Supplementary Information

The molecular basis of protein toxin HicA-dependent binding of the protein antitoxin

HicB to DNA

Ashley J. Winter¹, Christopher Williams¹, Michail N. Isupov², Hannah Crocker¹, Mariya Gromova¹, Philip Marsh¹, Oliver J. Wilkinson³, Mark S. Dillingham³, Nicholas J. Harmer², Richard W. Titball^{2,*}, and Matthew P. Crump^{1,*}

From the ¹School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK; ²Biosciences, College of Life and Environmental Sciences, University of Exeter, EX4 4QD, UK; ³School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD.

* To whom correspondence should be addressed: <u>Matt.crump@bristol.ac.uk;</u>

R.W.Titball@exeter.ac.uk

This PDF file includes:

Figs. S1 to S10 Tables S1 to S12

Figure S1. Characterisation of HicB and HicB_FL.

(A) SDS-PAGE following the expression and purification of HicB (lacking C-terminal residues 135-138, Table S1) from post induction to isolation via IMAC and SEC. (B) SEC of HicB, eluting as a single oligomeric species. (C) Native mass spectrometry of HicB. Peaks were assigned based on their charge state: monomeric (black), dimeric (blue) or tetrameric (red). (D) De-convoluted spectrum of the m/z envelope shown in e yielding tetrameric HicB. Expected molecular weight: 62,952 Da. (E) SDS-PAGE following the expression and purification of full length HicB (HicB_FL, see Experimental procedures and Table S1) from post induction to isolation via IMAC and SEC. ESMS (not shown) (expected 16,201 Da, observed 16,200 Da). (F) SEC of HicB_FL eluting as a single oligomeric species calculated as 64,800 Da (tetramer). Each SEC profile contains a calibration curve (inset) using known standards: Aprotinin (AP), Ribonuclease A (RA), Carbonic Anhydrase (CA), Ovalbumin (OV) and Conalbumin (CO).

Figure S2. Characterisation of HicB-NT.

(A) SDS-PAGE following the expression and purification of HicB-NT from initial induction to isolation via IMAC and SEC. (B) SEC of HicB-NT, eluting as a single oligomeric species. (inset) calibration curves using known standards: Aprotinin (AP), Ribonuclease A (RA), Carbonic Anhydrase (CA), Ovalbumin (OV) and Conalbumin (CO). (C) Native mass spectrometry of HicB-NT. Peaks were assigned on their charge state: monomeric (black) or dimeric (blue). (D) De-convoluted spectrum (spanning 20-20.5 kDa) of the m/z envelope shown in c yielding dimeric HicB-NT: Expected molecular weight: 20,266 Da. (E) Structural representation of dimeric HicB-NT with subunits coloured blue and red respectively, highlighting the hydrophobic dimerization interface. Adjacent subunits associate via parallel packing of the β 4 strands (V77-S82), flanked by the α 2 helix (V64-L67) of each subunit. Adjacent subunits form a hydrogen bond and saltbridge network between the side chains of β 4- β 4 (V77-L80) β 1- α 1 (E2-K37), α 2- α 1 (E65-I32, V64-D33, E65-D33), together burying 1,271 Å² of the total surface area (10,466 Å²). The final HicB-NT model comprises 1-85 residues.

Figure S3 Tethering interactions between adjacent N-terminal and C-terminal domains of HicB in the unbound conformation.

(A) Cartoon representation of the hydrophobic and ionic interactions between adjacent C-terminal domains and N-terminal/hinge region. (B) Cartoon representation of the location of hydrophobic and ionic interaction sites that are dependent on the placement of the α 1 helix. (C) Interaction sites within the tetramer. Box 1 highlight electrostatic interaction sites (Residues E48, E52, D89, R101 and H105) and box 2 indicates the absence of hydrophobic interaction sites (Residues I51, V57, F59, L85, L88 with P100 and F102) between adjacent subunits electrostatic sites. Box 3 and 4 show the respective presence and absence of hydrophobic interaction sites (Residues I51, V57, F59, L85, L88 with P100 and F102) and electrostatic sites (Residues E48, E52, D89 with R101 and H105) between adjacent subunits.

Figure S4. Binding of HicA to HicB.

