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ABSTRACT Biological spread cells exist in a perpetually fluctuating state and therefore cannot be described in terms of a unique
deterministic system. For modeling approaches to provide novel insight and uncover new mechanisms that drive cell behavior, a
framework is required that progresses from traditional deterministic methods (whereby simulation of an experiment predicts a single
outcome). In thisstudy,we implement anew, toour knowledge,modelingapproach for theanalysisof cell spreadingon ligand-coated
substrates, extending the framework for nonequilibrium thermodynamics of cells developed byShishvan et al. to include active focal
adhesion assembly. We demonstrate that the model correctly predicts the coupled influence of surface collagen density and sub-
strate stiffness on cell spreading, as reported experimentally by Engler et al. Low surface collagen densities are shown to result in
a high probability that cells will be restricted to low spread areas. Furthermore, elastic free energy induced by substrate deformation
lowers the probability of observing a highly spread cell, and, consequentially, lower cell tractions affect the assembly of focal adhe-
sions. Experimentally measurable observables such as cell spread area and aspect ratio can be directly postprocessed from the
computed homeostatic ensemble of (several million) spread states. This allows for the prediction of mean and SDs of such experi-
mental observables.Thisclassof cellmechanicsmodelingpresentsasignificant advanceonconventional deterministic approaches.
INTRODUCTION
There is no unique outcome for tissue development in nature.
For example, examination of arterial tissue across several sam-
ples reveals nonhomogenous structures with nonuniform
collagen fiber alignment, tissue thickness, and smooth muscle
cell (SMC) morphology (1–3). The same is true in vitro, in
which cells of the same phenotype exhibit a diverse range of
spread shapes, area, stress-fiber (SF) alignments, and focal
adhesion (FA) distributions. However, over large populations,
the statistics of observables is highly reproducible. Several
experimental studies have demonstrated that the microenvi-
ronment has a significant impact on cell behavior. Jacot et al.
(4) show that sarcomere development and alignment in cardi-
omyocytes are dependent on substrate stiffness. A study byAr-
nold et al. (5) reveals that FA and SF formation are limited by
ligand spacing on the substrate. Engler et al. (3) show that both
the mean and standard error of SMC spread area depend on
substrate rigidity and ligand density; with decreasing surface
collagen density and decreasing substrate stiffness, the stan-
dard error reported for the experiment reduces.
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It is therefore evident that to uncover the biomechanisms
underlying such observations, a statistical mechanics
approach to cell modeling is required. Typically, previous
models have assumed the spread state as the reference config-
uration and simulate a single deterministic outcome (6–12).
McEvoy et al. (13) recently implemented a framework
whereby an initially unadhered cell deforms to a range of
possible spread states, and the system free energy is
computed for each configuration. It is demonstrated that
cell spreading entails a competition between the increasing
elastic free energy because of the stretching of passive cell
components and the decreasing cytoskeletal free energy as
contractile proteins assemble to form SFs. Such a competi-
tion allows for the identification of a low free-energy state,
and it is shown that the predicted cell areas and SF alignments
in these configurations are similar to reported experimental
measurements (14). However, in the study of McEvoy
et al. (13), a single low-energy spread state is identified.
This deterministic approach neglects the fact that cells
display a fluctuating response to their microenvironment in
terms of observables such as SF alignment and spread area.

In this study, we implement a statistical mechanics frame-
work for the homeostatic ensemble of spread cells, following
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the approach of Shishvan et al. (15). This methodology
allows for the simulation of a large collection of spread
microstates the cell-substrate system assumes while main-
taining its homeostatic state. The framework incorporates
mathematical models to describe SF formation and cell-
substrate deformation. Here, we expand the model for the
calculation of Gibbs free energy to include the free energy
associatedwith the traction-dependent FA assembly. Simula-
tions accurately predict the dependence of cell area and shape
on surface collagen density and substrate stiffness, as re-
ported in the experimental study of Engler et al. (3).
METHODS

We aim to analyze the response of cells adhered to collagen-coated elastic

substrates. This experimental system is responding to both mechanical and

chemical cues from its environment, viz the stiffness of the substrate and the

extracellular proteins (collagen) through which the cells adhere to the sub-

strates. The response of this complex system is recorded through a range of

observables, all of which exhibit large variations but with trends clearly

emerging when the statistics of these observables are analyzed. This moti-

vates our choice of a modeling framework, called homeostatic statistical

mechanics (15), in which, just as in the experimental system, observables

fluctuate, and trends (and understanding) emerge once these observables

are viewed statistically. This framework has previously been shown to

successfully capture a range of observations for SMCs seeded on elastic

substrates in which perfect adhesion was assumed and the role of the extra-

cellular matrix neglected. Here, we extend the framework to include an

adhesion model and thus will first give a brief overview of the modeling

framework (details in Supporting Materials and Methods, Section S1)

and then focus on the adhesion model.
Overview of the homeostatic mechanics
framework

The homeostatic mechanics framework recognizes that the cell is an open

system that exchanges nutrients with the surrounding nutrient bath. These

high-energy nutrient exchanges fuel fluctuations in cell responses associ-

ated with various intracellular biochemical processes (such nonthermal

nutrient-fueled fluctuations are observed to be very large and occur over

very long timescales, compared to conventional thermal fluctuations).

However, these biochemical processes attempt to maintain the cell in a ho-

meostatic state (i.e., the cell actively maintains its various molecular species

at a specific average number over these fluctuations that is independent of

the environment). This translates to the constraint on the average Gibbs free

energy (16) of the cell. Employing the ansatz that biochemical processes

such as actin polymerization and treadmilling provide the mechanisms to

maximize the morphological entropy of the cell subject to the constraint

that the cell maintains a homeostatic state, Shishvan et al. (15) obtained

the distribution of states that the cell assumes in terms of the Gibbs free en-

ergy GðjÞ of the morphological state ðjÞ of the system as follows:

PðjÞ
eq ¼ 1

Z
exp

��zGðjÞ�: (1)

Zh
P
j
expð�zGðjÞÞ is the partition function of the morphological
microstates, and the distribution parameter z follows from the following ho-

meostatic constraint:

1

Z

X
j

GðjÞexp
��zGðjÞ� ¼ GS ; (2)
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where GS is equal to the equilibrium Gibbs free energy of an isolated cell in

suspension (free-standing cell), that is, the homeostatic processes maintain

the average biochemical state of the system equal to that of a cell in

suspension. Thus, the distribution (Eq. 1) is characterized by a homeostatic

temperature 1=z that is conjugated to the morphological entropy of the cell.

We employ Markov Chain Monte Carlo to construct a Markov chain that is

representative of the homeostatic ensemble. This involves three steps: 1) a

discretization scheme to represent morphological microstate ðjÞ, 2) calcula-
tion of GðjÞ for a given morphological microstate ðjÞ, and 3) construction of
a Markov chain comprising these morphological microstates. Typical

Markov chains comprised in excess of 2.5 million spread states (a detailed

overview of the procedure is provided in Supporting Materials and

Methods, Section S2.2).
Free energy GðjÞ of a morphological state

Much like conventional statistical mechanics frameworks that require a

model for the energy of molecular systems, the homeostatic statistical

mechanics framework requires a model for the Gibbs free energy GðjÞ of
a morphological state ðjÞ of the system. Here, we employ a relatively simple

model for the Gibbs free energy wherein the cell consists of a passive elastic

nucleus within a cytoplasm that is modeled as comprising an active SF

cytoskeleton and elements such as the cell membrane, intermediate fila-

ments, and microtubules that are all lumped into a single passive-elastic

contribution.

Details of the model, including the parameters used to characterize the

SMCs, are given in Supporting Materials and Methods, Section S2. Here,

we briefly describe the salient features of the model for SMCs on elastic

substrates. The SMCs are modeled as two-dimensional bodies in the

x1 � x2 plane lying on the surface of an elastic substrate such that the

out-of-plane Cauchy stress
P

33 ¼ 0. The substrates are modeled as

linear elastic half spaces, whereas the cells are modeled using the

approach of Vigliotti et al. (17) as modified by Shishvan et al. (15).

