BD simulation of: (i) the GEM, (ii) the GEM with bending rigidity, and (iii) the GEM
with bending rigidity and with excluded volume. The contact probabilities were computed from BD trajectories and are compared with
the theoretical values for the GEM. (B) Snapshot of a configuration obtained by BD of the reconstructed GEM with bending rigidity and
excluded volume. The couplings are represented by tie lines, from weak couplings (in blue) to strong couplings (in red). The inset shows the
same configuration with the monomers. Note that the hard-core distance is σ = 1 whereas the bond length is b = 8. (C) LSE as a function of
the threshold ξ between contact probabilities computed from the BD trajectory and the theoretical values.
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FIGURE S28 – Robustness of GEM reconstruction for Hi-C data of human chromosome 16 (1) (5 kbp resolution). For all GEM reconstructions
we used a threshold ξ = 1 and a normalization factor Nc = 103. (A) Comparison of the contact probabilities of the reconstructed GEM with
those of a GEM obtained by performing the minimization only on the top 90 %, 50 % and 10 % experimental contacts. (B) 2d-histograms
corresponding to the matrices shown in (A). We give the Pearson correlation coefficients. The thresholding quantiles are represented by
vertical dashed lines. (C) Comparison of the GEMs reconstructed from a decreasing fraction of the experimental contacts with the original
GEM. LSE1/2 is the Euclidean distance between contact probabilities divided by (N + 1). (D) Average contact probability as a function of the
contour length for GEMs reconstructed from a decreasing fraction of the experimental contacts.
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FIGURE S29 – Robustness of GEM reconstruction for GAM data of mouse chromosome 19 (2) (30 kbp resolution). For all GEM
reconstructions we used a threshold ξ = 0.5. (A) Comparison of the contact probabilities of the reconstructed GEM with those of a GEM
obtained by performing the minimization only on the top 90 %, 50 % and 10 % experimental contacts. (B) 2d-histograms corresponding to
the matrices shown in (A). We give the Pearson correlation coefficients. The thresholding quantiles are represented by vertical dashed lines.
(C) Comparison of the GEMs reconstructed from a decreasing fraction of the experimental contacts with the original GEM. LSE1/2 is the
Euclidean distance between contact probabilities divided by (N + 1). (D) Average contact probability as a function of the contour length for
GEMs reconstructed from a decreasing fraction of the experimental contacts.
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2. EXISTING METHODS TO RECONSTRUCT CHROMOSOME ARCHITECTURE

Let us review some of the models which have been proposed in the past to address the reconstruction of chromosome
architecture from 3C data. Our aim is not to review thoroughly the available methods, but rather to emphasize
essential differences with our own approach. For a more detailed review of the existing methods for reconstructing
chromosome architecture we refer the interested reader to (3).

2.1. Non-polymer models

2.1.1. Harmonic model

A numerical procedure relying on the introduction of harmonic potentials has been proposed to reconstruct
the equilibrium configurations of the chromosome from the experimental contact probabilities (4, 5). Harmonic
interactions are introduced between each chromosomal bin pair (i, j), such that the contribution to the internal
energy is:

U ({ri }) =
∑
i< j

k
2

(
ri j − r0

i j

)2
, (1)

in which ri j = |rj − ri | is the distance between loci i and j, k is an arbitrarily chosen elastic constant and r0
i j is the

length of the isolated spring. A Monte-Carlo simulation is then performed to sample equilibrium configurations of
the system defined in Eq. 1. These configurations are used to represent the chromosome configurations.

In this method, the elastic constant was assigned arbitrarily to k = 5 kBT . The fact that this elastic constant is the
same for all (i, j) is a first limitation in this approach. The spring lengths are taken such that r0

i j = di j , where di j is the
distance desired between beads i and j. The authors assumed that the equilibrium distance between two chromosomal
loci is inversely proportional to the contact probability, di j = 1/ci j . We will come back to this assumption.

2.1.2. Constraint satisfaction

Another approach is to cast the problem of reconstituting chromosome architecture into a constraint satisfaction
problem (6). The reformulated problem then consists in finding the coordinates {ri } such that the distances between
any pair of chromosomal bins (i, j) is bounded from below and from above:

ai j < ri j < bi j . (2)

In Eq. 2 the upper bound is taken inversely proportional to the experimental contact probability, bi j ∝ 1/ci j ,
and the proportionality coefficient is a parameter of the method. The lower bound ai j is introduced to take into
account excluded volume between any pair of chromosomal loci, and to penalize contacts between adjacent loci due
to the chromosome bending rigidity. This is a constraint satisfaction problem, which can be solved with the simplex
method. The obtained solution is then used to represent a chromosome configuration.

The main limitation of this approach is clearly that the choice of the lower and upper bounds must be adjusted by
the user and adapted to each data set. Beside, this is not a physical model of the chromosome architecture.

2.1.3. Singular value decomposition of the spatial correlation matrix

Let us consider the matrix R of size d × N , where d = 3 is the space dimension and N is the number of bins in the
Hi-C contact matrix. The matrix element rαi is therefore the spatial coordinate of loci i along the α-axis (α = x, y, z).
Next we consider the Singular Value Decomposition (SVD) of R:

rαi =
d∑
γ=1

λγuαγviγ, (3)
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where U = [uαγ] and V = [vγi] are two orthogonal matrices, and
{
λγ

}
γ=1,...,d

are the singular values of R. Then
C = RT R and C̃ = RRT have the same non-zero eigenvalues, which are λ2

1, λ
2
2 and λ2

3 (if d = 3). Finally we
introduce the matrix of distances, D, with elements:

di j =

√√√
d∑
α=1

(
rαi − rα j

)2
. (4)

It turns out that the correlation matrix C can be obtained from the distance matrix D (7, 8). Therefore, from the
knowledge of the distances, one can infer the singular values of the coordinates matrix, and obtain an approximation
for R.

2.2. Polymer models

Models presented in section 2.1 lack a physical model of the chromosome. In clear, the Hi-C bins define a gas
of particles with coordinates {ri } and minimizing Eq. 1 (resp. solving Eqs. 2 and 4) can result in configurations
that violate topological constraints of the polymer chain representing the chromosome. Therefore, subsequent
improvements have consisted in incorporating a polymer model of the chromosome when attempting to reconstruct
chromosome architecture.

2.2.1. Random walk backbone with tethered loops

Another way to look at Hi-C data is to consider that when the contact probability between loci i and j is high enough,
it defines a DNA loop. This is the approach taken in (9). In short, whenever

ci j > cmin, (5)

with an arbitrary lower bound cmin on the contact probability, the authors considered that the DNA subchain in
the interval [i, j] constitutes a loop, with ri = rj . The chromosome is then represented by a backbone polymer
with Gaussian statistics on which are tethered polymer loops with varying sizes. Numerical simulations are then
performed on the basis of this polymer model of the chromosome.