(A) Analytical SEC profiles of HicB, HicAB and HicA. (B) SDS-PAGE of isolated fractions for each analytical S75 profile. The vertical black line indicates where the gel was spliced to remove two unwanted lanes and improve clarity. (C) Native mass spectrometry of HicB within the region 2500-3800 m/z with oligomeric states: dimeric (black) and tetrameric (blue) highlighted based on their charge state value. (D) Native mass spectrometry of HicAB within the region 2450-3150 with oligomeric states of HicB₄ (blue) and HicA₄-HicB₄ (purple) highlighted. Sub-stoichiometric complexes of HicA₁-HicB₄ (green), HicA₂-HicB₄ (red) and HicB₂ were also generated in the gas phase.

Figure S5. Small angle X-ray scattering of HicB and HicAB.

This figure uses the same scattering and shape data as shown in Figure 4, but is demonstrating the poor FoXS fit when the HicB crystal structures used to fit the data are swapped. (A) *Ab initio* modelling of HicB component of the HicAB crystal structure into the shape envelope of HicB (white). The FoXS profile of the proposed scattering for the crystal structure (red) against the experimental raw scattering data (black) is underneath (χ^2 = 8.94). (B) *Ab initio* modelling of the crystal structure of the dimer of dimers form of HicB into the shape envelope of HicAB (white), with the corresponding FoXS profile underneath (χ^2 = 8.06).

Figure S6. Overview of DNA binding with HicB

(A) Gel-shift analysis investigating HicB binding of individual fragments of the intergenic region of DNA upstream of the *hicAB* operon. Concentrations quoted at $(\mu M)_T$ correspond to the concentration of the HicB tetramer. (B) Gel-shift assay probing the HicB DNA target site within the 0-48 bp region. (C) Gel shift assay of HicB and HicB-NT (Concentrations quoted at $[\mu M]_T$ or $[\mu M]_D$ correspond to the concentration of the HicB tetramer or HicB-NT dimer respectively) binding to 2 μ M S1-2. (D) Mutations within S1-2 (2 μ M) at either S1 or S2 abolishes binding to HicB (3.2 μ M). (E) Quantification of HicA binding to HEX-S1-2 (n=1). Three independent repeats were fit to equation (2). (F) Quantification of HicB-NT binding to HEX-S1-2. The proportion of HEX-S1-2 bound by varying concentrations of HicB-NT was followed (n=1). Again 3 independent repeats were fit to equation (2). For each experiment the mean value is plotted with error bars representing the S.E.M. Standard errors of K_d values were calculated in GraphPad Prism. (G) HicA acts as a de-repressor. EMSA gel of varying HicA ratios (0.8 μ M – 50.8 μ M) titrated into HicB (3.2 μ M) resulting in de-repression of HicB-S1-2 binding upon an excess of HicA.

Figure S7. Gel shift assays of DNA binding with HicB alanine mutants and gel filtration.

(A) Gel-shift analysis of HicB-R94A against S1-2 (17-36 bp). (B) Gel-shift analysis of HicB-N96A against S1-2. (C) Gel-shift analysis of HicB-S98A against S1-2. (D) Structure of the RHH domain, with key DNA binding residues highlighted. (E) Analytical SEC traces of HicB variants R94A, N96A and S98A and Blue Dextran. (F) Analytical SEC of HicB variants R94A, N96A and S98A complexed with HicA.

Figure S8. Gel shift assays of DNA binding of HicB semi-conservative mutants and gel filtration.

(A) Gel-shift assay of HicB-R94E binding S1-2. (B) Gel-shift assay of HicB-N96Q binding S1-2. (C) Gel-shift assay of HicB-S98T binding S1-2. (D) Gel shift assay of HicB variants, R94E, N96Q and S98T at 1000 μ M binding to 2 μ M S1-2. (E) Analytical SEC traces of all HicB semi conservative mutants with Blue Dextran standard. (F) Analytical SEC of HicB semi-conservative mutants complexed with HicA.

Figure S9. Comparison of HicB and HicAB crystal structures to HicB3 and HicA3B3.

