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SUMMARY

We developed DeepSolar, a deep learning framework analyzing satellite

imagery to identify the GPS locations and sizes of solar photovoltaic panels.

Leveraging its high accuracy and scalability, we constructed a comprehen-

sive high-fidelity solar deployment database for the contiguous US. We

demonstrated its value by discovering that residential solar deployment

density peaks at a population density of 1,000 capita/mile2, increases with

annual household income asymptoting at �$150k, and has an inverse

correlation with the Gini index representing income inequality. We uncovered

a solar radiation threshold (4.5 kWh/m2/day) above which the solar deploy-

ment is ‘‘triggered.’’ Furthermore, we built an accurate machine learning-

based predictive model to estimate the solar deployment density at the

census tract level. We offer the DeepSolar database as a publicly available

resource for researchers, utilities, solar developers, and policymakers to

further uncover solar deployment patterns, build comprehensive economic

and behavioral models, and ultimately support the adoption and management

of solar electricity.

INTRODUCTION

Deployment of solar photovoltaics (PVs) is accelerating worldwide due to rapidly

reducing costs and significant environmental benefits compared with electricity

generation based on fossil fuels.1 Because of their decentralized and intermittent

nature, cost-effective integration of solar panels on existing electricity grids is

becoming increasingly challenging.2,3 What is critically needed and currently un-

available is a comprehensive high-fidelity database of the precise locations and

sizes of all solar installations. Recent attempts such as the Open PV Project4 rely

on voluntary surveys and self-reports. While they have been quite impactful in

our understanding of solar deployment, they run the risk of being incomplete

and with no guarantee on absence of duplication. Furthermore, with the rapid

pace of solar deployment, such a database could become outdated. Machine

learning combined with satellite imagery can be utilized to overcome the short-

coming of surveys.5 The availability of satellite imagery with spatial resolution

less than 30 cm for the majority of the US, which is annually updated, offers a

rich data source for solar installation detection based on machine learning. Existing

pixel-wise machine learning methods6,7 suffer from poor computational efficiency,

and relatively low precision and recall (cannot reach 85% simultaneously), while

existing image-wise approaches8 cannot provide system size or shape information.

Google’s Project Sunroof utilizes a proprietary machine learning approach to

report locations without any size information. They have so far identified much
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fewer systems (0.67 million) than in the Open PV database (�1 million) in the contig-

uous US.

Leveraging the development of convolutional neural networks (CNNs)9 and large-

scale labeled image datasets10 for automatic image classification and semantic

segmentation,11 here we present an efficient and accurate deep learning frame-

work called DeepSolar that uses satellite imagery to create a comprehensive

high-fidelity database (which we called DeepSolar database) containing the GPS

locations and sizes of solar installations in the contiguous US. To demonstrate

the value of DeepSolar, we correlate environmental and socioeconomic factors

with solar deployment data and have uncovered interesting trends with these

factors. We utilize these insights to build SolarForest, the first high-accuracy machine

learning predictive model that can estimate solar deployment density at the

census tract level utilizing local environmental and socioeconomic features as input.

We offer DeepSolar as a publicly available database that enables researchers to

extract further insights about solar adoption, and aids policymakers to get deeper

understanding and insights about socioeconomic and environmental correlations

and causations.

RESULTS

Scalable Deep Learning Model for Solar Panel Identification

Generating a national solar installation database from satellite images requires a

method that can learn to accurately identify panel location and size from very limited

and expensive-to-obtain labeled imagery, while being computationally efficient to

run at a nationwide scale. We developed DeepSolar, a novel semi-supervised

deep learning framework featuring computational efficiency, high accuracy, and

label-free training for size estimation (Figure 1). Traditionally, training a CNN to
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Figure 1. Schematic of DeepSolar Image Classification and Segmentation Framework

(A) Input satellite images are obtained from Google Static Maps.

(B) Convolutional neural network (CNN) classifier is applied.

(C) Classification results are used to identify images containing systems.

(D) Segmentation layers are executed on positive images and are trained with image-level labels

rather than actual outlines of the solar panel, so it is ‘‘semi-supervised.’’