The Vigliotti et al. (17) model assumes only two elements within the

cell: 1) a passive elastic contribution from elements such as the cell

membrane, intermediate filaments, and microtubules and 2) contractile

actomyosin SFs that are modeled explicitly. The cell in its undeformed

state is a circle of radius R0 and, for a given morphological microstate

ðjÞ, the strain distribution within the cell is specified. This directly gives

the elastic strain energy of the cell bFpassive via a two-dimensional Ogden-

type hyperelastic model for both the nucleus and cytoplasm. The passive

hyperelastic behavior of the cytoplasm and nucleus has been character-

ized for several cell types using experimental techniques in which SFs

are disrupted using Cytochalasin D (18–20). The SF cytoskeleton within

the cytoplasm is modeled as a distribution of SFs such that at each loca-

tion xi within the cell bhð4Þ parameterizes the angular concentration of

SFs over all angles 4, whereas bnssð4Þ denotes the number of functional

units within each SF. Thus, at any xi, there is a total concentration bNb

of bound SF proteins obtained by integrating bhbnss over all orientations
4, and these bound proteins are in chemical equilibrium with the un-

bound SF proteins. The unbound proteins are free to diffuse within the

cell, and thus, at equilibrium of a morphological microstate, the concen-

tration bNu of these unbound SF proteins is spatially uniform. This chem-

ical equilibrium condition along with the conservation of SF proteins

within the cell provides the spatial and angular distributions of SFs

from which the free energy of the cytoskeleton bFcyto is evaluated. The

total normalized free energy of the cell’s morphological microstate ðjÞ
then follows as bGðjÞ

hbFðjÞ
passive þ bFðjÞ

cyto þ bFðjÞ
sub, where

bFðjÞ
sub is the elastic

energy of the substrate ðbGðjÞ
is the normalized value of GðjÞ; see Support-

ing Materials and Methods (Section S2.4) for details of the

normalizations).

In addition to the contributions to bGðjÞ
from the passive elasticity and

cytoskeleton of the cell, here we also include the contribution from the

FAs between the cell and the collagen extracellular matrix laid on the elastic
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substrates on which the SMCs are seeded. Shishvan et al. (15) implicitly

assumed an unlimited supply of adhesion proteins as well as extracellular

proteins to form adhesion complexes and thereby neglected the contribution

of adhesion to bGðjÞ
. Here, we extend the approach of Shishvan et al. (15) for

the case of a finite quantity of both FA proteins and extracellular collagen

and thus explicitly include an adhesion contribution to bGðjÞ
; that is, we writebGðjÞ

as follows:

bGðjÞ
hbFðjÞ

passive þ bFðjÞ
cyto þ bFðjÞ

sub þ bFðjÞ
adh: (3)

We now proceed to make explicit this adhesion model.
Adhesion complexes between the cell and the
extracellular collagen

The FAmodel proposed here is a modification to the model of McEvoy et al.

(13) in which adhesion is assumed to be via integrins that exist in a single

state. These integrins form complexes by binding to ligands that have a den-

sity NH per unit area on the surface of the elastic substrate. For a given

morphological microstate ðjÞ, the strain state of the cell is specified, and

this implies that the tractions TiðxiÞ that the cells exert on the substrate are

also fixed from the cell model; see Supporting Materials and Methods, Sec-

tion S2.1 (for the sake of brevity, here we have dropped the superscript ðjÞ to
indicate that these are tractions for a given morphological microstate ðjÞÞ.
These tractions are transmitted to the substrate through the FA complexes,

and here we explain the adhesion model with the tractions TiðxiÞ specified.
When in local equilibrium at a location xi on the surface of the cell, the

integrins with a local concentration CIðxiÞ have a chemical potential at tem-

perature T in terms of the Boltzmann constant kB:

cIðxiÞ ¼ mIðxiÞ þ kBT ln

�
CðxiÞ

1� CðxiÞ

�
; (4)

where mI is their enthalpy while CðxiÞhCIðxiÞ=Cr in terms of the number of
integrin sites per unit area Cr on the cell membrane. The enthalpy of the in-

tegrins follows from recalling that each integrin molecule transmits a force

FðxiÞ related to the traction TðxiÞh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1ðxiÞ2 þ T2ðxiÞ2

q
on the cell surface

via TðxiÞ ¼ FðxiÞNH. Then,

mIðxiÞ ¼ FðDðxiÞÞ � FðxiÞDðxiÞ; (5)

where D is the stretch of the FA complex, and F the internal energy of the

complex subjected to a stretch D. Now, assuming linear behavior of the
complex with a stiffness ks such that FðxiÞhks DðxiÞ, Eq. 5 reduces to

mIðxi Þ ¼ � FðxiÞ2=2ks , and the chemical potential follows as such:

cIðxiÞ ¼ kBT ln

�
CðxiÞ

1� CðxiÞ

�
� FðxiÞ2

2ks
: (6)

The integrins are mobile over the surface membrane, and at equilibrium,

their chemical potentials are spatially uniform such that cIðxiÞ ¼ cC. The

equilibrium concentrations CeqðxiÞ then follow in terms of cC as follows:

�
CeqðxiÞ

1� CeqðxiÞ

�
¼ expðcC þ

FðxiÞ2
2ks

kBT Þ: (7)

However, cC is as yet unknown, and the conservation of integrins provides

the additional constraint to determine c , viz given a spatially uniform
C
surface density C0 of integrins for a cell in suspension, the conservation

statement reads as follows:

A0C0 ¼ Cr

Z
A

CeqðxiÞdA; (8)

where A0 is the surface area of the cell in suspension, and A is its area in the

current configuration. The simultaneous solution of Eqs. 7 and 8 gives cC,

and the adhesion free energy of the cell is then given as Fadh ¼ A0C0cC.

The above analysis assumes the adhesion complexes can sustain any

required force FðxiÞ via the assumed linearity of the complex response.

However, it has been demonstrated that complexes cannot support a force

greater than a critical value Fmax (21–23). Direct enforcement of the

condition that no complex force exceeds Fmax at the cell-substrate interface

would require an iterative adjustment of spread state (as implemented for

simplified microstates by McEvoy et al. (13)) and is therefore excessively

computationally expensive in the context of the Monte Carlo simulations

required for sampling the homeostatic ensemble. Here, we use the alterna-

tive approach of a penalty scheme to ensure that a very small number of

spread states contain complexes with forces F >Fmax. In summary, we

define a penalty force as follows:

F p ¼
Z
A

DF pðxiÞ dA; (9)

where

DF pðxiÞ¼
�FðxiÞ � Fmax FðxiÞ>Fmax

0 otherwise:
(10)

A penalty energy is then defined as cp ¼ ðF pÞ2=ð2kpÞ, where the parameter

kp has the units of stiffness and sets themagnitude of the penalty. The total FA

free energy, including the penalty contribution, is then defined as follows:

Fadh ¼ A0C0

�
cC þ cp

�
; (11)

with the normalized energy bFadh following from the definitions detailed in

Supporting Materials and Methods (Section S2.4) along with the model pa-

rameters. To compare model predictions with the experimental results of

Engler et al. (3), the number of ligands per unit area, NH, can be expressed

as surface collagen density rcol through the following expression:

rcol ¼ NHMcol=L ; (12)

whereMcol is the molar mass of collagen, and L is Avogadro’s constant. We

assume a uniform surface collagen distribution and substrate stiffness.
RESULTS AND DISCUSSION

Spread dependence of cells on surface collagen
density

The influence of surface collagen density rcol on cell
spreading is shown in Fig. 1. Cells are spread on rigid sub-
strates coated with three different values of rcol (6, 33, and
250 ng cm�2Þ. A sample of cell spread states, with the same
free energy for a given rcol, are shown in Fig. 1 a, including
SF distributions (green), FA distributions (red), and nuclei
(blue). In the case of a low rcol (i.e., 6 ng cm�2), cells are
not highly spread, and they maintain regular rounded
Biophysical Journal 115, 2451–2460, December 18, 2018 2453



FIGURE 1 (a) Contours of bound SF protein

concentrations bNb (green) with dominant alignment,

FA distributions bC (red), and overlays in commonly

observed cell shapes at a given surface collagen den-

sity rcol. The substrate is rigid, and the nucleus is

highlighted in blue. The cell spread states for a given

rcol have the same free energy. The scale bar repre-

sents the undeformed cell radius R0. Probability den-

sity functions (pdfs) for cells spread on a rigid

substrate for three collagen densities of (b) cell

spread area ðbA ¼ A=pR2
0Þ and (c) cell AR are shown.

To see this figure in color, go online.
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morphologies. A low-concentration smeared actin cytoskel-
eton is observed throughout the cell, with no regions of
highly aligned SFs. For a higher rcol of 33 ng cm�2, cells
become more highly spread. Additionally, the spread shapes
become quite irregular in contrast to the rounded shapes
observed on a lower rcol. Regions of aligned SFs are
observed, and FAs cluster toward the cell periphery. In the
case of the highest rcol of 250 ng cm�2, a further increase
in spread area is observed, and the spread shape becomes
highly irregular, with cells exhibiting elongated protrusions.
High concentrations of aligned SFs are observed, and FAs
are highly localized at the cell periphery and cell nucleus.