(A) Superimposition of HicB (Blue) to HicB3 (Light grey), RMSD backbone atoms: 3.58 Å. (B) Comparison of the tetrameric organisation of HicB (Left) and HicB3, PDB:4P7D (Right). Individual subunits are highlighted in blue, red, green and yellow. (C) Superimposition of HicA (red) to HicA3 (Dark grey) (PDB:4P78), RMSD backbone atoms: 2.20 Å (D) The superimposition of HicA₁(red)HicB₁ (blue) to HicA3₁ (Dark grey) HicB3-NT (Light grey) (PDB:4P78), RMSD backbone atoms: 3.60 Å. (E) Sequestration of G26 and H28 in HicA3HicB3-NT model. (F) The HicA3₂HicB3₂ dimer (PDB: 4P78) that was reported (top) and extension to the hypothesized HicA3₄HicB3₄ structure with C-domains modelled. This revealed steric clashes between HicA3 monomers and the C-domains of subunit 1 and 4 of HicB3 as the N-terminal domains of complexed HicA3B3 are not correctly rearranged as seen in HicAB.

Figure S10. Comparisons of the RHH of HicB to other RHH containing proteins.

(A) Superimposition of HicB (blue) to HicB3 (PDB: 4P7D, red: RMSD: 1.43 Å), DinJ (PDB: 4Q2U, orange: RMSD: 2.66 Å), FitA (PDB: 2H10, green: RMS: 2.05 Å) and RelB (PDB: 4FXE, purple: RMSD: 2.71 Å). Direct conservation of the proximal basic residue is seen. (B) Overlay of Arc (PDB: 1BAZ, red), CopG (PDB: 2CPG, green), ORF Omega (PDB: 2BNZ, light orange) and PutA (PDB: 2AY0, orange) with HicB highlighting conservation of the proximal basic residue and the polar amino acid that flanks this in canonical DNA binding proteins. Individual superimpositions of HicB (Blue) with these protein domains are as follows: Arc (RMSD: 1.3 Å), CopG (RMSD: 1.3 Å), ORF Omega (RMSD: 1.6 Å) and PutA (RMSD: 1.8 Å).

Table S1. Sequences of the HicB constructs used in this study. Residues in bold indicate the additional His₆-tag or cloning artefacts.

Hicb110203040506070MMEFPIAVHKDDGSVYGVTVPDIPGVHSWGETIDDAIKNTREAIVGHVETLIELGEDVEFTCSTVEELVAKPEYAGAV
8090100110120130134Hicb_FL110203040506070Hicb_FL110203040506070WALVSVDLSQLDSKPERINVSIPRFVLHKIDAYVASRHETRSGFLARAALEALNEGKKHHHHHHHicb_FL110203040506070Hicb_NT110100110120130138Hicb_NT110203040506070Hicb_NT110203040506070Hicb_NT110203040506070Hicb_NT10203040506070Hicb_NT10203040506070Hicb_NT10203040506070Hicb_NT10203040506070Hicb_NT10203040506070Hicb_NT10203040506070Hicb_NT101010101010Hicb_NT101010101010Hicb_NT101010101010Hi

110203040506070Hicb_DMMMEFPIAVHKDDGSVYGVTVPDIPGVHSWGETIDDAIKNTREAIVGHVETIMELGEDVEFTCSTVEELVAKPEYAGAV8090100110120130134WALVSVDLSQLDSKPERINVSMPRFVLHKIDAYVASRHETRSGFLARAALEALNEGKKHHHHHHH

Table S2. Crystallisation conditions for each protein in this study.

Proteins at appropriate concentrations (25 mM Tris-HCl, pH 7.5, 150 mM NaCl) were obtained from the hanging drop vapour diffusion method at 16 °C. Crystals were flash frozen in liquid nitrogen prior to diffraction analysis.