2.2.2. First-principle approach

In (10, 11), the authors start from a polymer representation of the chromosome, and add interactions between
different regions of the chromosome. However, due to the complexity of chromosome interactions with proteins,
this kind of studies can only be made under strong simplifying assumptions. For example, a unique generic type of
protein is included and/or the variety in the binding energies with different loci on the chromosome is replaced by a
single binding energy (or just a few). For this reason comparisons with experimental contact matrices have been
rather qualitative.

2.2.3. Inverse approach

As mentioned in the main text, chromosome architecture might be well described with an effective model in which
microscopical details, such as proteins and sequence effects, are coarse-grained. In particular, the effect of structuring
proteins can be taken into account implicitly by introducing an effective potential Vi j (r) between each (i, j) monomer
pair. In other words, each location on the genome experiences an effective interaction with the other loci on the
genome, which mimics the effect of multivalent proteins. This type of approach was used, in which such potentials
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are considered to be short-range square potentials (12):

Vi j (r) =




+∞ if r < σ

−εi j if σ < r < ξ

0 otherwise,
(6)

where σ is the hard-core distance and ξ is a threshold which defines at the same time the range of the potential and
the distance below which monomers i and j are said to be in contact. By performing MC simulations on a polymer
model with the pair potentials in Eq. 6, one can obtain equilibrium configurations and use them to compute contact
probabilities between monomer pairs.

Let us note cexpij the experimental contact probability between restriction fragments i and j obtained from Hi-C
experiments, and ci j the contact probability between monomers i and j obtained from MC simulations of a polymer
model with potentials as in Eq. 6. We define the least-square estimator between the experimental and the predicted
contact matrices:

d(ci j , cexpij ) =
2

N (N + 1)

∑
i< j

(
ci j − cexpij

)2
, (7)

Finding a good model for chromosome architecture now consists in finding a collection of potentials Vi j (r) that
minimize d(ci j , cexpij ). The solution is achieved at the optimal values for σ, ξ and the matrix of binding energy εi j . In
(12), a MC simulation was performed at each step of the minimization procedure, in order to re-sample equilibrium
configurations of the chromosome and compute the ci j values. Therefore the computational burden is high.

3. SCALING OF CONTACT PROBABILITIES OF A POLYMER

Several of the methods we have presented (4, 6, 7) have the inconvenience to rely on an estimate of the average
distances between loci on the chromosome taken to be inversely proportional to the contact probabilities:

di j ∝ 1/ci j . (8)

While Eq. 8 may appear to be a reasonable assumption, there is no fundamental reason to support it. As pointed
out in (3), a more general functional dependence would be di j ∼ c−γi j . For instance, if we model the chromosome as a
polymer with scaling exponent ν, we have (13):

Pr
(
ri j

)
'

1
〈ri j〉d

fp

(
ri j
〈ri j〉

)
, fp (x) ∼

x∼0
xg

〈ri j〉 ' b | i − j |ν .
(9)

Let us consider that the contact probabilities are given by ci j = Pr
(
ri j = b

)
, and write di j = 〈ri j〉. Then, we

obtain the relation:
di j ∼ 1/c1/(d+g)

i j . (10)

For a Gaussian chain, we have g = 0, and for a self-avoiding chain, g = 1/3. Hence we obtain (d = 3),
di j ∼ 1/c0.33

i j and di j ∼ 1/c0.3
i j , in direct contradiction with Eq. 8.

Reducing chromosome architecture to a mere conformation characterized by the average pair distances di j

is probably unrealistic. Indeed, co-localization of loci on the chromosome results from the effect of divalent (or
multivalent) proteins. We may estimate the strength of the binding by considering contributions of about one kBT
per significant contact (14). Thus, we may consider that structuring proteins have a binding energy with DNA in the
range ε = 3 − 20 kBT . Consequently, the probability to form a DNA loop between monomers i and j should read:

Pr
(
ri j = b

)
'

1
| i − j |ν(d+g)

eβε (b = 1), (11)
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where ν(d + g) = 2 for a self-avoiding polymer chain with scaling exponent ν = 3/5. For example, considering a
relatively strong transcription factor, with ε = 10 kBT , the contact probability ci j ≈ 1 when | i − j |= 150 monomers
and falls quickly to zero for larger contour distances. Here a monomer typically represents the diameter of the DNA
fiber. In eukaryotes, a monomer typically represents 3000 bp. Therefore, it is very unlikely that chromosome loops
are stable for contour length beyond 500 kbp approximatively. In other words, thermodynamic fluctuations may
provide the chromosome folding with a non negligible conformational entropy.

4. CONVERSION OF HI-C AND GAM DATA INTO CONTACT PROBABILITIES

In this section, we present the methods that have been used in this article to estimate experimental contact probabilities
from the experimental measurements.

4.1. Hi-C

After sequencing, the read-pairs obtained in Hi-C experiments are mapped to a reference genome. Provided that the
genome is divided into bins of equal size, each read can then be associated to a unique bin, say i, on the genome.
Therefore, each read-pair defines a contact between the corresponding bin-pair. In fine, a contact count matrix [ni j]
can be constructed, where each entry ni j represents the number of times bins i and j were found in contact in the
experiment. From this count matrix, the matrix of contact probabilities can be estimated. In the sequel we present
the two methods that have been used in this article to compute the contact probability matrix [ci j] from the count
matrix [ni j].

4.1.1. Uniform normalization

In first approximation, it seems reasonable to consider that ni j represents the number of cells in which bins i and j
were found in contact. Assuming that Nc is the number of cells in the experiment sample, the contact probability
between bins i and j is simply:

ci j =
ni j
Nc

. (12)

The previous expression suggests that the matrix of contact probabilities can be obtained from the count matrix
by applying a global normalization factor. In practice however, the number of cells in the sample is unknown.
Therefore, when using this normalization method to reconstruct the optimal Gaussian effective model, we have tried
several values for Nc and chosen the value giving the smallest distance between contact probabilities of the model
and of the experiment.

4.1.2. Matrix balancing

Although intuitive, the “uniform normalization” presented above suffers from several pitfalls inherent to the Hi-C
protocol. Sources of bias in the ni j counts comprise: chromatin accessibility to the restriction enzyme, alignability
(e.g. one bin containing many repeats may result in very few detected contacts because reads cannot be aligned
uniquely) and restriction site density on the chromosome. For example, if one bin i suffers from a bias leading to
undersampling, the entry ni j will underestimate the contact frequency between bis i and j.