Probability density functions (pdfs) for cell spread area
(Fig. 1 b) and for cell aspect ratio (AR) of a best-fit ellipse
(Fig. 1 c) are constructed from the full population of spread
states for each surface collagen density. With increasing
rcol, the mean cell spread area increases, and the variance in
spread area increases (i.e., in Fig. 1 a, as rcol increases, the
pdf moves to the right and becomes less peaked). A similar
trend is observed for cell AR (Fig. 1 c), for which the mean
is closer to 1, and the variance is very low (the pdf is more
peaked) for the lowest rcol. In summary, the pdfs presented
in Fig. 1, b and c show that a population of cells on a lower
rcol will have a lower mean spread area and a lower variance
of spread area in addition to being rounded (AR close to 1)
with a low variance of spread shape. As rcol increases, a
higher mean spread area is obtained for a population of cells,
with a higher variance of spread area and spread shape.
Additional spread shapes are presented in Figs. S1 and S2.
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Influence of substrate stiffness on cell spreading

The influence of substrate stiffness Esub on cell spreading is
shown in Fig. 2. Cells are spread on substrates of stiffness
8 and 32 kPa, in addition to a rigid substrate. All substrates
have a rcol of 33 ng cm�2. A sample of cell spread states
shown in Fig. 2 a suggests that cell spread area increases
with Esub. Cells on the compliant (8 kPa) substrate exhibit
a low-concentration smeared actin cytoskeleton, compared
to the highly aligned SFs on the stiff and rigid substrate.
The irregularity of the spread shape increases with Esub,
with longest protrusions occurring on the rigid substrate.

Pdfs for cell spread area (Fig. 2 b) and AR (Fig. 2 c) are
constructed from the full population of spread states for
each value of Esub. Clearly, both the mean spread area and
the variance in spread area increase with Esub (i.e., in
Fig. 2 b, the pdf moves to the right and becomes less peaked
as Esub is increased). The effect of Esub on cell shape is less
pronounced for the value of rcol considered here, with only a
minor increase in the mean and variance of cell AR with
increasing stiffness (Fig. 2 c).
Coupled dependence of collagen density and
substrate stiffness

The coupled interplay between the influence of rcol and Esub

on cell spreading is next considered. Contour plots are con-
structed from mean spread areas (Fig. 3 a) and mean ARs
(Fig. 3 b). Representative spread states are superimposed



FIGURE 2 (a) Contours of bound SF protein con-

centrations bNb (green) with dominant alignment, FA

distributions bC (red), and overlays in commonly

observed cell shapes at a given substrate stiffness

Esub. The surface collagen density rcol is fixed at

33 ng cm�2, and the nucleus is highlighted in blue.

The cell spread states for a given Esub have the

same free energy. The scale bar represents unde-

formed cell radius R0. Probability density functions

(pdfs) for cells spread on substrates of different stiff-

ness at a surface collagen density rcol of 33 ng cm�2,

of (b) cell spread area ðbA ¼ A=pR2
0Þ, and (c) cell AR

are shown. To see this figure in color, go online.
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for illustrative purposes. As shown in Fig. 3 a, a very low
rcol results in a very weak dependence of mean spread
area on Esub. However, for moderate and high rcol, the
mean spread area is highly dependent on Esub. As shown
in Fig. 3 b, the cell AR exhibits a very weak dependence
on Esub (the contours in Fig. 4 b are almost uniform in the
vertical direction), while exhibiting a very strong depen-
dence on rcol.

Both the mean and SD of cell spread area is shown in
Fig. 3 c. A number of features should be noted: 1) as rcol
is increased, both the mean and SD increase up to a peak
value ( this trend is observed for all values of Esub); 2) if
rcol is increased beyond the peak value, a slight reduction
in mean spread area (and its SD) is observed; again, this
trend is observed for all values of Esub; 3) the rcol at which
the mean spread area reaches a peak value increases with
increasing Esub; and 4) for a given rcol, both the mean and
SD increase with increasing Esub. Fig. 3 d shows that cell
AR is highly dependent on rcol, with both the mean and
SD increasing with increasing rcol. It is interesting to note
that even though the cell mean spread area decreases
when the rcol is increased beyond the critical value, the
mean AR continues to increase. However, the mean AR
and its SD exhibit a weak dependence on Esub.
Experimental support for predicted cell behavior

Remarkably, all the features described by Fig. 3 are directly
supported by the experimental study of Engler et al. (3) in
which the response of SMCs to Esub and rcol was investi-
gated. At a low rcol on all substrates, SMCs that were detect-
ably spread were found to be rounded with a low spread
area. As the rcol was increased, the spread area (mean and
SD) was observed to increase up to a peak value. After
this peak, any increase to the density of rcol resulted in a
reduction of mean spread area. This behavior is further
supported by the experimental study of Gaudet et al. (24).
Engler et al. (3) noted that the rcol at which the peak
mean spread area occurs is dependent on Esub, that is, it in-
creases with increasing Esub, as predicted by our models).
They also reported that an increase in Esub results in a higher
mean cell spread area for a fixed rcol.

Although the AR is not directly measured in the experi-
mental work of Engler et al. (3), with an increase in cell
area (because of Esub or rcol), it was reported that cell shapes
became less rounded and more irregular when cell spread
area increases as a result of increased Esub and/or rcol.
Such a reduction in cell roundness with increasing Esub

has also been observed in the experimental study of Ren
et al. (25) for skeletal muscle cells. Additionally, Prager-
Khoutorsky et al. (26) reported that cells readily elongate
(i.e., high AR) when plated on rigid substrates, with the
behavior significantly less pronounced with decreasing
Esub. Similar to our predictions for SF distributions, Engler
et al. (3) report that highly spread cells display a well-or-
dered SF network. Such ordered fibers were far less prob-
able on rounded cells on low rcol and on softer substrates.
Similar observations are also reported in the experimental
study by Deroanne et al. (27) in which a significant reduc-
tion in SF and FAs formation was observed in endothelial
Biophysical Journal 115, 2451–2460, December 18, 2018 2455



FIGURE 3 Contour plots for predicted mean

spread area (a) and mean cell AR (b) in the

rcol � Esub space. (c) The predicted cell area

(mean5SD) and (d) cell AR (mean5SD) as a func-

tion of surface collagen density rcol for cells spread

on substrates of different stiffness (red: rigid;

yellow: 32 kPa; green: 8 kPa). Sample cell spread

states are shown for a given substrate in (a and b).

To see this figure in color, go online.

McEvoy et al.
cells on soft gels compared to stiff substrates. Pelham and
Wang (28) also showed such dependence of adhesion forma-
tion on substrate stiffness. The predicted trends of SF and
FA organization in Figs. 1 and 2 of the current study are
strongly supported by the aforementioned experimental
studies. Additional samples of computed cell spread states
are shown in Figs. S1 and S2.
Thermodynamically motivated insights and
explanations for predicted cell behavior

We next provide a thermodynamically motivated explana-
tion for the computed results in Figs. 1 and 3 and, by
extension, for the experimental observations of Engler
et al. (3). In Fig. 4 a, we plot the pdf of Gibbs free energy
for the three values of rcol on a rigid substrate. Recall that
the system is subject to the homeostatic constraint such
that the mean Gibbs free energy of all states is equal to
the cellular homeostatic free energy GS, which can be iden-
tified from the unique state of a freestanding cell. Therefore,
the mean free energy is similar for all values of rcol
(Fig. 4 a). The pdf for adhesion free energy (Fig. 4 b)
is highly peaked and negative for a high rcol of
250 ng cm�2. This indicates a high probability that adhesion
complex forces are close to Fmax so that a low adhesion
energy is obtained. On the other hand, there is a low proba-
bility that adhesion complex forces exceed Fmax and incur a
positive adhesion energy penalty.

In the case of a high rcol of 250 ng cm�2, the cell-sub-
strate tractions for a wide range of highly spread states can
be supported without incurring an adhesion energy pen-
2456 Biophysical Journal 115, 2451–2460, December 18, 2018
alty (i.e., the adhesion free energy remains low). As a
result, the entropy of spread states is very high for high
values of rcol. Correspondingly, a high variance in the
(negative) cytoskeletal and (positive) elastic free energies
(Fig. 4, c and d) occurs. In effect, cell spreading on a rigid
substrate coated with a high rcol can be viewed as a
competition between positive elastic free energy due to
stretching of passive cell components and negative free
energy due to the assembly of contractile SFs, with
an additional negative free-energy contribution from the
adhesion complexes.