Protein	Conditions	Cryoprotectant
HicB-NT	0.1 M NaOAc, pH 4.6, 8% (w/v) PEG 4000	10% (v/v) glycerol
HicB_DM	0.1 M NaOAc, pH 4.6, 2.0 M HCOONa, 11% (v/v) glycerol	N/A
HicB	0.1 M NaOAc, pH 4.2, 0.02 M CaCl ₂ .dH ₂ O, 15% (v/v) MPD	30% (v/v) glycerol
HicAB	0.1 M MES pH 6.5, 0.2 M NH ₄ SO ₄ , 16% (w/v) PEG 5000 MME	25% (v/v) glycerol

Project	HicB-NT	HicB	HicB SeMet	HicAB
Wavelength (Å)	0.9763	0.9763	0.9790	0.9795
Resolution range (Å)	54.30 - 1.56 (1.62-1.56)	39.42 - 1.85 (1.92 - 1.85)	59.85-2.73 (2.86- 2.73)	34.02 – 2.49 (2.58-2.49)
Space group	$P2_{1}2_{1}2_{1}$	P 4 ₁	$P2_{1}2_{1}2_{1}$	P2 ₁
Unit cell ()	63.5 76.7 76.9Å 90 90 90°	62.6 62.6 173.5Å 90 90 90°	58.7 59.9 172.8Å 90 90 90°	85.1 72.2 85.3Å 90 90.1 90°
Multiplicity	13.2 (13.0)	4.7 (4.7)	12.7 (13.1)	6.8 (6.8)
Completeness (%)	100.0 (100.0)	99.0 (99.0)	99.3 (99.3)	99.9 (99.8)
Mean I/σ(I)	29.9 (2.1)	9.84 (0.40)	16.0 (1.5)	14.1 (1.4)
Wilson B-factor (Ų)	36.69	54.74	71.3	66.6
R-meas	0.04 (1.26)	0.07 (3.96)	0.11 (2.09)	0.12 (1.23)
CC1/2	1.000 (0.805)	0.998 (0.129)	0.998 (0.621)	0.998 (0.692)
DelAnom correlation between half-sets	-	-	0.493 (-0.03)	-
R/Rfree for partial model	-	-	0.327/0.390	-
Reflections used in refinement	53900	55828	-	35696
R-work	0.2001 (0.3972)	0.2016 (0.4480)	-	0.1814 (0.330)
R-free	0.2337 (0.4530)	0.2355 (0.4517)	-	0.2204 (0.375)
Number of protein atoms	2502	4327	-	6272
RMS (bonds)	0.013	0.008	-	0.034
RMS (angles	1.14	0.86	-	1.71
Average B-factors			-	
Protein	41.97	67.95	-	56.73
Solvent	47.56	53.65	-	52.17

Table S3. Crystallography table with statistics

Table S4. List of interactions between HicA and HicB.

Interaction	HicA-HicB
Hydrophobic	
	V18-L53
	A24-A42
	<u>L35-L50</u>
	<u>L35-L53</u>
	P39-W28
	P41-W28
	L45-V14
	L45-W28
	P46-V14
Hydrogen bonds	
	S23-W28
	T37-H46
	10, 11.0
Electrostatic	
	<u>R19-E48</u>
	R19-E52
	<u>K28-E55</u>
	K43-E30

Residues that have direct equivalents within the HicA3B3 interaction site are underlined.

Table S5. SAXS analysis for HicB and H
--

Data-collection parameters				
Instrument	SEC-SAXS at B21 D	amond Light Source		
SEC column	Supedex 200 (GE Healthcare)		
Temperature	25	°C		
q range (Å ⁻¹)	0.006	-0.40		
Structural parameters	HicB	HicAB		
$I(0) (cm^{-1}) [from P(r)]$	0.00378 ± 0.0000089	0.00349 ± 0.0000375		
$\operatorname{Rg}(\operatorname{\AA})$ [from P(r)]	30.12 ± 0.24	31.31 ± 0.21		
I(0) (cm ⁻¹) (from Guinier)	0.00382 ± 0.0000089	0.00363 ± 0.0000092		
Dmax (Å)	97	100		
Rg (Å) (from Guinier)	30.67 ± 0.37	31.90 ± 0.47		
Porod volume estimate (Å ⁻³)	100,000	117,000		
X ²	0.07	0.75		
Molecular-mass determination	1	1		
Partial specific volume (cm ³ g ⁻¹)	0.738384	0.738384		
Contrast ($\Delta \rho \ge 10^{30} \text{ cm}^{-2}$)	3.047	3.047		
Molecular mass Mr [from I(0)]	67,000	74,000		
Calculated Mr from sequence (kDa)	62,952	91,164		
From Porod Volume [Vporod/1.7] (Da)	58,823	73,000		
Software employed	I			
Primary data reduction	GDA (Diamon	d Light Source)		
Data processing	Sca	tter		
Ab initio analysis	DAM	IMIN		
Validation and averaging	DAMAVER			
Rigid-body modelling	N/A			
Computation of model intensities	FoXS			
Three-dimensional graphics representations	Pymol			

