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SUPPLEMENTARY INFORMATION 

1. The homeostatic statistical mechanics framework 

Here, we provide a brief overview of the homeostatic mechanics framework of Shishvan et 

al. (1) with the aim to provide the reader the key aspects of the framework required for fully 

appreciating the computational results presented in the main text. Readers are referred to 

Shishvan et al. (1) for a more complete treatment including the derivations of the relevant 

equations. 

Making the ansatz that living cells are entropic, Shishvan et al. (1) introduced the concept of 

the homeostatic ensemble with cellular homeostasis providing the additional constraints and 

mechanisms for entropy maximisation. This defined the notion of a (dynamic) homeostatic 

equilibrium state that intervenes to allow living cells to elude thermodynamic equilibrium. 

They thus developed a statistical mechanics framework for living cells using the notions of 

statistical inference (2) applicable over a timescale from a few hours to a few days as long as 

the cell remains as a single undivided entity (i.e. the interphase period of the cell cycle). The 

key ideas behind the framework can be summarised as follows. A system comprising the cell 

and the extracellular matrix (ECM) is an open system with the cell exchanging nutrients with 

the surrounding bath. These nutrients fuel a large number of coupled biochemical reactions 

that include actin polymerisation, treadmilling and dendritic nucleation that effect changes to 

the cell morphology. These biochemical reactions change the morphology of the cell but are 

not precisely controlled, and this manifests via the observed morphological fluctuations of the 

cell. Shishvan et al. (1) made the ansatz that these biochemical reactions provide the 

mechanisms to maximise the morphological entropy of the cell, but constrained by the fact 

that the cell maintains a homeostatic state over the interphase period. Cellular homeostasis is 

the ability of cells to actively regulate their internal state, and maintain the concentration of 

all internal species1 at specific average values over their morphological fluctuations 

independent of the environment. 

 

                                                 
1 Chemical species here are defined in a manner analogous to the Gibbs definition for a grand canonical 

ensemble, viz. chemical species are an ensemble of chemically identical molecular entities that can explore the 

same set of molecular energy levels on the timescale of a morphological microstate.  



1.1. Morphological microstates, entropy, fluctuations, and the homeostatic temperature 

Controlling only macro variables (i.e. macrostate) such as the temperature, pressure, and 

nutrient concentrations in the nutrient bath results in inherent uncertainty (referred to here as 

missing information) in micro variables (i.e. microstates) of the system. This includes a level 

of unpredictability in homeostatic process variables, such as the spatio-temporal distribution 

of chemical species, that is linked to Brownian motion and the complex feedback loops in the 

homeostatic processes. Thus, this system not only includes the usual lack of precise 

information on the positions and velocities of individual molecules associated with the 

thermodynamic temperature, but also an uncertainty in cell shape resulting from imprecise 

regulation of the homeostatic processes. The consequent entropy production forms the basis 

of this new statistical mechanics framework motivated by the following two levels of 

microstates: 

(i) Molecular microstates. Each molecular microstate has a specific configuration (position 

and momentum) of all molecules within the system.  

(ii) Morphological microstates. Each morphological microstate is specified by the mapping 

(connection) of material points on the cell membrane to material points on the collagen 

coated substrate. In broad terms, a morphological microstate specifies the shape and size of 

the cell. 

Shishvan et al. (1) identified the (dynamic) homeostatic or equilibrium state of the system by 

entropy maximisation. Subsequently, we shall simply refer to this state as an equilibrium 

state to emphasise that it is a stationary macrostate of the system inferred via entropy 

maximisation as in conventional equilibrium analysis. The total entropy of the system is 

written in terms of the conditional probability 𝑃(𝑖|𝑗) of the molecular microstate (𝑖) given the 

morphological microstate (𝑗) and the probability 𝑃(𝑗) of morphological microstate (𝑗) as 

 𝐼T = ∑𝑃(𝑗)𝐼M
(𝑗)

𝑗

+ 𝐼Γ. (S1) 

In eq. (S1), 𝐼M
(𝑗)

≡ −∑ 𝑃(𝑖|𝑗) ln 𝑃(𝑖|𝑗)
𝑖∈𝑗  and 𝐼Γ ≡ −∑ 𝑃(𝑗) ln 𝑃(𝑗)