When rcol is reduced, higher forces occur in ligand
complexes, resulting in a higher probability that Fmax is ex-
ceeded and an adhesion energy penalty is incurred. There-
fore, there is a low probability that highly spread states
will occur, and the entropy of spread states decreases. In
other words, a highly spread cell on a low rcol will result
in adhesion complex forces that exceed the maximal value,
and the imposition of an energetic penalty results in a low
probability that such highly spread states will occur. This
explains the high probability of rounded cells with low
spread areas on a rcol of 6 ng cm�2, as reported in Figs. 1
and 3. Correspondingly, as shown in Fig. 4, c and d,
the cytoskeletal and elastic free-energy pdfs are highly
peaked with mean values close to zero (as expected for
the observed low spread areas and low variance in spread
shapes (AR)).

Recall from Fig. 3 that for all values of Esub, cell spread
area increases with increasing rcol up to a peak value. In
Fig. 5, we report the mean and SD of the free-energy den-
sities across all rcol and Esub (the SD is indicative of the



FIGURE 4 Probability density functions (pdfs) for

cells spread on a rigid substrate for three surface

collagen densities rcol of (a) Gibbs free energy, (b)

adhesion free energy, (c) cytoskeletal free energy,

and (d) elastic free energy ðbFelas ¼ bFpassive þbFsubÞ. To see this figure in color, go online.
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variance observed in the corresponding pdfs). The peak
spread areas shown in Fig. 3 b coincide with the
lowest mean adhesion free energy for each substrate
(Fig. 5, a–c). The rcol associated with such a peak spread
area on each substrate is hereafter referred to as ‘‘optimal.’’
At this optimal rcol, there is a high probability that the forces
in adhesion complexes will result in a low adhesion free
energy. For suboptimal rcol, highly spread states will result
in an increased probability of adhesion complex forces
higher than Fmax, resulting in an energetic penalty, as ex-
plained in Fig. 4 above. On the other hand, when the rcol
is increased beyond the ‘‘optimal’’ value, the cell must
spread to a higher area to generate sufficient tractions to
achieve sufficiently high adhesion complex forces (i.e.,
FðxiÞyFmax) and a low adhesion free energy. However,
spreading to such a high area results in an increased elastic
strain energy. There is a low probability that the adhesion
(Fig. 5, a–c) and cytoskeletal (Fig. 5, d–f) free energy will
overcome this ‘‘elastic penalty’’ and achieve the homeo-
static state (i.e., bGS). Therefore, on ‘‘postoptimal’’ rcol, there
is a low probability that the cell area will increase beyond
the peak spread area. In fact, a postoptimal rcol leads to a
reduction in mean spread area, as shown in Fig. 3 c (this
has been also observed experimentally by Engler et al. (3)
and Gaudet et al. (24), discussed in Experimental Support
for Predicted Cell Behavior above). This occurs because
cellular tractions are supported by a higher number of
complexes so that individual bond forces are reduced.
Therefore, the cell adhesion free energy moves toward
zero (Fig. 5, a–c), providing a weaker competition to the
elastic strain energy (Fig. 5, g–i) so that there is a lower
probability that the cell will achieve the peak spread area.
Although the mean spread area decreases for postoptimal
rcol, the mean elastic free energy increases on rigid and stiff
substrates (Fig. 5, g and h). This is because of a high vari-
ability in spread shape on stiffer substrates with high rcol
(see plots of cell AR in Fig. 3 d).

A reduction in Esub lowers the probability of the cell
achieving a high spread area, with rounded low-spread mor-
phologies more frequently observed (Fig. 3 c). On a rigid
substrate, there is no contribution from the elastic strain en-
ergy of the substrate (Fig. 5 j) because it is not deformed by
the contractile activity of the cell. However, as the Esub is
reduced (Fig. 5, k and l), it will be deformed by the cell.
The associated substrate free energy causes the total system
free energy to become increasingly positive. Thus, to
achieve a homeostatic state, there is a high probability
that the cell area will be lower on more compliant substrates.
The highly coupled balance between the contributions to the
system free energy causes the peak cell area to occur at a
lower rcol for a lower Esub. As mentioned above, a low
Esub results in lower spread areas, which leads to lower
cell-substrate tractions. Therefore, a lower rcol is required
for an increased probability of optimal forces in adhesion
complexes ðFðxiÞyFmaxÞ and a correspondingly low adhe-
sion free energy. Peak spreading occurs on lower rcol for
lower Esub, as shown in Fig. 3 c (and as reported in the ex-
periments of Engler et al. (3)).
CONCLUSIONS

The equilibrium statistical mechanics framework developed
by Shishvan et al. (15) allows for the simulation of the
homeostatic ensemble for cells on an elastic substrate
Biophysical Journal 115, 2451–2460, December 18, 2018 2457



FIGURE 5 Predicted adhesion (a–c), cytoskeletal (d–f), elastic (g–i), and substrate (j–l) free energy (mean5SD) as a function of surface collagen density

rcol for cells spread on rigid, stiff, and compliant substrates. To see this figure in color, go online.

McEvoy et al.
in a nutrient bath. Cells assume a dynamic homeostatic
equilibrium by means of a free-energy competition between
the increasing elastic free energy due to stretching of passive
cell components (and substrate deformation) and the
decreasing cytoskeletal free energy as contractile proteins
assemble to form SFs. In the current study, the framework
is expanded to include the free energy associated with the
formation of FAs between the cell and a collagen-coated
substrate.

The expanded framework allows for the simulation of
the coupled influence of surface collagen density rcol and
substrate stiffness Esub on cell spreading, as reported in
the experimental study of Engler et al. (3). The key experi-
mental observations predicted by our modeling framework
are summarized as follows:
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1) With increasing substrate rcol, cell spread area (mean
and SD) increases up to a peak value.

2) A further increase in rcol beyond this peak results in a
reduction of the cell spread area (mean and SD).

3) The rcol at which the mean cell area reaches a peak de-
creases with decreasing Esub.

4) At a fixed rcol, the mean and SD of the spread area in-
crease with increasing Esub.

The rcol directly influences the forces in adhesion com-
plexes and, consequently, the adhesion free energy. This,
in turn, influences the spread states that cells assume in
achieving homeostasis. A low rcol lowers the probability
of a cell becoming highly spread, because sufficient
complexes cannot form to support the tractions imposed
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by the substrate. Conversely, at a high rcol, the cell may
form more adhesion complexes, lowering the associated
free energy. Thus, the probability of cells having a high
spread area increases. The influence of Esub and rcol is
highly coupled, as demonstrated in Figs. 3 and 5. A
deformable substrate lowers the probability of a cell
becoming highly spread, reducing the cell tractions and
thereby causing the peak mean spread area to occur at a
lower rcol.

In statistical thermodynamics, a closed system in a
constant temperature and pressure environment attains
equilibrium at minimal Gibbs free energy. However, meta-
bolic systems such as cells cannot be viewed in this
manner; in fact, cells never attain an equilibrium minimal
free-energy state while alive. The approach developed by
Shishvan et al. (15) (extended in the current study) ac-
knowledges this and predicts the statistics of biological
observables (e.g., cell area, AR, etc.) under the constraint
that the cell maintains a homeostatic state. In previous
studies, the importance of considering the system free en-
ergy in the interpretation of cell-spreading behavior has
been recognized (13,29). McEvoy et al. (13) identified
low (or minimal) free-energy cell spread states within a
limited phase space of axisymmetric configurations.
This simplified approach provided a reasonable approxi-
mation of the detailed trends computed in the current
study (as observed experimentally (3)), which can be ex-
plained by the fact that low free-energy states will of
course be highly probable within the homeostatic
ensemble; see Eq. 1. Although McEvoy et al. (13)
correctly demonstrate that cell spreading is governed by
a competition between decreasing cytoskeletal and adhe-
sion free energy and increasing elastic energy, the identi-
fication of a low or minimal free-energy configuration is
not physically appropriate for a fluctuating system. There-
fore, the emergence of such an energetic competition
within the statistical mechanics framework of the homeo-
static ensemble provides a significant advance in current
understanding of the influence of ligand density and sub-
strate stiffness on cell spreading. Importantly, this frame-
work correctly predicts the trends for observables such as
the spread area and spread shape as a function of environ-
mental cues, such as stiffness and ligand density, and
quantifies inherent statistical variability in these observa-
tions. The homeostatic ensemble for cells, expanded to
include the FA formation and an associated adhesion
free-energy contribution, provides new insight into
observed cell behavior on deformable collagen-coated
substrates. The model may readily be used to simulate
more complex extracellular environments, including the
spreading of cells on ligand patterned ridges and ligand
patterned micropillars. Furthermore, the computational
framework will be extended in a future study to explore
the influence of gradients of ligand density on cell
motility.
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SUPPLEMENTARY INFORMATION 

1. The homeostatic statistical mechanics framework 

Here, we provide a brief overview of the homeostatic mechanics framework of Shishvan et 

al. (1) with the aim to provide the reader the key aspects of the framework required for fully 

appreciating the computational results presented in the main text. Readers are referred to 

Shishvan et al. (1) for a more complete treatment including the derivations of the relevant 

equations. 