Table S6 PISA analysis of HicB tetramer observed. Monomers were investigated for their total number of atoms (N_{at}), residues (N_{res}), total number of surface atoms (S_{at}) and residues (S_{res}). The total surface area (Area) and solvation energy of folding (Δ G) were calculated. Assemblies (Crystal splits) were investigated with the Accessible Solvent Area (ASA), Buried Surface Area (BSA), Standard Free Energy of dissociation into nearest stable assemblies (Δ G_diss), Standard Free Energy of dissociation into monomeric units (Δ G0) and Composition of assembly reported. It was reported that the tetramer was stable in solution. Chains A,B, C and D refer to subunits 2, 3, 1 and 4 in figure 1.

Monomer	N_{at}	N _{res}	Sat	Sres	Area (Å ²)	Δ G (kcal/mol)
А	1019	132	724	128	9294.5	-105.8
В	1019	132	719	128	9332.4	-106.9
С	1041	135	729	130	9737.4	-108.8
D	1041	135	725	129	9675.3	-107.1

Stable crystal assemblies											
Split No	Size	Туре	ASA (Ų)	BSA (Ų)	∆G_diss (kcal/mol)	∆G0 (kcal/mol)	Composition				
1	4	1	27034.1	11005.5	12.4	14.0	ABCD				
C	2	2	15352.6	3717.2	22.0	11.0	BC				
2	2	2	15276.3	3693.5	21.7	10.9	AD				
Metastable crystal assemblies											
2	2	3	17179.5	1630.8	0.6	0.6	AC				
5	2	3	17047.7	1624.6	-0.2	-0.2	BD				

Table S7: Structural conservation of the HicB interfaces within the PDB. The PISA server reports the PDB entry, interface number, mmSize (number of macromolecular monomers within the assembly), Q score (relates from 0 to 1 for unrelated-identical proteins), Sequence identity (Seq ID), interface area, ΔG and Complexation significance score (CSS, relates from 0 to 1 as the interface relevance increases).

Entry	Interface Number	mmSize	Q score	Seq Id	Interface	∆G kcal/mol	CSS
	Number				alea, A	KCal/ IIIUI	
4P7D	1	4	0.395	0.273	2089.2	-30	0.844
4P78	3	4	0.369	0.268	951.5	-21.7	0.931
5YRZ	3	4	0.284	0.194	604.6	-7.7	0.268
3KWR	2	4	0.269	0.096	523.7	-9.4	0.815

Chain	Z score	Rmsd	Identity	Description
4P7D-A	11.8	10.9	25	Antitoxin HicB3 from Yersinia
				pestis
5YRZ-A	9.9	2.6	23	Antitoxin HicB from
				Streptococcus pneumoniae
3KWR-B	10	3.7	15	Putative RNA binding protein
2DSY-C	6.1	2.2	21	Hypothetical protein TTHA0281
3K6Q-A	5.0	2.3	14	Putative anti-toxin from
				Syntrophomonas Wolfei
1ZBT-A	4.5	10	13	Peptide chain release factor
6CI7-F	3.9	14.3	8	YCAO
5CFF-F	3.7	2.2	10	Miranda/Staufen dsRBD5
				complex
3VYY-A	3.6	3.5	10	ATP-Dependent RNA helicase A
4WYQ-B	3.5	2.6	8	Endoribonuclease DICER
2MDR-A	3.5	2.2	4	Double-stranded RNA-specific
				adenosine deaminase
2LTR-A	3.4	2.6	7	Protein RDE-4
3P1X-B	3.4	2.0	8	Interleukin enhancer binding
				factor 3
3ADL-A	3.3	2.4	14	RISC-loading complex subunit
				TARBP2
1WHQ-A	3.1	2.9	11	RNA helicase A

Table S8: DALI. The DALI server search result against a single subunit of HicB. The PDB chain, Z score, RMSD, sequence identity and description are highlighted. The Z score relates to the structural similarity between proteins. Proteins with a Z score below 3 were not included in this table.