𝑗  are the entropies of 

molecular microstates in morphological microstate (𝑗) and the morphological microstates, 

respectively. Equilibrium then corresponds to molecular and morphological macrostates that 

maximise 𝐼T subject to appropriate constraints. The molecular macrostate evolves on the 

order of seconds, limited by processes such as the diffusion of unbound actin. By contrast, 

transformation of the morphological macrostate involves cell shape changes and therefore, 



the morphological macrostate evolves on the order of minutes, limited by co-operative 

cytoskeletal processes within the cell such as meshwork actin polymerisation and dendritic 

nucleation. The evolutions of the molecular and morphological macrostates are therefore 

temporally decoupled, and Shishvan et al. (1) showed that eq. (S1) can be maximised by 

independently maximising 𝐼M
(𝑗)

 at the smaller timescale to determine the equilibrium 

distribution of molecular microstates for a given morphological microstate, and then 

maximising 𝐼Γ at the larger timescale to determine the equilibrium distribution of the 

morphological microstates. 

Over the (short) timescale on the order of seconds, the only known constraint on the system is 

that it is maintained at a constant temperature, pressure and strain distribution. The 

equilibrium of a given morphological microstate (𝑗) obtained by maximising 𝐼M
(𝑗)

 (denoted by 

𝑆M
(𝑗)

) corresponds to molecular arrangements that minimise the Gibbs free-energy with 𝐺(𝑗). 

Since the connection between the cell and the collagen coated substrate is fixed for a given 

morphological microstate, the determination of 𝐺(𝑗) is a standard boundary value problem as 

described in Section 2.2. Over the (long) timescale on the order of several minutes to hours, 

the equilibrium distribution 𝑃eq
(𝑗)

 is determined by maximising 𝐼Γ, but now with the additional 

constraint that the cell is maintained in its homeostatic state. For the case of a cell on an ECM 

in a constant temperature and pressure nutrient bath, the homeostatic constraint translates to 

the fact that the average Gibbs free-energy of the system over all the morphological 

microstates it assumes, is equal to the equilibrium Gibbs free-energy 𝐺S of an isolated cell in 

suspension (free-standing cell), i.e. the homeostatic processes maintain the average 

biochemical state of the system equal to that of a cell in suspension. In deriving this result, 

Shishvan et al. (1) did not consider every individual homeostatic process, but rather used just 

the coarse-grained outcome of the homeostatic processes. The application of this coarse-

grained constraint is the key element of the homeostatic mechanics framework, with the 

morphological entropy 𝐼Γ parameterising the information lost by not modelling all variables 

associated with the homeostatic processes. 

The maximisation of 𝐼Γ while enforcing ∑ 𝑃(𝑗)𝐺(𝑗) = 𝐺S𝑗  gives the homeostatic equilibrium 

state such that 

 𝑃eq
(𝑗)

=
1

𝑍
exp(−𝜁𝐺(𝑗)), (S2) 



where 𝑍 ≡ ∑ exp(−𝜁𝐺(𝑗))𝑗  is the partition function of the morphological microstates, and 

the distribution parameter 𝜁 follows from the homeostatic constraint 

 
1

𝑍
∑𝐺(𝑗)

𝑗

exp(−𝜁𝐺(𝑗)) = 𝐺S . (S3) 

The collection of all possible morphological microstates that the system assumes while 

maintaining its homeostatic equilibrium state is referred to as the homeostatic ensemble. The 

homeostatic ensemble can therefore be viewed as a large collection of copies of the system, 

each in one of the equilibrium morphological microstates. The copies (𝑗) are distributed in 

the ensemble such that the free-energies 𝐺(𝑗) follow an exponential distribution 𝑃eq
(𝑗)

 with the 

distribution parameter 𝜁.  

The equilibrium morphological entropy 𝑆Γ = −∑ 𝑃eq
(𝑗)

ln 𝑃eq
(𝑗)

𝑗  (i.e. the maximum value of 𝐼Γ) 

follows from (S2) as 

 𝑆Γ = 𝜁𝐺S + ln 𝑍, (S4) 

where 𝑃eq
(𝑗)

 is substituted from eq. (S2). Thus, 𝑆Γ is related to 𝜁 via the conjugate relation 

𝜕𝑆Γ/𝜕𝐺S = 𝜁. Thus, analogous to 1/𝑇 that quantifies the increase in uncertainty of the 

molecular microstates (i.e. molecular entropy 𝑆M
(𝑗)

) with average enthalpy, 𝜁 specifies the 

increase in uncertainty of the morphological microstates (i.e. morphological entropy 𝑆Γ) with 

the average Gibbs free-energy. We therefore refer to 1/𝜁 as the homeostatic temperature 

with the understanding that it quantifies the fluctuations on a timescale much slower than that 

characterised by 𝑇. 