Making the ansatz that living cells are entropic, Shishvan et al. (1) introduced the concept of 

the homeostatic ensemble with cellular homeostasis providing the additional constraints and 

mechanisms for entropy maximisation. This defined the notion of a (dynamic) homeostatic 

equilibrium state that intervenes to allow living cells to elude thermodynamic equilibrium. 

They thus developed a statistical mechanics framework for living cells using the notions of 

statistical inference (2) applicable over a timescale from a few hours to a few days as long as 

the cell remains as a single undivided entity (i.e. the interphase period of the cell cycle). The 

key ideas behind the framework can be summarised as follows. A system comprising the cell 

and the extracellular matrix (ECM) is an open system with the cell exchanging nutrients with 

the surrounding bath. These nutrients fuel a large number of coupled biochemical reactions 

that include actin polymerisation, treadmilling and dendritic nucleation that effect changes to 

the cell morphology. These biochemical reactions change the morphology of the cell but are 

not precisely controlled, and this manifests via the observed morphological fluctuations of the 

cell. Shishvan et al. (1) made the ansatz that these biochemical reactions provide the 

mechanisms to maximise the morphological entropy of the cell, but constrained by the fact 

that the cell maintains a homeostatic state over the interphase period. Cellular homeostasis is 

the ability of cells to actively regulate their internal state, and maintain the concentration of 

all internal species1 at specific average values over their morphological fluctuations 

independent of the environment. 

 

                                                 
1 Chemical species here are defined in a manner analogous to the Gibbs definition for a grand canonical 

ensemble, viz. chemical species are an ensemble of chemically identical molecular entities that can explore the 

same set of molecular energy levels on the timescale of a morphological microstate.  



1.1. Morphological microstates, entropy, fluctuations, and the homeostatic temperature 

Controlling only macro variables (i.e. macrostate) such as the temperature, pressure, and 

nutrient concentrations in the nutrient bath results in inherent uncertainty (referred to here as 

missing information) in micro variables (i.e. microstates) of the system. This includes a level 

of unpredictability in homeostatic process variables, such as the spatio-temporal distribution 

of chemical species, that is linked to Brownian motion and the complex feedback loops in the 

homeostatic processes. Thus, this system not only includes the usual lack of precise 

information on the positions and velocities of individual molecules associated with the 

thermodynamic temperature, but also an uncertainty in cell shape resulting from imprecise 

regulation of the homeostatic processes. The consequent entropy production forms the basis 

of this new statistical mechanics framework motivated by the following two levels of 

microstates: 

(i) Molecular microstates. Each molecular microstate has a specific configuration (position 

and momentum) of all molecules within the system.  

(ii) Morphological microstates. Each morphological microstate is specified by the mapping 

(connection) of material points on the cell membrane to material points on the collagen 

coated substrate. In broad terms, a morphological microstate specifies the shape and size of 

the cell. 

Shishvan et al. (1) identified the (dynamic) homeostatic or equilibrium state of the system by 

entropy maximisation. Subsequently, we shall simply refer to this state as an equilibrium 

state to emphasise that it is a stationary macrostate of the system inferred via entropy 

maximisation as in conventional equilibrium analysis. The total entropy of the system is 

written in terms of the conditional probability 𝑃(𝑖|𝑗) of the molecular microstate (𝑖) given the 

morphological microstate (𝑗) and the probability 𝑃(𝑗) of morphological microstate (𝑗) as 

 𝐼T = ∑𝑃(𝑗)𝐼M
(𝑗)

𝑗

+ 𝐼Γ. (S1) 

In eq. (S1), 𝐼M
(𝑗)

≡ −∑ 𝑃(𝑖|𝑗) ln 𝑃(𝑖|𝑗)
𝑖∈𝑗  and 𝐼Γ ≡ −∑ 𝑃(𝑗) ln 𝑃(𝑗)

𝑗  are the entropies of 

molecular microstates in morphological microstate (𝑗) and the morphological microstates, 

respectively. Equilibrium then corresponds to molecular and morphological macrostates that 

maximise 𝐼T subject to appropriate constraints. The molecular macrostate evolves on the 

order of seconds, limited by processes such as the diffusion of unbound actin. By contrast, 

transformation of the morphological macrostate involves cell shape changes and therefore, 



the morphological macrostate evolves on the order of minutes, limited by co-operative 

cytoskeletal processes within the cell such as meshwork actin polymerisation and dendritic 

nucleation. The evolutions of the molecular and morphological macrostates are therefore 

temporally decoupled, and Shishvan et al. (1) showed that eq. (S1) can be maximised by 

independently maximising 𝐼M
(𝑗)

 at the smaller timescale to determine the equilibrium 

distribution of molecular microstates for a given morphological microstate, and then 

maximising 𝐼Γ at the larger timescale to determine the equilibrium distribution of the 

morphological microstates. 

Over the (short) timescale on the order of seconds, the only known constraint on the system is 

that it is maintained at a constant temperature, pressure and strain distribution. The 

equilibrium of a given morphological microstate (𝑗) obtained by maximising 𝐼M
(𝑗)

 (denoted by 

𝑆M
(𝑗)

) corresponds to molecular arrangements that minimise the Gibbs free-energy with 𝐺(𝑗). 

Since the connection between the cell and the collagen coated substrate is fixed for a given 

morphological microstate, the determination of 𝐺(𝑗) is a standard boundary value problem as 

described in Section 2.2. Over the (long) timescale on the order of several minutes to hours, 

the equilibrium distribution 𝑃eq
(𝑗)

 is determined by maximising 𝐼Γ, but now with the additional 

constraint that the cell is maintained in its homeostatic state. For the case of a cell on an ECM 

in a constant temperature and pressure nutrient bath, the homeostatic constraint translates to 

the fact that the average Gibbs free-energy of the system over all the morphological 

microstates it assumes, is equal to the equilibrium Gibbs free-energy 𝐺S of an isolated cell in 

suspension (free-standing cell), i.e. the homeostatic processes maintain the average 

biochemical state of the system equal to that of a cell in suspension. In deriving this result, 

Shishvan et al. (1) did not consider every individual homeostatic process, but rather used just 

the coarse-grained outcome of the homeostatic processes. The application of this coarse-

grained constraint is the key element of the homeostatic mechanics framework, with the 

morphological entropy 𝐼Γ parameterising the information lost by not modelling all variables 

associated with the homeostatic processes. 

The maximisation of 𝐼Γ while enforcing ∑ 𝑃(𝑗)𝐺(𝑗) = 𝐺S𝑗  gives the homeostatic equilibrium 

state such that 

 𝑃eq
(𝑗)

=
1

𝑍
exp(−𝜁𝐺(𝑗)), (S2) 



where 𝑍 ≡ ∑ exp(−𝜁𝐺(𝑗))𝑗  is the partition function of the morphological microstates, and 

the distribution parameter 𝜁 follows from the homeostatic constraint 

 
1

𝑍
∑𝐺(𝑗)

𝑗

exp(−𝜁𝐺(𝑗)) = 𝐺S . (S3) 

The collection of all possible morphological microstates that the system assumes while 

maintaining its homeostatic equilibrium state is referred to as the homeostatic ensemble. The 

homeostatic ensemble can therefore be viewed as a large collection of copies of the system, 

each in one of the equilibrium morphological microstates. The copies (𝑗) are distributed in 

the ensemble such that the free-energies 𝐺(𝑗) follow an exponential distribution 𝑃eq
(𝑗)

 with the 

distribution parameter 𝜁.  

The equilibrium morphological entropy 𝑆Γ = −∑ 𝑃eq
(𝑗)

ln 𝑃eq
(𝑗)

𝑗  (i.e. the maximum value of 𝐼Γ) 

follows from (S2) as 

 𝑆Γ = 𝜁𝐺S + ln 𝑍, (S4) 

where 𝑃eq
(𝑗)

 is substituted from eq. (S2). Thus, 𝑆Γ is related to 𝜁 via the conjugate relation 

𝜕𝑆Γ/𝜕𝐺S = 𝜁. Thus, analogous to 1/𝑇 that quantifies the increase in uncertainty of the 

molecular microstates (i.e. molecular entropy 𝑆M
(𝑗)

) with average enthalpy, 𝜁 specifies the 

increase in uncertainty of the morphological microstates (i.e. morphological entropy 𝑆Γ) with 

the average Gibbs free-energy. We therefore refer to 1/𝜁 as the homeostatic temperature 

with the understanding that it quantifies the fluctuations on a timescale much slower than that 

characterised by 𝑇. 