(E) Activation maps generated by segmentation layers where whiter pixels indicate higher

likelihood of solar panel visual patterns.

(F) Segmentation is obtained applying a threshold to the activation map and finally both panel size

and system counts can be obtained.
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classify images requires massive training samples with true image-level class

labels, while training it to segment objects requires large training set with

ground truth pixel-wise segmentation annotations, which are extremely expensive

to construct. Furthermore, fully supervised segmentation has relatively poor compu-

tation efficiency.6,7 To enable efficient solar panel identification and segmentation,

DeepSolar first utilizes transfer learning12 to train a CNN classifier on 366,467 im-

ages sampled from over 50 cities/towns across the US with merely image-level

labels indicating the presence or absence of panels. Segmentation capability is

then enabled by adding an additional CNN branch directly connected to the inter-

mediate layers of the classifier, which is trained on the same dataset to greedily

extract visual features to generate clear boundaries of solar panels without any

supervision of actual panel outlines. Such a ‘‘greedy layer-wise training’’ technique

greatly enhances the semi-supervised segmentation capability, making its perfor-

mance comparable with fully supervised methods. The output of this network is

an activation map that involves a threshold to produce panel outlines. Segmentation

is not applied on samples predicted to contain no panels, greatly enhancing

the computation efficiency. Details can be found in Experimental Procedures and

Supplemental Information.

The performance of our model is evaluated on a test set containing 93,500

randomly sampled images across the US. We utilize precision (rate of correct

decisions among all positive decisions) and recall (ratio of correct decisions

among all positive samples) to measure classification performance. DeepSolar

achieves a precision of 93.1% with a recall of 88.5% in residential areas and

a precision of 93.7% with a recall of 90.5% in non-residential areas. Such a

result is significantly higher than previous reports.6–8,13 Furthermore, our

performance evaluation guarantees far more robustness since their test sets

were only obtained from one or two cities but ours are sampled from

nationwide imagery. Mean relative error (MRE), the area-weighted relative error,

is used to measure size estimation performance. The MRE is 3.0% for

residential areas and 2.1% for non-residential areas for DeepSolar. The errors are

independent and nearly unbiased so MRE decreases even further when

measured over larger regions. See more details in Supplemental Information

Section 2.3.

Nationwide Solar Installation Database

DeepSolar was used to scan, within a month, over one billion image tiles covering

all urban areas as well as locations with reasonable nighttime lights to construct

the first complete solar installation profile of the contiguous US with exact locations

and sizes of solar panels (see Supplemental Information Section 2.4 for details). The

number of detected solar systems in the contiguous US is (1.4702 G 0.0007)

million, which exceeds the 1.02 million installations without accurate location in

Open PV4 and the 0.67 million installations without size information in Project

Sunroof. In our detected installation profile, a solar system is a set of solar panels

on top of a building, or at a single location such as a solar farm. We built a

complete resource density map in the contiguous US from state level to

household level (Figure 2). Solar installation densities have dramatic variability at

state (e.g., 1.34–224.1 m2/mile2) and county levels (e.g., 255–7,490 m2/mile2 in

California). Distributed residential-scale solar systems are 87% of the total system

counts, but 34% of the total panel area in our database, and 23.4% of the census

tracts contain 90% of the residential-scale installations (Figure 3A). Only 2,998

census tracts (4%) have more than 100 residential-scale systems (Figure 3B).

The median of average system size for tracts with different levels of residential
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solar system counts are all between 20 and 27 m2 (Figure 3B). Due to the distrib-

uted nature of residential solar systems and their small variability in sizes, in this

work we focus on residential solar deployment density defined as the number of

residential-scale systems per thousand households at the census tract level.

Leveraging our database, non-residential solar deployment can also be extensively

analyzed in the future.