The problem of count matrix normalization has been thoroughly studied (1, 15, 16). In short, these methods
apply a different normalization factor to each entry of the count matrix [ni j]. Among them, matrix balancing can
be used to construct a corrected count matrix [ñi j] such that the number of interactions with other bins on the
chromosome is the same for every bin. To be more accurate, matrix balancing yields two vectors U and V such that:

ni j = Ui ñi jVi

Nc =
∑
j

ñi j =
∑
i

ñi j . (13)
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The matrix of contact probabilities is then computed as: ci j = ñi j/Nc . The resulting matrix, [ci j], is bistochastic:
each row and column sums to one.

As pointed out in (1), the problem of matrix balancing has been well studied. In particular, an efficient algorithm
is available to balance any non-negative matrix with total support (17). Other implementations of matrix balancing
dedicated to Hi-C data sets are also available (see for instance (18)).

In this article, we considered the contact probability matrix obtained by matrix balancing for the Hi-C data
coming from (1). The normalized matrices, using the algorithm from (17), were readily available.

4.2. GAM

Genome Architecture Mapping (GAM) is a recent experimental technique which has been proposed as an alternative
to the Hi-C technique to collect information on chromosome architecture (2). The procedure may be summarized as
follows:

1. Collect slices of a cell population by cryosectioning.

2. Sequence DNA contained in each slice.

3. Map reads to genomic coordinates by aligning to a reference genome.

4. Assign genomic coordinates to bins corresponding to a regular subdivision of the genome.

Each slice collected contains thin layers of many nuclei with random orientations. Such a slice is represented
in Fig. S30. Let us stress that a pair of DNA sequences detected in the same slice are not necessarily in contact.
However, given that cells have been sliced in different orientations, if this pair is repeatedly found in the same slices,
it means that these sequences belong to regions of the chromosome with a high contact probability. We now present
the method used in this article to infer contact probabilities ci j from the GAM experimental data.

The main output of GAM experiments is a segregation matrix [sia] in which: rows correspond to bins on the
genome, columns correspond to slices collected and each entry sia = 1 if bin i was detected in slice a and sia = 0
otherwise. Assuming that there are P slices, we define following reference (2):

• The segregation frequency for bin i:

f i =
1
P

P∑
a=1

sia. (14)

• The co-segregation frequency for bins i and j:

f i j =
1
P

P∑
a=1

sias ja. (15)

We now relate the segregation and co-segregation frequencies to actual contact probabilities. The probability
that bins i and j are detected in a slice Sa (i.e. f i j) can be decomposed according to the law of total probability as:

Pr (i and j in Sa) = Pr ( i and j in Sa |i and j in contact ) Pr (i and j in contact)
+ Pr ( i and j in Sa |i and j not in contact ) Pr (i and j not in contact) (16)

The probability that bins i and j are detected in a slice, conditioned to the fact that they are in contact (first term
in the right hand side of the previous equation), is the probability that at least one of the bins is detected in the slice.
Therefore, the previous expression is expressed in terms of the segregation frequencies, co-segregation frequencies
and contact probabilities as:

f i j = (1 − (1 − f i)(1 − f j ))ci j + f i f j (1 − ci j ). (17)
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We finally obtain for the contact probability between bins i and j:

ci j =
f i f j − f i j

f i + f j − 2 f i f j
(18)

In this article, we have used the above equation to estimate the contact probability matrix from the experimental
segregation matrix. Actually, Eq. 18 ensures that ci j < 1. However, the nominator can be negative, in which case we
set ci j ← max (ci j , 0).

FIGURE S30 – Estimation of the contact probability matrix from GAM data sets. (A) GAM experiments use cryosectioning to obtain
thin slices of a cell population sample. Each slice (or nuclear profile) cuts many nuclei in random orientations. The genomic content of
each slice is sequenced. (B) The segregation frequency fi is the fraction of nuclear profiles containing a specific genomic locus i. (C) The
co-segregation frequency fi j is the fraction of nuclear profiles containing a pair of specific loci i and j. The segregation and co-segregation
frequencies can be used to estimate the contact probability of ci j (see Eq. 18).

5. THE GAUSSIAN EFFECTIVE MODEL

5.1. Partition function

We consider the Gaussian effective model (GEM) with energy defined in the main text. To break the translational
invariance, we attach the first monomer to the origin: r0 = 0. We can now write the GEM partition function as a
Gaussian integral:

Z =
∫ N∏

i=1
d3ri exp (−βU[{ri }])

=

∫ N∏
i=1

d3ri exp *.
,
−

3
2b2

∑
i,j

ri · rjσ−1
i j

+/
-
,

(19)

where we have introduced the inverse covariance matrix Σ−1 with elements σ−1
i j and formally expressed as:

Σ
−1 = T +W , (20)
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with:

T =

*........
,

2 −1 . . . 0 0
−1 2 . . . 0 0
...

... . . . ...
...

0 0 . . . 2 −1
0 0 . . . −1 1

+////////
-

, W =

*....................
,

∑
j=0
j,1

k1j −k12 . . . −k1N−1 −k1N

−k21
∑
j=0
j,2

k2j . . . −k2N−1 −k2N

...
... . . . ...

...
−kN−11 −kN−12 . . .

∑
j=0

j,N−1

kN−1j −kN−1N

−kN1 −kN2 . . . −kNN−1
∑
j=0
j,N

kN j

+////////////////////
-

. (21)

The partition function can be conveniently computed by separating the integration along each dimension:

Z =
∏

a=x,y,z



∫ N∏
i=1

drai exp *.
,
−

3
2b2

∑
i,j

rai raj σ
−1
i j

+/
-



=



∫ N∏
i=1

dxi exp *.
,
−

3
2b2

∑
i,j

xix jσ
−1
i j

+/
-



3

= z3, with z =
(
2πb2

3

)N/2
det Σ1/2.

(22)

For any function of the monomer coordinates, A({ri }), we can therefore define the thermodynamical average:

〈A ({ri })〉 =
1
Z

∫ N∏
i=1

d3ri A ({ri }) exp (−βU [{ri }]). (23)

5.2. Pair correlation function

Let us introduce the vector r = (rx , ry , rz ) and ri j = rj − ri. The pair correlation function 〈δ(r − ri j )〉 can be
expressed as:

〈δ(r − ri j )〉 =
1
Z

∫ N∏
m=1

d3rm δ(r − ri j ) exp *
,
−

3
2b2

∑
m,n

rm · rnσ−1
mn

+
-

=
∏

a=x,y,z



1
z

∫ N∏
m=1

dram δ(ra − raij ) exp *
,
−

3
2b2

∑
m,n

ramranσ
−1
mn

+
-

︸                                                                 ︷︷                                                                 ︸
I (ra )

,
(24)

The integral I (x) can be computed by exponentiating the δ-function:

I (x) =
1
z

∫ N∏
m=1

dxm

∫
dk
2π

exp *
,
ik (x − xi j ) −

3
2b2

∑
m,n

xmxnσ−1
mn

+
-

=
1
z

∫
dk
2π

exp (ik x)
∫

dN X exp
(
−

3
2b2 XT

Σ
−1X − ik XT Ei j

)
,

(25)
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where the vector Ei j = Ej − Ei and Ei = (0, · · · , 0, 1, 0, · · · , 0), with the non-zero element being at the index i. By
performing a first Gaussian integration we obtain:

I (x) =
∫

dk
2π

exp (ik x) exp
(
−

b2

6
k2(σii + σ j j − 2σi j )

)
. (26)

Finally, by performing a second Gaussian integration and by substituting this result into Eq. 24, we obtain the
expression for the pair correlation function:

〈δ(r − ri j )〉 = *
,

3
2π〈r2

i j〉
+
-

3/2

exp *
,
−

3
2

r2

〈r2
i j〉

+
-
, (27)

where 〈r2
i j〉 = (σii + σ j j − 2σi j )b2.