 

 

 

 

 

 



2. The equilibrium Gibbs free-energy of a morphological microstate 

Similar to conventional statistical mechanics calculations that require a model for the energy 

of the system, the homeostatic statistical mechanics framework requires a model for the 

Gibbs free-energy 𝐺(𝑗) of morphological microstate (𝑗). Here, we calculate 𝐺(𝑗) using the 

free-energy model of Vigliotti et al. (3) (as modified by Shishvan et al. (1)) that includes 

contributions from cell elasticity and the actin/myosin stress-fibre cytoskeleton, with the cell 

modelled as a two-dimensional (2D) body in the 𝑥1 − 𝑥2 plane adhered to a deformable 

collagen coated substrate, such that the out-of-plane Cauchy stress 𝛴33 = 0. The key 

differences are that (i) we include a nucleus that was neglected in Shishvan et al. (1) (ii) and 

also add in explicit contribution from the focal adhesions as described in the main body of the 

paper. The state of the system changes as the cell moves, spreads, and changes shape on the 

substrate. Here, we shall give a prescription to calculate the Gibbs free-energy of the system 

when the cell is in a specific morphological microstate (𝑗), where the connections of material 

points on the cell membrane to the surface of the collagen coated substrate are specified. 

With the system comprising the cell and substrate within a constant temperature and pressure 

nutrient bath, the equilibrium value of the Gibbs free-energy 𝐺(𝑗) of the system in 

morphological microstate (𝑗) is given by 𝐺(𝑗) = 𝐹cell
(𝑗)

+ 𝐹sub
(𝑗)

+ 𝐹adh
(𝑗)

. Here 𝐹adh
(𝑗)

 is the free-

energy associated with the formation of focal adhesion as described in the main paper body 

(see Section 2.3 therein). Moreover, we assume the substrate to be linear elastic so 𝐹sub
(𝑗)

 is 

calculated directly from knowing the tractions the cells exert on a linear elastic half-space. 

Thus, we focus our description on the calculation of the free-energy of the cell 𝐹cell
(𝑗)

. In the 

following, for the sake of notational brevity, we shall drop the superscript (𝑗) that denotes the 

morphological microstate, as the entire discussion refers to a single morphological 

microstate. 

The Vigliotti et al. (3) model assumes only two elements within the cell: (i) a passive elastic 

contribution from elements such as the cell membrane, intermediate filaments and 

microtubules, and (ii) an active contribution from contractile acto-myosin stress-fibres that 

are modelled explicitly. This model was modified in Shishvan et al. (1) to incorporate a non-

dilute concentration of stress-fibres and here we further modify this model by including the 

nucleus in the analysis as a passive elastic body, in addition to the cytoplasm comprising the 

two above mentioned components. We shall first describe the modelling of the active acto-



myosin stress-fibres in the cytoplasm and then discuss the elastic model of both the nucleus 

and the cytoplasm. 

Consider a two-dimensional (2D) cell of thickness 𝑏0 and volume 𝑉0 in its elastic resting 

state comprising a nucleus of volume 𝑉N and cytoplasm of volume 𝑉C such that 𝑉0 = 𝑉N +

𝑉C. The representative volume element (RVE) of the stress-fibres within the cytoplasm in this 

resting configuration is assumed to be a cylinder of volume 𝑉R = 𝜋𝑏0(𝑛
Rℓ0/2)2, where ℓ0 is 

the length of a stress-fibre functional unit in its ground-state, and 𝑛R is the number of these 

ground-state functional units within this reference RVE. The total number of functional unit 

packets within the cell is 𝑁0
T, and we introduce 𝑁0 = 𝑁0

T𝑉R/𝑉C as the average number of 

functional unit packets available per RVE; 𝑁0 shall serve as a useful normalisation 

parameter. The state of stress-fibres at location 𝑥𝑖 within the cell is described by their angular 

concentration 𝜂(𝑥𝑖, 𝜑), and there are 𝑛(𝑥𝑖, 𝜑) functional units in series along the length of 

each stress-fibre in the RVE. Here, 𝜑 is the angle of the stress-fibre bundle in the undeformed 

configuration with respect to the 𝑥2 − direction. Vigliotti et al. (3) showed that, at steady-

state, the number 𝑛ss of functional units within the stress-fibres is given by 

 𝑛̂ss ≡
𝑛ss

𝑛R
=

[1 + 𝜀nom(𝑥𝑖, 𝜑)]

1 + 𝜀ñom
ss  , (S5) 

where 𝜀ñom
ss  is the strain at steady-state within a functional unit of the stress-fibres, and 

𝜀nom(𝑥𝑖, 𝜑) is the nominal strain in direction 𝜑. The chemical potential of the functional 

units within the stress-fibres in terms of the Boltzmann constant 𝑘B is given by 

 𝜒b =
𝜇b

𝑛R
+ 𝑘B𝑇 ln

[
 
 
 
 

(
𝜋 𝜂̂ 𝑛̂ss

𝑁̂u (1 −
𝜂̂

𝜂̂max
)
)

1
𝑛ss

(
𝑁̂u

𝜋𝑁̂L

)

]
 
 
 
 

 , (S6) 

where the normalized concentration of the unbound stress-fibre proteins is 𝑁̂u ≡ 𝑁u/𝑁0 with 

𝜂̂ ≡ 𝜂𝑛R/𝑁0, while 𝜂̂max is the maximum normalised value of 𝜂̂ corresponding to full 

occupancy of all available sites for stress-fibres (in a specific direction). Here, 𝑁̂L is the 

number of lattice sites available to unbound proteins. The enthalpy 𝜇b of 𝑛R bound functional 

units at steady-state is given in terms of the isometric stress-fibre stress 𝜎max and the internal 

energy 𝜇b0 as 

 𝜇b = 𝜇b0 − 𝜎maxΩ(1 + 𝜀ñom
ss ), (S7) 



where Ω is the volume of 𝑛R functional units. By contrast, the chemical potential of the 

unbound proteins is independent of stress and given in terms of the internal energy 𝜇u as 

 𝜒u =
𝜇u

𝑛R
+ 𝑘𝐵𝑇 ln (

𝑁̂u

𝜋 𝑁̂L

) . (S8) 

For a fixed configuration of the 2D cell (i.e. a fixed strain distribution 𝜀nom(𝑥𝑖, 𝜑)), the 

contribution to the specific Helmholtz free-energy of the cell 𝑓 from the stress-fibre 

cytoskeleton follows as 

 𝑓cyto = 𝜌0 (𝑁̂u𝜒u + ∫ 𝜂̂ 𝑛̂ss𝜒b𝑑𝜑
𝜋/2

−𝜋/2

) , (S9) 

where 𝜌0 ≡ 𝑁0/𝑉R is the number of protein packets per unit reference volume available to 

form functional units in the cell. However, we cannot yet evaluate 𝑓cyto as 𝑁̂u(𝑥𝑖) and 

𝜂̂(𝑥𝑖 , 𝜑) are unknown. These will follow from the chemical equilibrium of the cell as will be 

discussed in Section 2.1. 

The total stress 𝛴𝑖𝑗 within the cell includes contributions from the passive elasticity provided 

mainly by the intermediate filaments of the cytoskeleton attached to the nuclear and plasma 

membranes and the microtubules, as well as the active contractile stresses of the stress-fibres. 

The total Cauchy stress is written in an additive decomposition as 

 𝛴𝑖𝑗 = 𝜎𝑖𝑗 + 𝜎𝑖𝑗
p
 , (S10) 

where 𝜎𝑖𝑗 and 𝜎𝑖𝑗
p

 are the active and passive Cauchy stresses, respectively. In the 2D setting 

with the cell lying in the 𝑥1 − 𝑥2 plane, the active stress is given in terms of the volume 

fraction 𝑣0 of the stress-fibre proteins as 

[
𝜎11 𝜎12

𝜎12 𝜎22
] =

𝑣0𝜎max

2
∫ 𝜂̂[1 + 𝜀nom(𝜑)] [

2cos2𝜑∗ cos 2𝜑∗

cos 2𝜑∗ 2sin2𝜑∗]

𝜋/2

−𝜋/2

𝑑𝜑, (S11) 

where 𝜑∗ is the angle of the stress-fibre measured with respect to 𝑥2, and is related to its 

orientation 𝜑 in the undeformed configuration by the rotation with respect to the undeformed 

configuration. The passive elasticity in the 2D setting is given by a 2D specialization of the 

Ogden (4) hyperelastic model as derived in Shishvan et al. (1). The strain energy density 

function of this 2D Ogden model is  



 ΦC ≡
2𝜇C

𝑚C
2 [(

𝜆I

𝜆II
)

𝑚C
2

+ (
𝜆II

𝜆I
)