Correlation between Solar Deployment and Environmental/Socioeconomic

Factors

We correlate the residential solar deployment with environmental factors such as

solar radiation and socioeconomic factors from US census data to uncover solar

deployment trends. We also collect and consider possible financial indicators

reflecting the cumulative effects of energy policies, including the average electricity

Figure 2. Solar Resource Density (Solar Panel Area per Unit Area [m2/mile2]) at State, County, and Census Tract Levels, with Examples of Detected

Solar Panels

Darker colors represent higher solar resource density. Several census tracts in Hudson County, New Jersey, have solar resource density higher than

30,000 m2/mile2 while the five northern states (Montana, Idaho, Wyoming, North Dakota, and South Dakota) have solar resource density less than

1.34 m2/mile2, indicating extremely heterogeneous spatial distributions. The red-line rectangles denote the predicted bounding boxes of solar power

systems in image tiles and the values denote the estimated area of solar systems.
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retail rate over the past 5 years, the number of years since the start of net metering,

and other types of financial incentives.

Results show that solar deployment density sharply increases when solar radiation is

above 4.5–5 kWh/m2/day (Figure 4A), which we define as an ‘‘activation’’ threshold

triggering the increase of solar deployment. When we dissect this trend according

to electricity rates (Figure 4C), we find that the activation threshold is clear for

low-electricity-rate regions, but it is unclear in high-electricity-rate regions, indi-

cating that this threshold may reflect a potential financial break-even point for

deep penetration of solar deployment.

Since significant variation of solar deployment density is observed with solar radia-

tion (see Supplemental Information Section 3.1 for details), we split all tracts into

three groups according to the radiation levels (low, medium, and high), and analyze

the trends with other factors based on such grouping. Population/housing density

has been observed to be positively14 or negatively15,16 correlated with solar deploy-

ment. Figure 5A shows that both trends hold but with a peak deployment density at

the population density of 1,000 capita/mile2. Rooftop availability is not the limiting

factor as the trend persists when we compute the number of systems per thousand

rooftops (see Supplemental Information Section 3.2). Annual household income is a

substantial driver for solar deployment (Figure 5B). Low- and medium-income

households have low deployment densities despite solar systems being profitable

for high-radiation rates, indicating that the lack of financial capability of covering

the upfront cost is likely a major burden of solar deployment. Surprisingly, we

observe that the solar deployment in high-radiation regions saturates at annual

household incomes higher than $150,000 indicating other limiting factors. Solar

deployment density rate also shows an increasing trend with average education

level (Figure 5C). However, if conditioning on income, this trend actually does

not hold in regions with high radiation, but still holds in the regions with poor solar

radiation and lower income level (Figure S15). Moreover, solar deployment density

in census tracts with high radiation is strongly correlated, and decreasing, with

Figure 3. Residential Solar Deployment Statistics at Census Tract Level

(A) Cumulative distribution of residential solar area over census tracts.

(B) Tract counts of the number of solar systems. The left y axis is the number of census tracts, corresponding to the bar plot. The right y axis is the tract

mean solar system size, corresponding to the purple error bar plot. The purple dots are the medians of tract average system size within each category;

the error bars represent 25% and 75% percentiles.

(C)Mean system size of a tract varies with the number of residential solar systems in the tract. Each point represents one census tract. When the number

of system increases, the mean size converges to 25 m2.
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the Gini index, a measure of income inequality (Figure 5D). Additional trends that

illustrate racial and cultural disparities, for example, can be extracted utilizing this

database. We expect that routinely updating the DeepSolar large-scale database

and making it publicly available can empower the community to uncover further

insights.

Predictive Solar Deployment Model

Models that estimate deployments from socioeconomic and environmental vari-

ables are key for decision making by regulatory agencies, solar installers, and

utilities. Studies have focused on either utilizing surveys17–23 or data-driven

approaches14–16,24–28 at spatial scales ranging from county- to state-level models,

achieving in-sample R2 values between 0.04 and 0.71. The models are

typically linear28 or log-linear27 and utilize less than 10,000 samples for

regression. Our result instead reveals that socioeconomic trends are highly non-

linear. Furthermore, our database, generated by DeepSolar, offers abundant

data points to develop elaborate non-linear models. Hence, we build and compare

several accurate predictive models to estimate solar deployment at census tract

level utilizing the data from more than 70,000 census tracts (see details in

Experimental Procedures). Each model takes 94 environmental and socioeconomic

Figure 4. Correlation between Solar Radiation and Solar Deployment

(A) Solar deployment density has non-linear relationship with solar radiation. Two thresholds (4.5 and 5.0 kWh/m2/day) are observed for all percentiles.