 

 

 

 

 

 



2. The equilibrium Gibbs free-energy of a morphological microstate 

Similar to conventional statistical mechanics calculations that require a model for the energy 

of the system, the homeostatic statistical mechanics framework requires a model for the 

Gibbs free-energy 𝐺(𝑗) of morphological microstate (𝑗). Here, we calculate 𝐺(𝑗) using the 

free-energy model of Vigliotti et al. (3) (as modified by Shishvan et al. (1)) that includes 

contributions from cell elasticity and the actin/myosin stress-fibre cytoskeleton, with the cell 

modelled as a two-dimensional (2D) body in the 𝑥1 − 𝑥2 plane adhered to a deformable 

collagen coated substrate, such that the out-of-plane Cauchy stress 𝛴33 = 0. The key 

differences are that (i) we include a nucleus that was neglected in Shishvan et al. (1) (ii) and 

also add in explicit contribution from the focal adhesions as described in the main body of the 

paper. The state of the system changes as the cell moves, spreads, and changes shape on the 

substrate. Here, we shall give a prescription to calculate the Gibbs free-energy of the system 

when the cell is in a specific morphological microstate (𝑗), where the connections of material 

points on the cell membrane to the surface of the collagen coated substrate are specified. 

With the system comprising the cell and substrate within a constant temperature and pressure 

nutrient bath, the equilibrium value of the Gibbs free-energy 𝐺(𝑗) of the system in 

morphological microstate (𝑗) is given by 𝐺(𝑗) = 𝐹cell
(𝑗)

+ 𝐹sub
(𝑗)

+ 𝐹adh
(𝑗)

. Here 𝐹adh
(𝑗)

 is the free-

energy associated with the formation of focal adhesion as described in the main paper body 

(see Section 2.3 therein). Moreover, we assume the substrate to be linear elastic so 𝐹sub
(𝑗)

 is 

calculated directly from knowing the tractions the cells exert on a linear elastic half-space. 

Thus, we focus our description on the calculation of the free-energy of the cell 𝐹cell
(𝑗)

. In the 

following, for the sake of notational brevity, we shall drop the superscript (𝑗) that denotes the 

morphological microstate, as the entire discussion refers to a single morphological 

microstate. 

The Vigliotti et al. (3) model assumes only two elements within the cell: (i) a passive elastic 

contribution from elements such as the cell membrane, intermediate filaments and 

microtubules, and (ii) an active contribution from contractile acto-myosin stress-fibres that 

are modelled explicitly. This model was modified in Shishvan et al. (1) to incorporate a non-

dilute concentration of stress-fibres and here we further modify this model by including the 

nucleus in the analysis as a passive elastic body, in addition to the cytoplasm comprising the 

two above mentioned components. We shall first describe the modelling of the active acto-



myosin stress-fibres in the cytoplasm and then discuss the elastic model of both the nucleus 

and the cytoplasm. 

Consider a two-dimensional (2D) cell of thickness 𝑏0 and volume 𝑉0 in its elastic resting 

state comprising a nucleus of volume 𝑉N and cytoplasm of volume 𝑉C such that 𝑉0 = 𝑉N +

𝑉C. The representative volume element (RVE) of the stress-fibres within the cytoplasm in this 

resting configuration is assumed to be a cylinder of volume 𝑉R = 𝜋𝑏0(𝑛
Rℓ0/2)2, where ℓ0 is 

the length of a stress-fibre functional unit in its ground-state, and 𝑛R is the number of these 

ground-state functional units within this reference RVE. The total number of functional unit 

packets within the cell is 𝑁0
T, and we introduce 𝑁0 = 𝑁0

T𝑉R/𝑉C as the average number of 

functional unit packets available per RVE; 𝑁0 shall serve as a useful normalisation 

parameter. The state of stress-fibres at location 𝑥𝑖 within the cell is described by their angular 

concentration 𝜂(𝑥𝑖, 𝜑), and there are 𝑛(𝑥𝑖, 𝜑) functional units in series along the length of 

each stress-fibre in the RVE. Here, 𝜑 is the angle of the stress-fibre bundle in the undeformed 

configuration with respect to the 𝑥2 − direction. Vigliotti et al. (3) showed that, at steady-

state, the number 𝑛ss of functional units within the stress-fibres is given by 

 𝑛̂ss ≡
𝑛ss

𝑛R
=

[1 + 𝜀nom(𝑥𝑖, 𝜑)]