5.3. Form factor dependent contact probability

The contact probability between monomers i and j can be expressed as:

ci j = 〈µ(ri j )〉,

=

∫
d3r µ(r)〈δ(ri j − r)〉,

(28)

where µ(r) is a form factor. An intuitive choice of form factor is to consider a theta function:

µT (r) = θ(ξ − r). (29)

In the context of Hi-C experiments, this is equivalent to consider that every restriction fragment pair separated
by a distance r < ξ can be cross-linked. Or in other words, the probability that restriction fragments separated by a
distance r cross-link is

Pr
(
cross-link between i and j | ri j = r

)
=




1 if r < ξ

0 otherwise .
(30)

However, formaldehyde, the cross-linking agent used in most Hi-C experiments, can polymerize. It is present in
aqueous solution in the form of methylene glycol HOCH2OH monomers, but it also exists in the form of oligomers
HO(CH2O)nH, where n is a polymerization index. The equilibrium of the polymerization reaction depends on the
formaldehyde concentration. For instance, in an aqueous solution with 40 % mass fraction of formaldehyde at 35 ◦C,
the proportion of monomers in solution is only 26.80 %, the rest being oligomers with n > 1 (19, 20). This suggests
that cross-links between restriction fragments have varying size depending on the formaldehyde oligomer that made
the cross-link.

For that reason, the cross-linking probability may be more accurately represented by a function which ensures
that most of the cross-links occur for distances r < ξ, but which also allows for few cross-links to occur when r > ξ.
Based on these considerations, it seems natural to consider a Gaussian form factor:

µG (r) = exp
(
−

3
2

r2

ξ2

)
, (31)

or an exponential form factor:

µE (r) = exp
(
−

r
ξ

)
. (32)

Let us emphasize that the form factor µ(r) is not a probability distribution function, so it does not need to be
normalized. It should rather be considered as the probability for a Bernoulli random variable. For a pair of restriction
fragments separated by a distance r, the probability to cross-link is µ(r) and the probability not to cross-link is
1 − µ(r). Note that µ(0) = 1.
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5.4. Contact probabilities of the Gaussian effective model

From Eqs. 27 and 28, we can compute the contact probability ci j for monomers i and j. Substituting µ(r) by the
expression in Eqs. 29, 31 and 32 we obtain:

• For the Gaussian form factor:

ci j = FG (〈r2
i j〉)

= *
,
1 +
〈r2

i j〉

ξ2
+
-

−3/2

,
(33)

• For the theta form factor:

ci j = FT (〈r2
i j〉)

= erf
(

X
√

2

)
−

√
2
π

X exp
(
−

X2

2

)
, X =

√
3ξ2

〈r2
i j〉

.
(34)

where we have introduced the standard error function:

erf(x) =
2
√
π

x∫
0

dt e−t
2
. (35)

• For the exponential form factor:

ci j = FE (〈r2
i j〉)

= (1 + Y 2)
(
1 − erf

(
Y 2

2

))
exp

(
Y 2

2

)
− Y

√
2
π

, Y = X−1 = *
,

√
3ξ2

〈r2
i j〉

+
-

−1

.
(36)

The functional dependence of the contact probability ci j on the average square pair-distance 〈r2
i j〉 depends

therefore on the choice of the form factor (Fig. S31).

5.5. Equilibrium properties

5.5.1. Radius of gyration

The radius of gyration of the GEM can be computed from the covariance matrix Σ. It has the expression:

〈R2
g〉 =

1
2(N + 1)2

N∑
i,j=0
〈r2

i j〉. (37)

It can be used to characterize the swelling of the underlying polymer. For instance, we may monitor the ratio
〈R2

g〉/〈R
2
g,0〉 of the square radius of gyrations of the GEM with respect to the free Gaussian chain (all ki j = 0).
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FIGURE S31 – In the GEM, the contact probability ci j is expressed as a function of the mean square distance 〈r2
i j〉. This function depends

on the form factor µ(ri j ) used in the model.

5.5.2. Mean potentials of interaction

Other quantities of interest include the mean potentials of interaction at equilibrium. For any pair of monomers i and
j, it is defined as:

〈ei j〉 =
3

2b2 ki j〈r2
i j〉,

= −
∂ ln Z
∂ ln ki j

.
(38)

The quantity defined in Eq. 38, expressed in kBT , reflects the state of the polymer. While high energy states are
not favoured, they can however occur at thermal equilibrium if they are associated with large conformational entropy.

In addition, the mean potentials of interaction are extensive quantities. For instance, the mean potential of
interaction between two groups A = {i1, i2, . . . , iM } and B = { j1, j2, . . . , jM′ } of monomers is given by:

〈eAB〉 =
∑

(i,j)∈A×B
ei j . (39)

5.6. Illustration

As an example, we considered an arbitrary coupling matrix [ki j], specifying the interactions for a polymer of
N + 1 = 100 monomers. The coupling matrix was constructed by choosing randomly M = 10 pairs (i, j) and by
assigning to each coupling a random number ki j = U between 0 and 1. Considering a Gaussian form factor with a
threshold ξ = 1.5, we computed the contact probability of the GEM. We then sampled with Brownian Dynamics
simulation configurations in the Boltzmann ensemble for this GEM. To compute the simulated contact probabilities,
the average in Eq. 28 was carried over the sampled configurations. As can be seen in Fig. S32, the simulated contact
probabilities converge to the model prediction when the number of sampled configuration increases.
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FIGURE S32 – (A) Arbitrary coupling matrix defining a GEM with N + 1 = 100 monomers. (B) Convergence of the contact probability
matrix cexp

ij
computed from a Brownian Dynamics simulations to the GEM contact probability matrix ci j , as a function of the number of

sampled configurations (we used a threshold ξ = 1.5 and a Gaussian form factor). (C) Comparison of the contact probability matrices cexp
ij

and ci j , for 10, 100 and 1000 configurations sampled by BD.
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6. RECONSTRUCTION BY DIRECT MAPPING

6.1. Method

In section 5, we have shown that for any GEM, the matrix of contact probabilities is uniquely determined by the
matrix of couplings. Reciprocally, for any contact probability matrix [cexpij ] obtained from Hi-C experiments, one
can reconstruct the GEM with the same contact probability matrix, [ci j = cexpij ], by computing the corresponding
coupling matrix. This can be done as follows:

1. Compute the matrix of mean-square distances of the GEM, [〈r2
i j〉], using the relation:

〈r2
i j〉 = F−1(ci j ), (40)

where F−1 is the inverse of one of the maps in Eqs. 33, 34 and 36.