Table S9 PISA analysis of HicAB hetero-octamer. Monomers were investigated for their total number of atoms (N_{at}), residues (N_{res}), total number of surface atoms (S_{at}) and residues (S_{res}). The total surface area (Area) and solvation energy of folding (Δ G) were calculated. Assemblies (Crystal splits) were investigated with the Accessible Solvent Area (ASA), Buried Surface Area (BSA), Standard Free Energy of dissociation into nearest stable assemblies (Δ G_diss), Standard Free Energy of dissociation into monomeric units (Δ G0) and Composition of assembly reported. It was reported that the tetramer was stable in solution. Chains A,B,C,D refer to Subunit 4, 1, 3 and 2 of HicB, while chains F, E, G and H refer to HicA moieties bound to each respective subunit.

Monomer	Nat	Nres	Sat	Sres	Area (Å ²)	ΔG (kcal/mol)
А	1019	132	724	128	9294.5	-105.8
В	1019	132	719	128	9332.4	-106.9
С	1041	135	729	130	9737.4	-108.8
D	1041	135	725	129	9675.3	-107.1
Е	479	61	297	56	4061.0	-55.1
F	466	60	296	56	3944.6	-53.1
G	472	60	294	56	4002.5	-54.7
Н	461	59	305	57	4185.2	-49.4

Stable crystal assemblies										
Split No	Size	Туре	ASA (Å ²)	BSA (Å ²)	ΔG_diss (kcal/mol)	∆G0 (kcal/mol)	Composition			
1	8	1	36213.4	17619.7	8.8	74.1	ABCDEFGH			
r	4	2	19521.3	7473.8	9.2	32.6	ADFH			
2	4	2	192087	7629.2	8.8	32.6	BCEG			
	2	3	11537.3	1876.5	5.2	5.2	CG			
2	2	3	11710.0	1845.3	4.9	4.9	DH			
3	2	3	11611.9	1827.9	4.9	4.9	AF			
	2	3	11567.2	1856.8	4.2	4.2	BE			
4	4	4	27426.7	10213.1	9.6	56.9	ABCD			
			Ν	letastable c	rystal assemblies					
5	4	5	22004.7	4974.7	-0.9	-0.9	BDEH			
3	4	5	21905.1	4948.5	-1.3	-1.3	ACFG			
			N	larginally s	table Assemblies					
6	4	4	27426.7	10213.1	9.6	56.9	ABCD			
7	2	6	17460.6	1272.6	-0.2	-0.2	BD			
/	2	6	17662.5	1244.1	-0.6	-0.6	AC			

Table S10: Structural conservation of the HicAB interface within the PDB The PISA server reports the PDB entry, interface number, mmSize (number of macromolecular monomers within the assembly), Q score (relates from 0 to 1 for unrelated-identical proteins), Sequence identity (Seq ID), interface area, ΔG and Complexation significance score (CSS, relates from 0 to 1 as the interface relevance increases).

Entry	Interface	mmSize	Q score	Seq Id	Interface	ΔG	CSS
	Number				area, Ų	kcal/mol	
5YRZ	6	4	0.782	0.246	1114.5	-7.9	0.468
4P78	2	4	0.710	0.328	1179.3	-7.5	0.608
3KWR	1	4	0.241	0.091	674.4	-12.5	0.436