1 + 𝜀ñom
ss  , (S5) 

where 𝜀ñom
ss  is the strain at steady-state within a functional unit of the stress-fibres, and 

𝜀nom(𝑥𝑖, 𝜑) is the nominal strain in direction 𝜑. The chemical potential of the functional 

units within the stress-fibres in terms of the Boltzmann constant 𝑘B is given by 

 𝜒b =
𝜇b

𝑛R
+ 𝑘B𝑇 ln

[
 
 
 
 

(
𝜋 𝜂̂ 𝑛̂ss

𝑁̂u (1 −
𝜂̂

𝜂̂max
)
)

1
𝑛ss

(
𝑁̂u

𝜋𝑁̂L

)

]
 
 
 
 

 , (S6) 

where the normalized concentration of the unbound stress-fibre proteins is 𝑁̂u ≡ 𝑁u/𝑁0 with 

𝜂̂ ≡ 𝜂𝑛R/𝑁0, while 𝜂̂max is the maximum normalised value of 𝜂̂ corresponding to full 

occupancy of all available sites for stress-fibres (in a specific direction). Here, 𝑁̂L is the 

number of lattice sites available to unbound proteins. The enthalpy 𝜇b of 𝑛R bound functional 

units at steady-state is given in terms of the isometric stress-fibre stress 𝜎max and the internal 

energy 𝜇b0 as 

 𝜇b = 𝜇b0 − 𝜎maxΩ(1 + 𝜀ñom
ss ), (S7) 



where Ω is the volume of 𝑛R functional units. By contrast, the chemical potential of the 

unbound proteins is independent of stress and given in terms of the internal energy 𝜇u as 

 𝜒u =
𝜇u

𝑛R
+ 𝑘𝐵𝑇 ln (

𝑁̂u

𝜋 𝑁̂L

) . (S8) 

For a fixed configuration of the 2D cell (i.e. a fixed strain distribution 𝜀nom(𝑥𝑖, 𝜑)), the 

contribution to the specific Helmholtz free-energy of the cell 𝑓 from the stress-fibre 

cytoskeleton follows as 

 𝑓cyto = 𝜌0 (𝑁̂u𝜒u + ∫ 𝜂̂ 𝑛̂ss𝜒b𝑑𝜑
𝜋/2

−𝜋/2

) , (S9) 

where 𝜌0 ≡ 𝑁0/𝑉R is the number of protein packets per unit reference volume available to 

form functional units in the cell. However, we cannot yet evaluate 𝑓cyto as 𝑁̂u(𝑥𝑖) and 

𝜂̂(𝑥𝑖 , 𝜑) are unknown. These will follow from the chemical equilibrium of the cell as will be 

discussed in Section 2.1. 

The total stress 𝛴𝑖𝑗 within the cell includes contributions from the passive elasticity provided 

mainly by the intermediate filaments of the cytoskeleton attached to the nuclear and plasma 

membranes and the microtubules, as well as the active contractile stresses of the stress-fibres. 

The total Cauchy stress is written in an additive decomposition as 

 𝛴𝑖𝑗 = 𝜎𝑖𝑗 + 𝜎𝑖𝑗
p
 , (S10) 

where 𝜎𝑖𝑗 and 𝜎𝑖𝑗
p

 are the active and passive Cauchy stresses, respectively. In the 2D setting 

with the cell lying in the 𝑥1 − 𝑥2 plane, the active stress is given in terms of the volume 

fraction 𝑣0 of the stress-fibre proteins as 

[
𝜎11 𝜎12

𝜎12 𝜎22
] =

𝑣0𝜎max

2
∫ 𝜂̂[1 + 𝜀nom(𝜑)] [

2cos2𝜑∗ cos 2𝜑∗

cos 2𝜑∗ 2sin2𝜑∗]

𝜋/2

−𝜋/2

𝑑𝜑, (S11) 

where 𝜑∗ is the angle of the stress-fibre measured with respect to 𝑥2, and is related to its 

orientation 𝜑 in the undeformed configuration by the rotation with respect to the undeformed 

configuration. The passive elasticity in the 2D setting is given by a 2D specialization of the 

Ogden (4) hyperelastic model as derived in Shishvan et al. (1). The strain energy density 

function of this 2D Ogden model is  



 ΦC ≡
2𝜇C

𝑚C
2 [(

𝜆I

𝜆II
)