2. Invert the covariance matrix Σ = [〈ri · rj〉] and compute the coupling matrix from Eqs. 20 and 21.

In this method, the threshold ξ used in the map F is a free parameter that needs to be adjusted. We chose ξ such
that the Euclidean norm of the coupling matrix, ‖K ‖, is a minimum. This ensures that we select the GEM with the
smallest perturbations compared to the free Gaussian chain case.

As an example, we have applied the reconstruction method by direct mapping to contact probability matrices
computed from Brownian Dynamics trajectories of an arbitrary GEM. Namely, we simulated the GEM defined by
the coupling matrix [k thi j ] in Fig. S32A. The experimental contact probability matrix were computed by carrying the
thermodynamical average ci j = 〈µ(ri j )〉 over the sampled configurations. We used a threshold ξexp = 2 and either a
Gaussian or an exponential form factor. We therefore obtained two “artificial” contact probability matrices (see also
Fig. S33):

Contact matrix Form factor ξexp

A Gaussian 2.0
B Exponential 2.0

In this specific scenario, the true coupling matrix is known, and we can therefore compute the distance between
those couplings and the reconstructed ones by monitoring the quantity ‖K − K th ‖. As can be seen in Fig. S33, both
‖K ‖ and ‖K − K th ‖ are minimum for the same value of the threshold ξ so we use one or the other as proxies to
determined the optimal value of the threshold, even when the true coupling matrix is not known or when the input
contact probability matrix was not generated from a GEM.

Note that for contact matrix A, the optimal threshold is the same as the threshold used to compute the
“experimental” contact probabilities, ξ = ξexp. This is because the form factors used for computing the “experimental”
contact probabilities and for the reconstruction are both Gaussian. For matrix B, the form factor used to compute the
“experimental” contact probabilities is exponential, and is therefore different from the Gaussian form factor used in
the reconstruction. In this case, ‖K ‖ has several local minima. Yet at the global minimum, the coupling matrix is
still reconstructed to a good accuracy.

6.2. Unphysical GEM and effect of the noise

In Fig. S33, there is a region where the reconstructed GEM has a covariance matrix Σ with negative eigenvalues.
When this happens, the corresponding GEM has a non-finite free energy and does not represent a physical system.
Unfortunately, when applying this reconstruction by direct mapping to contact probabilities obtained from Hi-C
experiments (1, 21), this situation was almost systematic. It is therefore desirable to better understand under which
conditions such instabilities occur. In particular, we may expect that Hi-C contact matrices contain some noise due
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FIGURE S33 – Reconstruction of a GEM by direct mapping applied to an “artificial” contact probability matrix obtained from a Brownian
Dynamics (BD) trajectory of an arbitrary GEM with a threshold ξexp = 2 and: (A) a Gaussian or (B) an exponential form factor. The
reconstructed coupling matrix is very close to the original one used for the BD simulation. The red area denotes values of the threshold where
the reconstructed GEM has a covariance matrix Σ with negative eigenvalues.

to inaccuracies in the measures or biases inherent to the experimental procedure, that lead to such effects.
Let us start from an artificial GEM with arbitrary couplings K th = [k thi j ]. We compute the associated contact

matrix [cthi j ], using a threshold ξ th and a form factor µth. When we perform Brownian Dynamics simulations of this
system, we obtain configurations from which we compute the experimental contact matrix cexpij , using a threshold
ξexp and a form factor µexp. We take µth = µexp as Gaussian form factors, and we chose ξexp = 3.00 to compute
the experimental contact probabilities from Brownian Dynamics trajectories. Thermal fluctuations, together with the
finite number of such configurations obtained from Brownian Dynamics simulations results in cexpij , cthi j . We may
therefore write the experimental contact probabilities as:

cexpij = cthi j + ηi j , (41)

where ηi j is a noise with unknown distribution, corrupting the “true” contact probabilities. For a chain with
N + 1 = 200 monomers and M = 20 non-zeros couplings drawn from a uniform distribution in the interval [0, 1],
we computed the probability distribution function (pdf) of the difference cthi j − cexpij . We tried different values for the
threshold ξ th used in the GEM mapping (Fig. S34) and obtained that when ξ th = ξexp the pdf of ηi j fits well a
centered Gaussian distribution.

Consequently, instead of running Brownian Dynamics simulations in order to compute experimental contact
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FIGURE S34 – Distribution of the noise ηi j = cexp
ij
− cth

i j
, fitted to a Gaussian distribution.

matrices cexpij , we may construct pseudo-experimental contact matrices by adding a Gaussian noise with mean and
variance given by

〈ηi j〉 = 0, 〈η2
i j〉 = ε

2, (42)

to the theoretical contact matrix cthi j . This trick allows us to investigate the stability of the reconstruction method by
direct mapping as a function of the noise amplitude ε. Furthermore, it also allows us to explore more values for M
than if we had to run systematically a Brownian Dynamics simulation.

Following this observation, we explored the stability of the reconstruction method by direct mapping in the
(ε, M) plane. We considered a large size of polymer with N + 1 = 1000. For each value of M , we generated a random
coupling matrix k thi j by drawing M random variables from a uniform distribution in the interval [0, 1] and computed
the theoretical contact probabilities cthi j of the corresponding GEM. Then we computed a pseudo-experimental
contact probability matrix cexpij by adding to the theoretical contact probabilities a centered Gaussian noise with
standard deviation ε. Following our previous observation, we assumed that the contact probabilities obtained are a
good approximation for the experimental contact probabilities that would be obtained by performing a Brownian
Dynamics simulation of the GEM. Then we applied the reconstruction procedure to cexpij using ξ = ξ th. We therefore
obtained a predicted GEM with couplings [ki j] that we compared to the theoretical couplings by computing the
distance:

d(k̂i j , k thi j ) =
1

(N + 1)



∑
i j

(k̂i j − k thi j )2


1/2

, (43)

The result of this analysis is shown in Fig. S35, in which we shaded in grey the region where the reconstructed
couplings [ki j] define an unstable GEM with a correlation matrix Σ having negative eigenvalues. We observe that for
each value of the number of constraints, M , there is an upper bound ε on the noise amplitude such that for ε > ε, the
direct reconstruction method fails, in the sense that the predicted GEM is unstable. It is remarkable that for ε < ε

the direct reconstruction methods perform very well, with d(k̂i j , k thi j ) . 10−2 in the worse cases. Therefore, the
reconstruction by direct mapping appears to be robust to noise until some critical value of the noise amplitude is
reached. Then the method suddenly starts to fail. We also note that the value of ε seems to depend on the number of
constraints of the underlying GEM. In particular, it is clear that the performances of the direct reconstruction method
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get worse when M → 0. Specifically, for M = 0, we observe that even blurring the theoretical contacts with a noise
of very small amplitude is sufficient to make the reconstruction fail. On the contrary, the value of ε seems to be
maximum for a number of constraints in a range between M = 0.1N and M = N .