Table S11. Oligonucleotides used in the project

Oligonucleotides		
0-48 Primer 1	IDT	gatcgtgattggatgtgtataattacacacaagacattcgggggagct
0-48 Primer 2	IDT	agctcccccgaatgtcttgtgtgtaattatacacatccaatcacgatc
48-96 Primer 1	IDT	ataggggcgaaacaatgtgaaaatacgcacggctacacaaaacttgag
48-96 Primer 2	IDT	ctcaagttttgtgtagccgtgcgtattttcacattgtttcgcccctat
96-144 Primer 1	IDT	tcgaggccgcgcgcgatgcttcagtcttgcccagcggacgggataaaa
96-144 Primer 2	IDT	ttttatcccgtccgctgggcaagactgaagcatcgcgcgcg
144-196 Primer 1	IDT	gccgcccgctggcggcagattacgacgagtggctacacacgaggaatg
144-196 Primer 2	IDT	catteetegtgtgtagecactegtegtaatetgeegecagegggggg
192-240 Primer 1	IDT	gtgccgaataagggtaactatcctgtcaatgttgacgggcaagaggtg
192-240 Primer 2	IDT	cacctcttgcccgtcaacattgacaggatagttacccttattcggcac
240-279 Primer 1	IDT	gccgaatcctcagtggaaaatccgcgaggactttagcac
240-279 Primer 2	IDT	gtgctaaagtcctcgcggattttccactgaggattcggc
0-20 Primer 1	IDT	acaagacattcgggggagct
0-20 Primer 2	IDT	agctccccgaatgtcttgt
0-25 Primer 1	IDT	tacacaaagacattcgggggagct
0-25 Primer 2	IDT	ageteecegaatgtettgtgtgta
0-30 Primer 1	IDT	ataattacacacaagacattcgggggagct
0-30 Primer 2	IDT	agctccccgaatgtcttgtgtgtaattat
0-35 Primer 1	IDT	tgtgtataattacacaagacattcggggggggct
0-35 Primer 2	IDT	agctcccccgaatgtcttgtgtgtaattatacaca
0-40 Primer 1	IDT	ttggatgtgtataattacacacaagacattcggggga
0-40 Primer 2	IDT	agctcccccgaatgtcttgtgtgtaattatacacatc
17-36 Primer 1	IDT	atgtgtataattacacacaa
17-36 Primer 2	IDT	ttgtgtgtaattatacacat
MS1 Primer 1	IDT	atgtgtataattagggacaa
MS1 Primer 2	IDT	ttgtccctaattatacacat
MS2 Primer 1	IDT	atccctataattacacacaa
MS2 Primer 2	IDT	ttgtgtgtaattatagggat
MS1MS2 Primer 1	IDT	atccctataattagggacaa
MS1MS2 Primer 2	IDT	ttgtccctaattatagggat
HicB_FL Primer 1	IDT	aggagatataccatgatggaatttcccatcgcagt
HicB_FL Primer 2	IDT	gtgatggtgatgttttgcgtgcctaactttgccttc
HicB Primer 1	IDT	aggagatataccatgatggaatttcccatcgca
HicB Primer 2	IDT	gtgatggtgatgtttttgccttcattaagtgcctc
HicB-NT Primer 1	IDT	aggagatataccatggaatttcccatcgcagtg
HicB-NT Primer 2	IDT	gtgatggtgatgtttaagatcaacgctgacgag
I51M Primer 1	IDT	catgtagagacattgatggagcttggagaagat
151M Primer 2	IDT	atettetecaagetecateaatgtetetacatg
199M Primer 1	IDT	cggatcaatgtgagtatgcctcgcttcgtgctg
199M Primer 2	IDT	cagcacgaagcgaggcatactcacattgatccg
Mutant Primer 1	IDT	aggagatataccatgatggaatttccgattgccgtgcat
Mutant Primer 2	IDT	gcactggaagcactgaatgaaggtaaaaaacatcaccatcac
R94E Primer 1	IDT	aaaccggaagaaattaatgttagc
K94E Primer 2	IDT	gctaacattaatttcttccggttt
S981 Primer 1	IDT	cgtattaatgttaccattccgcgtttt
S98T Primer 2	IDT	aaaacgcggaatggtaacattaatacg

Table S12. Samples analysed by SEC.

Elution volumes were used to calculate partition coefficient to indirectly determine the molecular weight based off the calibration curve.

Sample	Mw (Da)	Calculated Mw (Da)	Log ₁₀ Mw	V _e (ml)	Kav
HicA	7,053	8,240	0.92	14.5	0.44
HicB	62,952	65,610	1.82	9.03	0.11
HicAB	91,164	71,870	1.86	8.79	0.10
 HicAB	91,164	71,870	1.86	8.79	0.10