𝑚C
2

+ (
𝜆II

𝜆I
)

𝑚C
2

− 2] +
𝜅C

2
(𝜆I𝜆II − 1)2, (S12) 

for the cytoplasm and 

 ΦN ≡
2𝜇N

𝑚N
2 [(

𝜆I

𝜆II
)

𝑚N
2

+ (
𝜆II

𝜆I
)

𝑚N
2

− 2] +
𝜅N

2
(𝜆I𝜆II − 1)2, (S13) 

for the nucleus where 𝜆I and 𝜆II are the principal stretches, 𝜇C (𝜇N) and 𝜅C (𝜅N) the shear 

modulus and in-plane bulk modulus of cytoplasm (nucleus), respectively, while 𝑚C (𝑚N) is a 

material constant governing the non-linearity of the deviatoric elastic response of cytoplasm 

(nucleus). The cell is assumed to be incompressible, and thus throughout the cell, we set the 

principal stretch in the 𝑥3 −direction 𝜆III = 1/(𝜆I𝜆II). The (passive) Cauchy stress then 

follows as 𝜎𝑖𝑗
p
𝑝𝑗

(𝑘)
= 𝜎𝑘

p
𝑝𝑖

(𝑘)
 in terms of the principal (passive) Cauchy stresses 𝜎𝑘

p
 (≡

𝜆𝑘𝜕ΦC/𝜕𝜆𝑘 for the cytoplasm and ≡ 𝜆𝑘𝜕ΦN/𝜕𝜆𝑘 for the nucleus) and the unit vectors 

𝑝𝑗
(𝑘)

 (𝑘 = I, II) denoting the principal directions. The total specific Helmholtz free-energy of 

the cytoplasm is then 𝑓 = 𝑓cyto + ΦC while that of the nucleus is 𝑓 = ΦN. 

2.1. Equilibrium of the morphological microstate 

Shishvan et al. (1) have shown that equilibrium of a morphological microstate reduces to two 

conditions: (i) mechanical equilibrium with 𝛴𝑖𝑗,𝑗 = 0 throughout the system, and (ii) 

chemical equilibrium such that 𝜒u(𝑥𝑖) = 𝜒b(𝑥𝑖, 𝜑) = constant, i.e. the chemical potentials 

of bound and unbound stress-fibre proteins are equal throughout the cell. The condition 𝜒u =

𝜒b implies that 𝜂̂(𝑥𝑖, 𝜑) is given in terms of 𝑁̂u by 

 𝜂̂(𝑥𝑖, 𝜑) =
𝑁̂u 𝜂̂maxexp [

𝑛̂ss(𝜇u − 𝜇b)
𝑘𝐵𝑇

]

𝜋𝑛̂ss𝜂̂max + 𝑁̂u exp [
𝑛̂ss(𝜇u − 𝜇b)

𝑘𝐵𝑇
]
,  (S14) 

and 𝑁̂u follows from the conservation of stress-fibre proteins throughout the cytoplasm, viz. 

 𝑁̂u +
1

𝑉C
∫ ∫ 𝜂̂ 𝑛̂ss𝑑𝜑

𝜋/2

−𝜋/2

 
𝑉C

𝑑𝑉 = 1. (S15) 

Knowing 𝑁̂u and 𝜂̂(𝑥𝑖, 𝜑), the stress 𝛴𝑖𝑗 can now be evaluated and these stresses within the 

system (i.e. cell and substrate) need to satisfy mechanical equilibrium, i.e. 𝛴𝑖𝑗,𝑗 = 0. In this 

case, the mechanical equilibrium condition is readily satisfied as the stress field 𝛴𝑖𝑗 within the 



cell is equilibrated by a traction field T𝑖 exerted by the substrate on the cell such that 𝑏𝛴𝑖𝑗,𝑗 =

−T𝑖, where 𝑏(𝑥𝑖) is the thickness of the cell in the current configuration. The substrate 

energy 𝐹sub is calculated by applying these tractions to a linear elastic half-space as described 

in Shishvan et al. (1). 