FIGURE S35 – Performance of the direct reconstruction method when the theoretical contact probabilities cth
i j

are blurred with a Gaussian
noise such that 〈ηi j〉 = 0 and 〈η2

i j〉 = ε
2. We used N + 1 = 1000. The region in which the predicted couplings [ki j ] define an unstable GEM

was shaded in grey. (A) M = 0, . . . , 1000. (B) Zoom for M = 0, . . . , 100.
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7. RECONSTRUCTION BY LSE MINIMIZATION

7.1. Steepest descent approach

As emphasized in the main text, some coupling matrices can lead to an unstable GEM. More precisely, the covariance
matrix Σ has negative eigenvalues, so that it does not define a physically admissible model. In order to restrain our
study to admissible GEMs, we have used a minimization scheme to find the admissible GEM reproducing as closely
as possible an experimental contact probability matrix. The function to minimize is:

J (K ) =
1
2
‖C(K ) − E‖2, (44)

where the matrix C(K ) = [ci j] is the matrix of contact probabilities of the Gaussian effective model, and E = [ei j] is
the matrix of experimental contact probabilities. The contact probability matrix C(K ) is a function of the matrix of
couplings K = [ki j]. Note that C, E and K are indexed with 0 ≤ i, j ≤ N , i.e. they are (N + 1) × (N + 1) matrices.
Here, we used the Frobenius norm, such that for any matrix A, ‖A‖2 = Tr (AT A) =

∑
i,j

a2
i j .

In order to minimize J as a function of K , under the constraint K ≥ 0 (i.e. all ki j are positive), we implemented
a steepest descent method with projection (Fig. S36). At each iteration n, the matrix of couplings Kn is updated
according to:

K ′ = Kn − h
∇Jn

‖∇Jn‖
, (45)

Kn+1 = pR+ (K ′), (46)

where the scalar h is a small time step, and the projection operator pR+ applies the operation x ← max(x, 0) to all
entries of its matrix argument. In practise, the time step was adjusted at each iteration. Namely, if Jn+1 > Jn, then
we decreased the time step according to: h ← 0.1 × h. Otherwise, we increased h for the next iteration according to
h ← 2 × h.

We stopped the minimization when the relative variation in the cost function became sufficiently small:

2|Jn+1 − Jn |

|Jn+1 | + |Jn |
< εr , (47)

with typically εr = 1 × 10−9.
The minimization scheme that we just described requires to compute the gradient as a function of the ki j

variables.

7.2. Expression of the gradient of the least-square estimator

We will express J as the composition of several maps, and then use rules of differential calculus to find its differential
form dJ. Since J takes scalar values, we will then find its gradient as the matrix such that: dJK (H) = Tr (∇J (K )T H).

Let us first consider the matrix of reduced couplings W = [wpq], as defined in Eq. 21, which is indexed with
1 ≤ p, q ≤ N . We may introduce the linear map A which transforms a coupling matrix in its reduced coupling
matrix:

A : RN+1 × RN+1 → RN × RN

K 7→ A(K ) = W . (48)

Actually, the matrix elements of the reduced couplings can be expressed as:

wpq =
∑
i,j

apqij ki j , (49)
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FIGURE S36 – Minimization algorithm to find the Gaussian effective model with the closest contact probability matrix to an experimental
contact probability matrix.
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where:

apqij =



(1 − δpq)
[
−
δpiδq j+δp j δqi

2

]
+ δpq

[
δpi+δp j

2

]
if i , j,

0 otherwise.
(50)

Here, δpq = 1 if p = q and δpq = 0 otherwise. The previous expression ensures that W is a symmetrical matrix.
The expression obtained suggests to introduce the tensor A = [apqij] and to use the matrix-vector notation:

A(K ) = AK , (51)

where K is seen at a vector of R2(N+1) and A as a matrix of R2(N+1) ×R2(N+1) . The differential ofA is expressed as:

dAK : RN+1 × RN+1 → RN × RN

H 7→ dAK (H) = AH . (52)

Actually, we may define the map associating to any coupling matrix the associated inverse covariance matrix
Σ−1 = Ã(K ) = A(K ) + T of a GEM, with T as in Eq. 21. It is straightforward that dÃ = dA.

Next, following Eq. 20, we can express the covariance matrix as Σ = I(W + T ), where we introduced the
inversion operator:

I : RN × RN → RN × RN

X 7→ I(X ) = X−1. (53)

The differential of I at the matrix X is:

dIX : RN × RN → RN × RN

H 7→ dIX (H) = −X−1H X−1. (54)

Then, we introduce the matrix of mean square distances Γ = [γi j] of a GEM, with γi j = 〈r2
i j〉, indexed with

0 ≤ i, j ≤ N . By definition, it is related to the matrix of covariance Σ = [σpq]:

γi j = σii + σ j j − 2σi j for 0 < i, j ≤ N ,
γ0j = σ j j for 0 < j ≤ N . (55)

We now introduce the map:
B : RN × RN → RN+1 × RN+1

Σ 7→ B(Σ) = Γ. (56)

Similarly as before, we may express this map in a matrix-vector notation, B(Σ) = BΣ, where the tensor B has
the elements:

bi jpq =
(
δip + δ jq

)
δpq − 2δipδ jq. (57)

The differential of B in Σ is then expressed as:

dBΣ : RN × RN → RN+1 × RN+1

H 7→ dBΣ (H) = BH . (58)

The final step of the Gaussian effective model mapping is to express the matrix of contact probabilities C as a
function of Γ. To this end, we introduce the map:

F : RN+1 × RN+1 → RN+1 × RN+1

Γ 7→ F (Γ) = C. (59)

In the previous expression, the matrix elements of C are given by:

ci j = F (γi j ), (60)
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where F is one of Eqs. 33, 34 and 36, depending on the form factor used. We can then identify the differential of F
by performing an expansion around Γ. We obtain:

dFΓ : RN+1 × RN+1 → RN+1 × RN+1

H 7→ dFΓ (H) = F ′(Γ) ◦ H , (61)

where we introduced the Hadamard product such that for any two matrices (A ◦ B) = [ai jbi j], and the short-hand
notation F ′(Γ) = [F ′(γi j )].