Shaded areas represent the cumulative maximum of percentile scatters. Census tracts are grouped according to 64 bins of solar radiation. Curves are

fitted utilizing locally weighted scatterplot smoothing (LOWESS).

(B) US map colored according to the three levels of average solar radiation defined by the thresholds identified in (A).

(C) Solar deployment density correlation with solar radiation, conditioning on the level of electricity retail rate.
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factors as inputs, such as solar radiation, average electricity retail rate over past

5 years, number of years since the start of different types of financial incentives,

average household income, etc. (see details in Supplemental Information

Section 1.2). These 94 factors are the largest set of factors we can collect for all

census tracts and part of them have been also utilized and reported in previous

works.14–16,24–28

Among all predictive models, the Random Forest-based model, called SolarForest,

achieves the tier-1 out-of-sample R2 value of 0.72 in the 10-fold cross-validation,

which is even higher than the in-sample R2 values of any other models in

previous works.14–16,24–26,28 SolarForest is a novel machine learning-based

hierarchical predictive model that postulates census tract level solar deployment

as a two-stage process: whether tracts contain solar panels or not, and, if they

do contain them, the number of systems per household is decided (Figure 6A).

Each stage utilizes a Random Forest29 that takes all 94 factors. By ranking the

Figure 5. Residential Solar Deployment Density Correlates with Socioeconomic Factors Conditional on Radiation

Census tracts are grouped according to 64 bins of the target factor. Curves are fitted utilizing LOWESS. Blue/green/brown labels denote the county that

the median census tract in the bin belongs to. Here we only show tracts with high solar radiation (>5.0 kWh/m2/day). Complete trends are shown in

Figure S14.

(A) Solar deployment density increases with population density with a peak at 1,000 capita/mile2.

(B) Solar deployment density increases with average annual household income but saturates at incomes of $150k.

(C) Solar deployment density increases with the average years of education.

(D) Solar deployment density decreases with income inequality in a tract and a critical Gini index of 0.4 saturates solar deployment.
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feature importance in prediction at both stages, we observe that population den-

sity is the most significant feature to decide whether a census tract contains solar

systems (Figure 6B); for a census tract containing solar systems, environmental

features such as solar radiation, relative humidity, and number of frost days serve

as the most important predictors to estimate the solar deployment density

(Figure 6C).

DISCUSSION

DeepSolar is a novel approach to create, publish, update, and maintain a compre-

hensive open database on the location and size of solar PV installations. We

aim to continuously update the database to generate a time-history of solar installa-

tions and increase coverage to include all of North America, including remote areas

with utility-scale solar, and non-contiguous US states. Eventually the database will

Figure 6. Architecture and Feature Importance of SolarForest

(A) SolarForest combines two random forests: a Random Forest binary classifier (blue) to predict whether a census tract contains at least one solar

system, and a Random Forest regression model (magenta) to estimate the number of solar systems per thousand households if the tract contains solar

systems. The classifier consists of 100 decision trees and the regressor consists of 200 decision trees. Each circle in decision trees represents a node for

binary partitioning according to the value of one feature. If the output of the classifier is ‘‘Yes,’’ the final prediction of solar deployment density rate is the

output of the regressor, else the solar deployment density is predicted to be zero.

(B) The relative feature importance in SolarForest model, classification stage.

(C) The relative feature importance in SolarForest model, regression stage.
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include all regions in the world that have high-resolution imagery. In this work, we

only estimated the horizontal projection areas of solar panels from satellite imagery.