The equilibrium free-energy is then given as 

 𝐺 ≡ 𝜌0𝑉C𝜒u + ∫  ΦC
𝑉C

𝑑𝑉 + ∫  ΦN
𝑉N

𝑑𝑉 + 𝐹sub + 𝐹adh. (S16) 

Here, 𝜒u is given by eq. (S8) with the equilibrium value of 𝑁̂u obtained from eq. (S15). For 

the purposes of further discussion, we label the equilibrium value 𝐹cyto ≡ 𝜌0𝑉C𝜒u as the 

cytoskeletal free-energy of the cell, and 𝐹passive ≡ ∫  ΦC𝑉C
𝑑𝑉 + ∫  ΦN𝑉N

𝑑𝑉 as the passive 

elastic energy of the cell. Moreover, 𝐹cell ≡ 𝐹cyto + 𝐹passive. 

2.2. Numerical methods 

We employ Markov Chain Monte Carlo (MCMC) to construct a Markov chain that is 

representative of the homeostatic ensemble. This involves three steps: (i) a discretization 

scheme to represent morphological microstate (𝑗), (ii) calculation of 𝐺(𝑗) for a given 

morphological microstate (𝑗), and (iii) construction of a Markov chain comprising these 

morphological microstates. Here, we briefly describe the procedure which was implemented 

in MATLAB with readers referred to (1) for further details. Typical Markov chains 

comprised in excess of 2.5 million samples. 

In the general setting of a three-dimensional (3D) cell, a morphological microstate is defined 

by the connection of material points on the cell membrane to the surface of the collagen 

coated substrate. In the 2D context of cells on collagen coated substrates, this reduces to 

specifying the connection of all material points of the cell to locations within the collagen 

coated substrate, i.e. a displacement field 𝑢𝑖
(𝑗)

(𝑋𝑖) is imposed on the cell with 𝑋𝑖 denoting the 

location of material points on the cell in the undeformed configuration, and these are then 

displaced to 𝑥𝑖
(𝑗)

= 𝑋𝑖 + 𝑢𝑖
(𝑗)

 in morphological microstate (𝑗). These material points located 

at 𝑥𝑖
(𝑗)

 are then connected to material points on the collagen coated substrate at the same 

location 𝑥𝑖
(𝑗)

, completing the definition of the morphological microstate in the 2D setting.  

The cell is modelled as a continuum and thus 𝑢𝑖
(𝑗)

 is a continuous field. To calculate the 

density of the morphological microstates, we define 𝑢𝑖
(𝑗)

 via Non-Uniform Rational B-splines 



(NURBS) such that the morphological microstate is now defined by 𝑀 pairs of weights 

[𝑈𝐿
(𝑗)

, 𝑉𝐿
(𝑗)

] (𝐿 = 1,… ,𝑀). In all the numerical results presented here, we employ 𝑀 = 16 

with 4 × 4 weights 𝑈𝐿
(𝑗)

 and 𝑉𝐿
(𝑗)

 governing the displacements in the 𝑥1 and 𝑥2 directions, 

respectively. The NURBS employ fourth order base functions for both the 𝑥1 and 𝑥2 

directions, and the knots vector included two nodes each with multiplicity four, located at the 

extrema of the interval. We emphasise here that this choice of representing the morphological 

microstates imposes restrictions on the morphological microstates that will be considered. 

Therefore, the choice of the discretisation used to represent 𝑢𝑖
(𝑗)

 needs to be chosen so as to 

be able to represent the microstates we wish to sample, e.g. the choice can be based on the 

minimum width of a filopodium one expects for the given cell type. Given 𝑢𝑖
(𝑗)

, we can 

calculate 𝐺(𝑗) using the model described in Section 2.1 with the cell discretised using 

constant strain triangles of size 𝑒 ≈ 𝑅0/10, where 𝑅0 is the radius of the cell in its 

undeformed configuration. 

We construct the Markov chain using the Metropolis (5) algorithm that gives a sequence of 

random samples from the exponential equilibrium distribution (eq. (S5)). We employ the 

Metropolis algorithm in an iterative manner so as to enforce the homeostatic constraint (eq. 

(S3)). The scheme is summarised as follows: 

(i) Assume a value of 𝜁 and use the undeformed cell configuration as the starting 

configuration and label it as morphological microstate 𝑗 = 0 with equilibrium 

free-energy 𝐺(0) calculated as described in Section 2.1.  

(ii) Randomly pick one pair of the 𝑀 weights 𝑈𝐿
(𝑗)

, 𝑉𝐿
(𝑗)

 and perturb them by two 

independent random numbers picked from a uniform distribution over the interval 

[−Δ, Δ]. 

(iii) Compute the new free-energy of this perturbed state and thereby the change in 

free-energy Δ𝐺 = 𝐺(𝑗) − 𝐺(𝑗−1). 