Finally, we introduce the linear form:

G : RN+1 × RN+1 → R

C 7→ G(C) = 1
2 ‖C − E‖2. (62)

By definition of the Frobenius norm, ‖A‖2 = Tr (AT A), we obtain for the differential of G in C:

dGC : RN+1 × RN+1 → R

H 7→ dGC (H) = Tr
[
(C − E)T H

]
. (63)

In summary, we have introduced several maps and expressed the cost function to minimize as J (K ) =
G ◦ F ◦ B ◦ I ◦ Ã(K ). Using the rules of composition for differential calculus, we obtain the differential of J in K :

dJK (H) = dGF ◦B◦I◦Ã(K ) ◦ dFB◦I◦Ã(K ) ◦ dBI◦Ã(K ) ◦ dIÃ(K ) ◦ dAK (H),

= Tr
[
∇J (K )T H

]
,

(64)

After calculations, the gradient of J in K reads:

∇J (K ) = −A∗
[
(X−1)TY (X−1)T

]
,

with:
X = AK + T
Y = B∗ [(C − E) ◦ F ′(Γ)] .

(65)

To obtain the last expression, we introduced the adjoint tensors A∗ = [a∗i jpq = apqij] and B∗ = [b∗pqij = bi jpq].
Or writing explicitely all the summations we have:

dJ
dki j = −

N∑
m,n=1

amn,i j
N∑

p,q=1
x−1
pmypqx−1

nq,

with:

ypq =
N∑

k,l=0
bkl,pq (ckl − ekl)F ′(γkl).

(66)

7.3. Computational burden

The main computational burden in evaluating the cost function J as well as its gradient ∇J resides in the matrix
inversion Σ−1 → Σ, with O(N3) complexity. In this work, we have used the routines of the Intel®Math Kernel
Library to perform the algebra operations and the matrix inversion. We used the parallel implementation to distribute
the computation over 12 processors.

As an alternative to the cost function in Eq. 44, we have also considered minimizing:

J ′ =
1

(N + 1)2

∑
i,j

*
,

∑
k

σ−1
ik sk j − δi j+

-

2

, (67)
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where [si j] is the covariance matrix of the GEM reproducing exactly the experimental contacts [cexpij ], and [σi j] is
the covariance matrix of a candidate (stable) GEM with couplings ki j . The advantage of this form over the previous
one is that it does not require any matrix inversion. More accurately, it is a quadratic function of the ki j variables.
Therefore the existence of a minimum satisfying ki j ≥ 0 is guaranteed and it is unique. Consequently, it is less
computationally intensive and the minimum can be found efficiently with descent methods using conjugate directions.
We found this form to work very well with contact probability matrix generated from predefined GEM by Brownian
Dynamics simulations. However, for Hi-C contact probabilities, we found that it was much less successful. More
precisely, the least-square estimator between the contact probabilities of the Hi-C experiment and of the optimal
model was not as low.

8. BROWNIAN DYNAMICS

8.1. Physical model

In this article, we have performed two types of Brownian Dynamics simulation. The potentials used for each of them
are summarized in the following table and discussed in further details below.

Potential BD of GEM BD of GEM with semi-flexibility and
excluded volume

Chain structure Ue Uf ene

GEM couplings UI UI

Bending rigidity - Ub

Excluded Volume - Uev

Total Ue +UI Uf ene +Ub +Uev +UI

8.1.1. Chain structure

We modeled the chromosome as a beads-on-string polymer with monomers of size b and coordinates ri . The index
varies between i = 0 and i = N . The bond vectors are ui = ri − ri−1.

In the absence of excluded volume, we considered a Gaussian chain for the polymer structure, with potential:

βUe [{ri }] =
3

2b2

N∑
i=1

(ri − ri−1)2. (68)

An important property of Gaussian chains is that the mean-square value of the end-to-end vector Re = rN − r0
scales linearly with the contour length:

〈R2
e〉 = b2N . (69)

In reality, approximating a polymer to a Gaussian chain is only valid for weak perturbations, Re � Nb. Besides,
a Gaussian polymer allows the bond distance to fluctuate quite a lot (〈u2

i 〉 = b2). This is problematic in Brownian
Dynamics simulations with excluded volume interactions because this would result in possible crossings between
different bonds. Therefore, for Brownian Dynamics with excluded volume interactions, we have preferred instead the
finitely-extensible non-linear elastic potential (FENE):

Uf ene [{ri }] = −
3ker2

0
2b2

N∑
i=1

ln *
,
1 −

u2
i

r2
0

+
-
, (70)

where r0 is a distance above which non-linear effects start to appear in the bonds elasticity and ke is the rigidity
constant of the non-linear spring. Note that for ui � r0 we recover the Gaussian chain potential, i.e. a linear spring
(with ke = 1 kBT). In practical applications we have taken r0 = 1.5 b and ke = 10 kBT (22).
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FIGURE S37 – Comparison of GEM couplings with binned couplings used in Brownian Dynamics (BD) simulations.

8.1.2. Gaussian effective model interactions

Following the model described in the main text, we introduced the GEM interaction potential:

βUI [{ri }] =
3

2b2

∑
0≤i< j≤N

ki j
(
ri − rj

)2
, (71)

where the ki j are the couplings from a GEM. In order to have a reasonable amount of distinct couplings values in the
implementation of BD simulations, we binned the GEM couplings. Specifically, we considered 1000 bins of same
length in the interval [kmin, kmax] where kmin (resp. kmax) is the minimum (resp. maximum) of the reconstructed
GEM couplings. Note that we discarded all couplings ki j < 0.001. Despite this binning procedure, the couplings
used in the BD simulations remained very close to the reconstructed GEM ones (see Fig. S37).

8.1.3. Bending rigidity

In reality, the DNA fiber opposes a certain resistance to bending. To model this effect, we used a Kratky-Porod
potential:

βUb [{ri }] = lp
N−1∑
i=1

(1 − cos θi) , (72)

where θi is the angle between bonds ui and ui+1.
For a polymer with a Gaussian chain potential plus a bending rigidity potential as defined above, the linear
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scaling of the mean-square end-to-end distance with the contour length still holds:

〈R2
e〉 ≈ l2

K

N
gK

, (73)

where lK = 2lp is the Kuhn length and gK is the number of original monomers per Kuhn length. Thus a semi-flexible
polymer behaves like a Gaussian chain at large scales, with N ′ = N/gK and b′ = lK .