In the future, based on the existing GPS location information, we aim to continue

using deep learning methods to infer roof orientation and tilt information from street

view images, enablingmore accurate estimation of solar system size and solar power

generation capacity. In addition, the database is linked to US demographic data,

solar radiation, utility rates, and policy information. We demonstrated that this

rich database led to the discovery of previously unobserved non-linear socioeco-

nomic trends of solar deployment density. It also enabled the development of

state-of-the-art predictive models on solar deployment based on machine learning.

As we update the database annually, such predictive models can be further

improved to forecast the annual increment of solar installations in the census tracts

according to the local environmental and socioeconomic factors. In the near future,

this database can be utilized to develop granular adoption models relying on richer

information on electricity rates and incentives, conduct causal inferences, and gain

nuanced understanding of peer effects, inequality and other sociocultural trends

in solar deployment. It can serve as a starting point to develop engineering models

for solar generation in power distribution systems. The DeepSolar database closes a

significant gap for the research and policy community, while at the same time

advances methods in semi-supervised deep learning on satellite data and solar

deployment modeling.

EXPERIMENTAL PROCEDURES

Massive Satellite Imagery Dataset

A massive amount of image samples is essential for developing a CNN model,

since CNN can only gain good generalization ability with a large number of labeled

samples for training. Bradbury et al.30 built a manually labeled dataset based on US

Geological Survey orthoimagery. However, it is sampled from only four cities in

California, failing to cover the nationwide diversity, and thus they cannot guarantee

the model developed with it to still perform well on other regions. In comparison,

we have built a large-scale satellite image dataset based on the Google Static

Map API with images collected to cover comprehensively the contiguous US

(50 cities/towns). Our dataset consists of a training set (366,467 samples), a valida-

tion set (12,986 samples), and a test set (93,500 samples). The percentage of

images in the dataset for model development compared with the total number

of images we scanned so far in the US is 0.043%. Images in the test set are

randomly sampled by generating random latitude and longitude within rectangular

regions totally different from those in the training set. To train both classification

and segmentation capabilities, an image-level label, indicating positive (containing

solar panel) or negative (not containing solar panel), is annotated for all samples in

the dataset. To evaluate the ability of size estimation, each test sample is also

annotated with ground truth regions of solar panels beside image-level labels.

We are also making this dataset public for the research community to drive model

developing and testing on specific computer vision tasks. See Supplemental Infor-

mation Section 1.1 for more details.

System Detection Using Image Classification

We utilize a state-of-art CNN architecture called Inception-v331 as our basic classifi-

cation framework. The Inception-v3 model is pre-trained with 1.28 million images

containing 1,000 different classes in the 2014 ImageNet Large Scale Visual Recogni-

tion Challenge,10 and achieves 93.3% top 5 accuracy on that dataset. We start

from the pre-trained model since the diversity from the massive dataset helps the

CNN learn basic patterns of images across multiple domains. The model is then
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developed on our training set by re-training the final affine layer from randomized

initialized parameters and fine-tuning all other layers starting from the well-trained

parameters. This process, called transfer learning,12 is becoming common practice

in deep learning and computer vision. The output of our model is a set of two prob-

abilities indicating positive (containing solar) and negative (not containing solar).

The outputs of our model are two probabilities indicating positive (containing solar)

and negative (not containing solar). The distribution of binary solar panel labels is

extremely skewed in the training set (46,090 positive in 366,467 total) since solar

panels are very rare compared with the whole territory. We solve this problem

with a cost-sensitive learning framework,32–34 which automatically sets more penalty

to the misclassifications of positive samples than negative samples (see details in

Supplemental Information Section 2.1).

Size Estimation Using Semi-supervised Segmentation

In addition to identifying whether an image tile contains solar panels, we also

develop a semi-supervised method to accurately localize solar panels in images

and estimate their sizes. Compared with fully supervised approaches suffering

from low computation efficiency and requiring a large number of training samples

with ground truth segmentation annotations, our semi-supervised segmentation

model requires only image-level labeled (containing solar or not) images for training,

which is achieved by greedily extracting visual patterns from intermediate results of

classification. Roughly speaking, in CNN, the output of each convolutional layer is a

stack of featuremaps, each representing different feature activations. With the linear

combination of these visual patterns, we can obtain a class activation map (CAM)35

indicating the most activated regions of our target object, a solar panel. Further-

more, in CNN, features learned at upstream layers represent more general patterns

such as edges and basic shapes, while features learned at downstream layers repre-

sent more specific patterns. As a result, upstream feature maps are more complete

but noisy, while downstream feature maps are more discriminative but incomplete.