(iv) Use the Metropolis criterion to accept this perturbed state or not, i.e.  

a. if Δ𝐺 ≤ 0, accept the perturbed state; 

b. if Δ𝐺 > 0, compute 𝑃𝑎𝑐𝑐 = exp (−𝜁Δ𝐺) and accept the perturbed state if 

𝑃𝑎𝑐𝑐 > ℛ, where ℛ is a random number drawn from a uniform distribution 

over [0, 1]. 



(v) If the perturbed state is accepted, add it to the list of samples as a new 

morphological microstate, else repeat the configuration prior to step (ii) in the 

sample list and return to step (ii). 

(vi) Keep repeating this procedure until a converged distribution is obtained. Here, we 

typically use the criterion that the average of 𝐺(𝑗) within the generated sample list 

(labelled 〈𝐺(𝑗)〉 changes by less than 1% over 100,000 steps of the Markov chain.  

(vii) If 〈𝐺(𝑗)〉 is within ±2% of the homeostatic value of 𝐺𝑠, we accept this 

distribution, else we modify 𝜁 and repeat from step (i). 

2.3. Material parameters 

All simulations are reported at a reference thermodynamic temperature 𝑇 = 𝑇0, where 𝑇0 =

310 K. Most of the parameters of the model are related to the properties of the proteins that 

constitute stress-fibres. These parameters are thus expected to be independent of cell type. 

Notable exceptions to this are: (i) the stress-fibre protein volume fraction 𝑣0; and (ii) the 

passive elastic properties. Here, we use parameters calibrated for SMCs that give good 

correspondence with the wide range of measurements reported here. The passive elastic 

parameters of the cytoplasm are taken to be 𝜇C = 1.67 kPa, 𝜅C = 35 kPa and 𝑚C = 5, while 

the corresponding values for the nucleus are 𝜇N = 3.33 kPa, 𝜅N = 35 kPa and 𝑚N = 20 (6–

8). The maximum contractile stress 𝜎max = 240 kPa is consistent with a wide range of 

measurements on muscle fibres (9), and the density of stress-fibre proteins was taken as 𝜌0 =

3 × 106 μm−3 with the volume fraction of stress-fibre proteins 𝑣0 = 0.032. Following 

Vigliotti et al. (3), we assume that the steady-state functional unit strain 𝜀ñom
ss = 0.35 with 

𝜇b0 − 𝜇u = 2.3 𝑘𝑇0 and Ω = 10−7.1 μm3. The maximum angular concentration of stress-

fibre proteins is set to 𝜂̂max = 1. The cell in its undeformed state is a circle of radius 𝑅0 and 

thickness 𝑏0 = 0.05𝑅0, with a circular nucleus of radius 𝑅N = 10𝑏0 whose centre coincides 

with that of the cell. Results are presented in terms of normalised cell area 𝐴̂(𝑗)  ≡ 𝐴(𝑗)/𝐴0, 

where 𝐴(𝑗) is the area of a morphological microstate (𝑗) while 𝐴0 = 𝜋𝑅0
2 is the area of the 

undeformed cell. Thus, we do not explicitly need to specify 𝑅0.  

Results are presented for adhesion to incompressible linear elastic substrates with Young’s 

modulus 𝐸sub = 8 kPa, 32 kPa and a rigid substrate with 𝐸sub → ∞ coated with surface 

densities of collagen ranging between 6 ng cm−2 to 665 ng cm−2. Using a molecular weight 

of collagen 𝑀col of 200 kDa (10) (i.e. 200 kg mol−1) with 1 ligand per molecule, a surface 

collagen density 𝜌col of  1 g cm−2 corresponds to 3.011 𝑥109 ligands/cm2. A range of 



ligand densities from 𝑁H = 175 μm−2 to 𝑁H = 20 × 103 μm−2 are analyzed, corresponding 

to the range of 𝜌𝑐𝑜𝑙  investigated in the experiments of Engler et al. (11). The other 

parameters of the focal adhesion model are based on commonly accepted ranges; see for 

example Deshpande et al. (12). Specifically, we assumed a uniform surface density of  𝐶0 =

5 × 103 μm−2 of integrin molecules with surface density of integrins sites 𝐶r =

20 × 103 μm−2. The complex stiffness 𝜅s = 𝜅p = 0.3 nN μm−1 while the maximum 

complex force Ƒmax = 0.01 nN (13).  