𝑚C
2

− 2] +
𝜅C

2
(𝜆I𝜆II − 1)2, (S12) 

for the cytoplasm and 

 ΦN ≡
2𝜇N

𝑚N
2 [(

𝜆I

𝜆II
)

𝑚N
2

+ (
𝜆II

𝜆I
)

𝑚N
2

− 2] +
𝜅N

2
(𝜆I𝜆II − 1)2, (S13) 

for the nucleus where 𝜆I and 𝜆II are the principal stretches, 𝜇C (𝜇N) and 𝜅C (𝜅N) the shear 

modulus and in-plane bulk modulus of cytoplasm (nucleus), respectively, while 𝑚C (𝑚N) is a 

material constant governing the non-linearity of the deviatoric elastic response of cytoplasm 

(nucleus). The cell is assumed to be incompressible, and thus throughout the cell, we set the 

principal stretch in the 𝑥3 −direction 𝜆III = 1/(𝜆I𝜆II). The (passive) Cauchy stress then 

follows as 𝜎𝑖𝑗
p
𝑝𝑗

(𝑘)
= 𝜎𝑘

p
𝑝𝑖

(𝑘)
 in terms of the principal (passive) Cauchy stresses 𝜎𝑘

p
 (≡

𝜆𝑘𝜕ΦC/𝜕𝜆𝑘 for the cytoplasm and ≡ 𝜆𝑘𝜕ΦN/𝜕𝜆𝑘 for the nucleus) and the unit vectors 

𝑝𝑗
(𝑘)

 (𝑘 = I, II) denoting the principal directions. The total specific Helmholtz free-energy of 

the cytoplasm is then 𝑓 = 𝑓cyto + ΦC while that of the nucleus is 𝑓 = ΦN. 

2.1. Equilibrium of the morphological microstate 

Shishvan et al. (1) have shown that equilibrium of a morphological microstate reduces to two 

conditions: (i) mechanical equilibrium with 𝛴𝑖𝑗,𝑗 = 0 throughout the system, and (ii) 

chemical equilibrium such that 𝜒u(𝑥𝑖) = 𝜒b(𝑥𝑖, 𝜑) = constant, i.e. the chemical potentials 

of bound and unbound stress-fibre proteins are equal throughout the cell. The condition 𝜒u =

𝜒b implies that 𝜂̂(𝑥𝑖, 𝜑) is given in terms of 𝑁̂u by 

 𝜂̂(𝑥𝑖, 𝜑) =
𝑁̂u 𝜂̂maxexp [

𝑛̂ss(𝜇u − 𝜇b)
𝑘𝐵𝑇

]

𝜋𝑛̂ss𝜂̂max + 𝑁̂u exp [
𝑛̂ss(𝜇u − 𝜇b)

𝑘𝐵𝑇
]
,  (S14) 

and 𝑁̂u follows from the conservation of stress-fibre proteins throughout the cytoplasm, viz. 

 𝑁̂u +
1

𝑉C
∫ ∫ 𝜂̂ 𝑛̂ss𝑑𝜑

𝜋/2

−𝜋/2

 
𝑉C

𝑑𝑉 = 1. (S15) 

Knowing 𝑁̂u and 𝜂̂(𝑥𝑖, 𝜑), the stress 𝛴𝑖𝑗 can now be evaluated and these stresses within the 

system (i.e. cell and substrate) need to satisfy mechanical equilibrium, i.e. 𝛴𝑖𝑗,𝑗 = 0. In this 

case, the mechanical equilibrium condition is readily satisfied as the stress field 𝛴𝑖𝑗 within the 



cell is equilibrated by a traction field T𝑖 exerted by the substrate on the cell such that 𝑏𝛴𝑖𝑗,𝑗 =

−T𝑖, where 𝑏(𝑥𝑖) is the thickness of the cell in the current configuration. The substrate 

energy 𝐹sub is calculated by applying these tractions to a linear elastic half-space as described 

in Shishvan et al. (1). 

The equilibrium free-energy is then given as 

 𝐺 ≡ 𝜌0𝑉C𝜒u + ∫  ΦC
𝑉C

𝑑𝑉 + ∫  ΦN
𝑉N

𝑑𝑉 + 𝐹sub + 𝐹adh. (S16) 

Here, 𝜒u is given by eq. (S8) with the equilibrium value of 𝑁̂u obtained from eq. (S15). For 

the purposes of further discussion, we label the equilibrium value 𝐹cyto ≡ 𝜌0𝑉C𝜒u as the 

cytoskeletal free-energy of the cell, and 𝐹passive ≡ ∫  ΦC𝑉C
𝑑𝑉 + ∫  ΦN𝑉N

𝑑𝑉 as the passive 

elastic energy of the cell. Moreover, 𝐹cell ≡ 𝐹cyto + 𝐹passive. 

2.2. Numerical methods 

We employ Markov Chain Monte Carlo (MCMC) to construct a Markov chain that is 

representative of the homeostatic ensemble. This involves three steps: (i) a discretization 

scheme to represent morphological microstate (𝑗), (ii) calculation of 𝐺(𝑗) for a given 

morphological microstate (𝑗), and (iii) construction of a Markov chain comprising these 

morphological microstates. Here, we briefly describe the procedure which was implemented 

in MATLAB with readers referred to (1) for further details. Typical Markov chains 

comprised in excess of 2.5 million samples. 

In the general setting of a three-dimensional (3D) cell, a morphological microstate is defined 

by the connection of material points on the cell membrane to the surface of the collagen 

coated substrate. In the 2D context of cells on collagen coated substrates, this reduces to 

specifying the connection of all material points of the cell to locations within the collagen 

coated substrate, i.e. a displacement field 𝑢𝑖
(𝑗)

(𝑋𝑖) is imposed on the cell with 𝑋𝑖 denoting the 

location of material points on the cell in the undeformed configuration, and these are then 

displaced to 𝑥𝑖
(𝑗)

= 𝑋𝑖 + 𝑢𝑖
(𝑗)

 in morphological microstate (𝑗). These material points located 

at 𝑥𝑖
(𝑗)

 are then connected to material points on the collagen coated substrate at the same 

location 𝑥𝑖
(𝑗)

, completing the definition of the morphological microstate in the 2D setting.  

The cell is modelled as a continuum and thus 𝑢𝑖
(𝑗)

 is a continuous field. To calculate the 

density of the morphological microstates, we define 𝑢𝑖
(𝑗)

 via Non-Uniform Rational B-splines 



(NURBS) such that the morphological microstate is now defined by 𝑀 pairs of weights 

[𝑈𝐿
(𝑗)

, 𝑉𝐿
(𝑗)

] (𝐿 = 1,… ,𝑀). In all the numerical results presented here, we employ 𝑀 = 16 

with 4 × 4 weights 𝑈𝐿
(𝑗)

 and 𝑉𝐿
(𝑗)

 governing the displacements in the 𝑥1 and 𝑥2 directions, 

respectively. The NURBS employ fourth order base functions for both the 𝑥1 and 𝑥2 

directions, and the knots vector included two nodes each with multiplicity four, located at the 

extrema of the interval. We emphasise here that this choice of representing the morphological 

microstates imposes restrictions on the morphological microstates that will be considered. 

Therefore, the choice of the discretisation used to represent 𝑢𝑖
(𝑗)

 needs to be chosen so as to 

be able to represent the microstates we wish to sample, e.g. the choice can be based on the 

minimum width of a filopodium one expects for the given cell type. Given 𝑢𝑖
(𝑗)

, we can 

calculate 𝐺(𝑗) using the model described in Section 2.1 with the cell discretised using 

constant strain triangles of size 𝑒 ≈ 𝑅0/10, where 𝑅0 is the radius of the cell in its 

undeformed configuration. 

We construct the Markov chain using the Metropolis (5) algorithm that gives a sequence of 

random samples from the exponential equilibrium distribution (eq. (S5)). We employ the 

Metropolis algorithm in an iterative manner so as to enforce the homeostatic constraint (eq. 

(S3)). The scheme is summarised as follows: 

(i) Assume a value of 𝜁 and use the undeformed cell configuration as the starting 

configuration and label it as morphological microstate 𝑗 = 0 with equilibrium 

free-energy 𝐺(0) calculated as described in Section 2.1.  

(ii) Randomly pick one pair of the 𝑀 weights 𝑈𝐿
(𝑗)

, 𝑉𝐿
(𝑗)

 and perturb them by two 

independent random numbers picked from a uniform distribution over the interval 

[−Δ, Δ]. 

(iii) Compute the new free-energy of this perturbed state and thereby the change in 

free-energy Δ𝐺 = 𝐺(𝑗) − 𝐺(𝑗−1). 