By greedily extracting features at upstream layers, we can generate both complete

and discriminative CAM for segmentation. To achieve that, we repeat greedily

training a series of layers for classification and adding new layers after training

(see details in Supplemental Information Section 2.2). Such a greedy layer-wise

training mechanism is for the first time proposed for semi-supervised object seg-

mentation. The code for system detection and size estimation is available here:

http://web.stanford.edu/group/deepsolar/home.

Distinguish between Residential and Non-residential Solar

Our database contains both residential and non-residential solar panel data. We

distinguish between residential and non-residential solar panels since they have

different usages, scales, and economic natures. Due to the size, shape, and location

differences of these two types of solar panels, we utilize a logistic regression model

and train it with four basic features of each solar system: solar system area, nightlight

intensity, the ratio between the solar system area and its bounding box area, and a

Boolean, indicating if the system is merged from a single image tile. Since the non-

residential solar systems only account for a small proportion, we also assign different

weights, which are inversely proportional to the quantity ratio, to the misclassifica-

tion of these two types during training. The training set size is 5,000 and the test

set size is 1,078. Out-of-sample tests show that the recall is 81.3% for the residential

type and 98.5% for the non-residential type, and the precision is 96.8% for residen-

tial type and 90.6% for non-residential types on the test set. These results are in

terms of area.
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Predictive Solar Deployment Models

We have developed and compared several non-linear machine learning models to

estimate the census tract level solar deployment rate utilizing 88 environmental

and socioeconomic factors as inputs. The models are linear regression with

quadratic and interaction terms, multivariate adaptive regression splines (MARS),

one-stage Random Forest, two-stage models utilizing a second stage with linear

regression or MARS, two-stage Random Forest (SolarForest), and feedforward neu-

ral network (SolarNN). We utilize 10-fold cross-validation to estimate their out-of-

sample performances. The results in Table 1 summarize performance utilizing

cross-validation R2 values (out-of-sample estimate) to compare easily between

different models. SolarForest achieves R2 = 0.722 and SolarNN achieves R2 =

0.717, which are the highest state-of-the-art accuracy.

SolarForest is an ensemble Random Forest29 framework with a Random Forest

classifier and a Random Forest regression model (Figure S12). It aims at

capturing a two-stage decision process at the census tract level. The classifier

identifies whether a census tract has at least one system installed and the

regressor estimates the number of systems installed in the tract in case the tract con-

tains solar systems. Both models utilize the 88 socioeconomic and environmental

census tract level variables listed in Supplemental Information Section 1.2. Gini

importance is used to measure the feature importance for both classifier and regres-

sor in the SolarForest, which is calculated by adding up the Gini impurity decreases

during the fitting process for each individual feature. SolarNN is a feedforward neu-

ral networkmodel with five hidden fully connected layers. Each hidden layer contains

88 neurons. It has a scalar output of the estimated value of solar deployment density.

The activation function used in SolarNN is ReLU.36

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, 18 fig-

ures, and 4 tables and can be found with this article online at https://doi.org/10.

1016/j.joule.2018.11.021.
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Table 1. Comparison of the Cross-Validation R2 Value of Different Solar Deployment Predictive

Models

Model Cross-Validation R2

LR (quadratic + interaction) 0.181

MARS 0.267

RF regressor 0.412

RF classifier + LR (quadratic + interaction) 0.643

RF classifier + MARS 0.592

SolarForest (RF classifier + RF regressor) 0.722

SolarNN (Feedforward neural network) 0.717

Ten-fold cross-validation is carried out utilizing the census tract data. LR, linear regression; MARS, multi-

variate adaptive regression splines; RF, random forest. Hierarchical SolarForest proposed in the paper

was the best-performing model.
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