2.4. Definitions of normalised quantities and observables 

Following Shishvan et al. (1), the free-energy 𝐺(𝑗) can be decomposed as 𝐺(𝑗) = Υ(𝑗)+Υ0, 

where Υ0 = 𝜌0𝑉0[𝜇u/𝑛
R − 𝑘𝑇 ln(𝜋 𝑁̂L)] is independent of the morphological microstate. It 

is thus natural to subtract out Υ0 and define a normalised free-energy as  

𝐺̂(𝑗) ≡
Υ(𝑗)

|𝐺S − Υ0|
=

𝐺(𝑗) − Υ0

|𝐺S − Υ0|
  , (S17) 

where 𝐺S is the equilibrium free-energy of a free-standing cell (i.e. a cell in suspension with 

traction-free surfaces). Then, the distribution given by eq. (S6) can be re-written as 

𝑃eq
(𝑗)

=
1

𝑍̂
exp[−𝜁𝐺̂(𝑗)] (S18) 

with 𝑍̂ ≡ ∑ exp[−𝜁𝐺̂(𝑗)]𝑗  and 𝜁 ≡ 𝜁|𝐺𝑆 − Υ0|. It then immediately follows that the 

distributions of states are not influenced by the values of 𝑛R, 𝑁̂L and 𝑉0 and these parameters 

need not be specified so long as energies are quoted in terms of the normalised energies 𝐺̂(𝑗).  

Analogously, we define the normalised elastic, cytoskeletal, adhesion, and substrate free-

energies of the spread microstate (𝑗) as 

𝐹̂passive
(𝑗)

≡
𝐹passive

(𝑗)

|𝐺S − Υ0|
 , 𝐹̂cyto

(𝑗)
≡  

𝐹cyto
(𝑗)

− Υ0

|𝐺S − Υ0|
 (S19) 

and 

𝐹̂sub
(𝑗)

≡
𝐹sub

(𝑗)

|𝐺S|
, 𝐹̂adh

(𝑗)
≡

𝐹adh
(𝑗)

|𝐺S − Υ0|
 , (S20) 

respectively.  

For the SMCs with volume 𝑉0 = 𝜋𝑅0
2𝑏0 modelled here, the equilibrium free-standing 

microstate is a spatially uniform circular cell with (𝐺S − Υ0)/(𝑉0𝑘𝑇0) ≈ −4.53 𝑥 106  μm−3. 

The free-standing cell is a standard boundary value problem with traction-free boundary 



conditions. An iterative FE scheme as described in Shishvan et al. (1) is used to solve this 

boundary value problem and calculate 𝐺S. This solution predicts that the free-standing is 

circular cell with radius 0.92 𝑅0. 
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ADDITIONAL FIGURES 

 

Figure SI-1: Additional configurations of bound stress-fibre protein concentrations 𝑵̂𝐛 

(green) with dominant alignment, and focal adhesion distributions 𝑪̂ (red). The 

substrate is rigid, and nucleus is highlighted in blue. The configurations are all from the 

median of the free-energy 𝑮̂ distribution for cells spread on a rigid substrate with a 

surface collagen density 𝝆𝐜𝐨𝐥  of 250 𝐧𝐠/𝐜𝐦𝟐. Scale bar indicates undeformed cell radius 

𝑹𝟎. 



 

Figure SI-2: Additional configurations of bound stress-fibre protein concentrations 𝑵̂𝐛 

(green), and focal adhesion distributions 𝑪̂ (red). The substrate is rigid, and nucleus is 

highlighted in blue. The configurations are all from the median of the free-energy 𝑮̂ 

distribution for cells spread on a rigid substrate with a surface collagen density 𝝆𝐜𝐨𝐥 of 6 

𝐧𝐠/𝐜𝐦𝟐. Scale bar indicates undeformed cell radius 𝑹𝟎. 



 

Figure SI-3: Probability density functions for cells spread on substrates of different 

stiffness at a collagen density of 33 𝒏𝒈 𝒄𝒎−𝟐, of (a) Gibbs free-energy, (b) adhesion free-

energy, (c) cytoskeletal free-energy, and (d) elastic free-energy (𝑭̂𝒆𝒍𝒂𝒔 = 𝑭̂𝒑𝒂𝒔𝒔𝒊𝒗𝒆 +

𝑭̂𝒔𝒖𝒃).  



 

Figure SI-4: Predictions of the normalised homeostatic temperature 𝟏/𝜻̂. 

 

 

 