(iv) Use the Metropolis criterion to accept this perturbed state or not, i.e.  

a. if Δ𝐺 ≤ 0, accept the perturbed state; 

b. if Δ𝐺 > 0, compute 𝑃𝑎𝑐𝑐 = exp (−𝜁Δ𝐺) and accept the perturbed state if 

𝑃𝑎𝑐𝑐 > ℛ, where ℛ is a random number drawn from a uniform distribution 

over [0, 1]. 



(v) If the perturbed state is accepted, add it to the list of samples as a new 

morphological microstate, else repeat the configuration prior to step (ii) in the 

sample list and return to step (ii). 

(vi) Keep repeating this procedure until a converged distribution is obtained. Here, we 

typically use the criterion that the average of 𝐺(𝑗) within the generated sample list 

(labelled 〈𝐺(𝑗)〉 changes by less than 1% over 100,000 steps of the Markov chain.  

(vii) If 〈𝐺(𝑗)〉 is within ±2% of the homeostatic value of 𝐺𝑠, we accept this 

distribution, else we modify 𝜁 and repeat from step (i). 

2.3. Material parameters 

All simulations are reported at a reference thermodynamic temperature 𝑇 = 𝑇0, where 𝑇0 =

310 K. Most of the parameters of the model are related to the properties of the proteins that 

constitute stress-fibres. These parameters are thus expected to be independent of cell type. 

Notable exceptions to this are: (i) the stress-fibre protein volume fraction 𝑣0; and (ii) the 

passive elastic properties. Here, we use parameters calibrated for SMCs that give good 

correspondence with the wide range of measurements reported here. The passive elastic 

parameters of the cytoplasm are taken to be 𝜇C = 1.67 kPa, 𝜅C = 35 kPa and 𝑚C = 5, while 

the corresponding values for the nucleus are 𝜇N = 3.33 kPa, 𝜅N = 35 kPa and 𝑚N = 20 (6–

8). The maximum contractile stress 𝜎max = 240 kPa is consistent with a wide range of 

measurements on muscle fibres (9), and the density of stress-fibre proteins was taken as 𝜌0 =

3 × 106 μm−3 with the volume fraction of stress-fibre proteins 𝑣0 = 0.032. Following 

Vigliotti et al. (3), we assume that the steady-state functional unit strain 𝜀ñom
ss = 0.35 with 

𝜇b0 − 𝜇u = 2.3 𝑘𝑇0 and Ω = 10−7.1 μm3. The maximum angular concentration of stress-

fibre proteins is set to 𝜂̂max = 1. The cell in its undeformed state is a circle of radius 𝑅0 and 

thickness 𝑏0 = 0.05𝑅0, with a circular nucleus of radius 𝑅N = 10𝑏0 whose centre coincides 

with that of the cell. Results are presented in terms of normalised cell area 𝐴̂(𝑗)  ≡ 𝐴(𝑗)/𝐴0, 

where 𝐴(𝑗) is the area of a morphological microstate (𝑗) while 𝐴0 = 𝜋𝑅0
2 is the area of the 

undeformed cell. Thus, we do not explicitly need to specify 𝑅0.  

Results are presented for adhesion to incompressible linear elastic substrates with Young’s 

modulus 𝐸sub = 8 kPa, 32 kPa and a rigid substrate with 𝐸sub → ∞ coated with surface 

densities of collagen ranging between 6 ng cm−2 to 665 ng cm−2. Using a molecular weight 

of collagen 𝑀col of 200 kDa (10) (i.e. 200 kg mol−1) with 1 ligand per molecule, a surface 

collagen density 𝜌col of  1 g cm−2 corresponds to 3.011 𝑥109 ligands/cm2. A range of 



ligand densities from 𝑁H = 175 μm−2 to 𝑁H = 20 × 103 μm−2 are analyzed, corresponding 

to the range of 𝜌𝑐𝑜𝑙  investigated in the experiments of Engler et al. (11). The other 

parameters of the focal adhesion model are based on commonly accepted ranges; see for 

example Deshpande et al. (12). Specifically, we assumed a uniform surface density of  𝐶0 =

5 × 103 μm−2 of integrin molecules with surface density of integrins sites 𝐶r =

20 × 103 μm−2. The complex stiffness 𝜅s = 𝜅p = 0.3 nN μm−1 while the maximum 

complex force Ƒmax = 0.01 nN (13).  

2.4. Definitions of normalised quantities and observables 

Following Shishvan et al. (1), the free-energy 𝐺(𝑗) can be decomposed as 𝐺(𝑗) = Υ(𝑗)+Υ0, 

where Υ0 = 𝜌0𝑉0[𝜇u/𝑛
R − 𝑘𝑇 ln(𝜋 𝑁̂L)] is independent of the morphological microstate. It 

is thus natural to subtract out Υ0 and define a normalised free-energy as  

𝐺̂(𝑗) ≡
Υ(𝑗)

|𝐺S − Υ0|
=

𝐺(𝑗) − Υ0

|𝐺S − Υ0|
  , (S17) 

where 𝐺S is the equilibrium free-energy of a free-standing cell (i.e. a cell in suspension with 

traction-free surfaces). Then, the distribution given by eq. (S6) can be re-written as 

𝑃eq
(𝑗)

=
1

𝑍̂
exp[−𝜁𝐺̂(𝑗)] (S18) 

with 𝑍̂ ≡ ∑ exp[−𝜁𝐺̂(𝑗)]𝑗  and 𝜁 ≡ 𝜁|𝐺𝑆 − Υ0|. It then immediately follows that the 

distributions of states are not influenced by the values of 𝑛R, 𝑁̂L and 𝑉0 and these parameters 

need not be specified so long as energies are quoted in terms of the normalised energies 𝐺̂(𝑗).  

Analogously, we define the normalised elastic, cytoskeletal, adhesion, and substrate free-

energies of the spread microstate (𝑗) as 

𝐹̂passive
(𝑗)

≡
𝐹passive

(𝑗)

|𝐺S − Υ0|
 , 𝐹̂cyto

(𝑗)
≡  

𝐹cyto
(𝑗)

− Υ0

|𝐺S − Υ0|
 (S19) 

and 

𝐹̂sub
(𝑗)

≡
𝐹sub

(𝑗)

|𝐺S|
, 𝐹̂adh

(𝑗)
≡

𝐹adh
(𝑗)

|𝐺S − Υ0|
 , (S20) 

respectively.  

For the SMCs with volume 𝑉0 = 𝜋𝑅0
2𝑏0 modelled here, the equilibrium free-standing 

microstate is a spatially uniform circular cell with (𝐺S − Υ0)/(𝑉0𝑘𝑇0) ≈ −4.53 𝑥 106  μm−3. 

The free-standing cell is a standard boundary value problem with traction-free boundary 



conditions. An iterative FE scheme as described in Shishvan et al. (1) is used to solve this 

boundary value problem and calculate 𝐺S. This solution predicts that the free-standing is 

circular cell with radius 0.92 𝑅0. 
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ADDITIONAL FIGURES 

 

Figure SI-1: Additional configurations of bound stress-fibre protein concentrations 𝑵̂𝐛 

(green) with dominant alignment, and focal adhesion distributions 𝑪̂ (red). The 

substrate is rigid, and nucleus is highlighted in blue. The configurations are all from the 

median of the free-energy 𝑮̂ distribution for cells spread on a rigid substrate with a 

surface collagen density 𝝆𝐜𝐨𝐥  of 250 𝐧𝐠/𝐜𝐦𝟐. Scale bar indicates undeformed cell radius 

𝑹𝟎. 



 

Figure SI-2: Additional configurations of bound stress-fibre protein concentrations 𝑵̂𝐛 

(green), and focal adhesion distributions 𝑪̂ (red). The substrate is rigid, and nucleus is 

highlighted in blue. The configurations are all from the median of the free-energy 𝑮̂ 

distribution for cells spread on a rigid substrate with a surface collagen density 𝝆𝐜𝐨𝐥 of 6 

𝐧𝐠/𝐜𝐦𝟐. Scale bar indicates undeformed cell radius 𝑹𝟎. 



 

Figure SI-3: Probability density functions for cells spread on substrates of different 

stiffness at a collagen density of 33 𝒏𝒈 𝒄𝒎−𝟐, of (a) Gibbs free-energy, (b) adhesion free-

energy, (c) cytoskeletal free-energy, and (d) elastic free-energy (𝑭̂𝒆𝒍𝒂𝒔 = 𝑭̂𝒑𝒂𝒔𝒔𝒊𝒗𝒆 +

𝑭̂𝒔𝒖𝒃).  



 

Figure SI-4: Predictions of the normalised homeostatic temperature 𝟏/𝜻̂. 
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