8.1.4. Excluded volume

A commonly used two-parameter empirical form for describing non-bonded interactions between two neutral (but
possibly polarized) particles is the Lennard-Jones, or “6-12”, potential. For two monomers separated by a distance r ,
it reads:

VLJ (r) = 4ε
((
σ

r

)12
−

(
σ

r

)6)
, (74)

where ε is an energy scale in kBT and σ is the hard core distance. Here, the interaction still decays as a power
law of the distance r . A standard method to make this interaction short-range, is to introduce a threshold r th such
that for distances r > r th the interaction vanishes. Therefore, in simulations, we have considered the truncated
Lennard-Jones potential:

Uev (r) =



VLJ (r) − VLJ (r th) if r < r th,
0 otherwise.

(75)

We have considered take ε = 1 kBT , but the hard-core distance may be different from the monomer size (see
next below). To model excluded volume interactions, we set r th = 21/6σ, resulting in Uev (r) > 0 for r < r th. In
particular, this ensures that the repulsive force, −∂Uev/∂r , vanishes precisely for r = r th.

8.1.5. Numerical values

In eukaryotes, the interphase chromosome is packed into a fiber with a diameter of 30 nm, which is usually designated
as chromatin. It has a linear packing fraction ν ≈ 100 bp nm−1 and persistence length lp = 90 nm (23). Therefore, the
appropriate size for monomers is σ = 30 nm, which correspond to g = 3000 bp. The persistence length expressed
in units of these monomers gives lp = 3σ, and σ is also the hard-core distance for excluded volume interactions
between monomers.

In the Brownian Dynamics simulations performed in this article, the natural unit of monomer is the Hi-C bin
resolution. We have considered specifically g1 = 5000 bp and g2 = 30 000 bp with corresponding monomer sizes b1
and b2. The persistence lengths for each case thus read lp = νlp/g1 b1 = 1.8 b1 and lp = νlp/g2 b2 = 0.3 b2.

For the first resolution, we may consider that g1 ≈ g, meaning that monomers can be represented as impenetrable
beads. We thus take for the hard-core distance σ1 = b1. The second resolution however defines monomers much
larger than the chromatin fiber diameter. Following the scaling relations introduced above, we may express the
monomer sizes as:

b2
2 ≈

g2
gK

l2
K , (76)

where gK = 18 000 bp is the number of monomers per Kuhn length. We obtain that b2 ≈ 8σ. Therefore, we have
considered a hard-core distance σ2 = 0.125 b2.

We summarize in the following table the values of the different parameters we took for our Brownian Dynamics
simulations.
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Data set GM12878
chromosome 8
133.6 Mbp:134.6 Mbp
bin size: 5 kbp
uniform normalization

GM12878
chromosome 16
85.5 Mbp:87.5 Mbp
bin size: 5 kbp
uniform normalization

Mouse 46C ES
chromosome 19
30 Mbp:60 Mbp
bin size: 30 kbp
GAM normalization

Gaussian chain b = 1 b = 1 b = 1
FENE chain b = 1

r0 = 1.5
ke = 10 kBT

b = 1
r0 = 1.5
ke = 10 kBT

b = 8
r0 = 12
ke = 10 kBT

Bending rigidity lp = 1.8 lp = 1.8 lp = 2.4
Excluded volume σ = 1

rc = 1.1225
σ = 1
rc = 1.1225

σ = 1
rc = 1.1225

GEM couplings 1000 equal sized bins
min (ki j ) ≥ 10−3

1000 equal sized bins
min (ki j ) ≥ 10−3

1000 equal sized bins
min (ki j ) ≥ 10−3

8.2. Implementation of Brownian Dynamics

Brownian dynamics simulations are molecular dynamics simulations in which many molecular details are coarse-
grained. The classical framework to describe the Brownian motion of a particle is the Langevin equation. For a bead
with coordinates x(t) it reads:

mẍ(t) = −γ ẋ −
∂U
∂x

(x(t)) + γη(t), (77)

in which m is the mass of the bead, γ is a damping term and −∂U/∂x is the force applied to the bead, deriving from
a potential U. The first two terms in the right-hand side of the above dynamics are deterministic. In addition there
is a stochastic term, η(t) which represents energy exchanges between the bead and a bath at temperature T . More
accurately, η is an uncorrelated Gaussian random process with two first moments:

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2Dδ(t − t ′), (78)

where D is the diffusion coefficient of the bead. It can be shown that the above dynamics converges to the Boltzmann
equilibrium provided that D satisfies the Stokes-Einstein relation:

D = kBT/γ, (79)

where finally from the Stokes’ law applied to a bead of diameter b we get γ = 3πbµ, with µ being the fluid viscosity.
In order to produce Brownian Dynamics trajectories, the Langevin equation Eq. 77 was applied to each bead

of our polymer model and integrated numerically with the LAMMPS simulation package (24). It uses a standard
velocity Verlet integration scheme (25). In practise, this requires the choice of an integration time step, and we chose
the value dt = 0.001. We also set γ = 1 (in simulation dimensionless units).

The choice of the initial configuration is important, especially when excluded volume is included. Although we
can start from an arbitrary configuration respecting excluded volume constraints, the relaxation to the Boltzmann
equilibrium can be very slow. To circumvent this problem and generate quickly an initial configuration for a polymer
with excluded volume interactions we have used the following procedure.

First, perform a relaxation run without excluded volume nor short-range attractive interactions. This corresponds
to the dynamics of an ideal chain and aims at sampling rapidly a large number of configurations to loose the memory
of the initial condition.

Second, perform an intermediate run with few iterations (generally 106 iterations) with a soft pair potential:

Uso f t (r) = A
(
1 + cos

(
πr
r th

))
, (80)
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where r th is the same cutoff as in the truncated Lennard-Jones potential from Eq. 75. The magnitude A is progressively
increased from 1 to 60 during the run (22), so that we obtain in the end a configuration with no overlaps between the
beads.

Third, themain runwith excluded volume and short-range interactions is performed starting from the configuration
without overlaps. Several configurations (generally 1000) are extracted from the resulting trajectory, which sample
the Boltzmann ensemble. These configurations can be used to compute equilibrium averages according to the ergodic
property of the Boltzmann equilibrium.

It is possible to map the simulation time to the real time. Let us write the diffusion coefficient as D = b2/τB.
During the time τB, a bead typically travels through a distance b, which is its own size. Consequently τB is the
natural unit of time for this diffusive process and is called the Brownian time. In Brownian Dynamics simulations we
take b = 1 and D = 1 (in dimensionless units), therefore a unit of simulation time correspond to the Brownian time.
The diffusion coefficient in the bacterial nucleoid was found to be D = 10 µm2 s−1 (26). Therefore, for b = 30 nm
we find τB = 90 µs.
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