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Estimation of the Number of Detected Photons and the Uncertainty using an 
EMCCD detector 

To calculate the uncertainty in the measured fluorescence intensities in the single-pair FRET 

traces, it is necessary to know the number of photons that have been detected. At the low 

intensities available in single molecule experiments, the uncertainty is dominated by shot-

noise. Shot-noise is Poisson distributed and hence, when using photon-counting detectors, the 

uncertainty (i.e. standard deviation) is given by the square root of the number of detected 

photons.  

Although current EMCCD cameras detect single photons, the readout is not given in photons 

and additional noise-sources are present. Each detected photon generates an electron in the 

CCD chip. However, to readout the number of electrons, the charge has to be shifted and is 

often amplified. The number of detected photons can be estimated from the camera counts 

using:  

  (S1) 

where the number of electrons per camera count is given for each individual camera by the 

manufacture and the Gain is either provided directly, as in the case of a calibrated linear gain, 

or is determined independently. In our analysis, photons detected from the same molecule on 

different pixels are summed together to give an estimate of the total intensity of the molecule 

in the individual frame. The total fluorescence signal is coming from the molecule of interest 

and from the background. The background intensity is calculated from the pixels surrounding 

the individual molecules. The average background intensity is determined and subtracted 

from the total intensity of the individual molecule. Usually, one can select a large enough 

region of pixels for calculating the average background intensity that no additional error is 

brought in via background subtraction. When the background intensity changes slowly with 

time, the background can also be averaged with a sliding time window to provide a very 

accurate average value. Thus, the uncertainty in the fluorescence signal is given by the shot 

noise, i.e. the total number of detected photons (signal plus background). The fluorescence 

signal and uncertainty in each frame is then given by:  

  (S2) 

where Ni represents the total number of detected photons in the ith channel and ID and IA the 

corrected intensities for the donor and acceptor channels respectively. We neglect direct 

excitation of the acceptor molecule with donor excitation, although it could be easily 

NPhotons =
NCamera Counts × Ne− /Camera Counts

Gain

ID = ND − ID
background ; σ D

2 = ND

IA = NA − IA
background − ID

crosstalk ; σ A
2 = NA
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incorporated if desired. Additional noise sources include thermal noise or dark counts, clock-

induced charge, multiplicative noise and readout noise. See references (1, 2) for a detailed 

description of camera noise. For our EMCCD camera (DV887-BV iXon+, Andor 

Technology), the thermal noise and clock-induced charge are negligible. In addition, the 

readout noise is significantly smaller than one photon after amplification. If one could directly 

determine the number of electrons per pixel, then a CCD camera could be used as a photon-

counting device. However, due to the different noise sources involved in reading the output of 

the camera, it is not possible to uniquely determine the number of detected photons. 

Therefore, we approximate the number of detected photons and thereby estimate the 

uncertainty of the measurement.  

 

Comparison of HMM analyses with and without incorporation of the camera noise. 

We simulated 20 single molecule FRET trajectories using a four-state Markov model. The 

parameters for the four-states were chosen with FRET values of {0.25, 0.45, 0.65, 0.85}, a 

variance and dwell time for each state of 0.002 and 100 ms, and an equal probability for 

transitions between all other states. The twenty state sequences (i.e. 20 molecules) were 

generated each with a length of 800 data points (one data point representing a 5 ms frame). 

Starting from the state sequence, the fluorescence signals were created. Each molecule was 

assigned an average total intensity from a random number between 10 and 110 counts per 

frame to generate bright and dark molecules. The average intensity of the donor and acceptor 

signal were calculated from the FRET state occupied at that time point. Noise was than 

generated by producing independent random numbers with a Gaussian distribution with a 

variance given by mean intensity (i.e. the variance of a Poissonian distribution) multiplied by 

a factor of 2 (i.e. to simulate the addition noise of the EMCCD-technology). This leads to 20 

pairs of donor and acceptor traces of 800 frames duration each, which were than analyzed 

with the different HMM approaches. The results are summarized in Supporting Table S1. 

 

Model selection criteria 

For all four different promotors, the loglikelihood values increased with rising model 

complexity (Figure S5, first row). Every additional state for the parameter room led to a better 

description of the data and resulted in a higher loglikelihood value. To handle this problem, 

the Bayesian Information Criterion (BIC) has been established by Schwarz in 1978 to give a 

Bayesian argument for model selections by accounting for the model complexity (3). The 

BIC, which is still under scientific debate (4), is defined as: 

  (S3) 2ln lnBIC L Tq= - +
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with ln L, loglikelihood of the data given the complete set of free parameters; T, the number 

of data points, and q, the number of free parameters.  

The second term is called the "penalty term", because it increases with a rising number of 

states and, therefore, acts against the first term, which decreases with expanded models. In 

principle, this leads to a minimum of the BIC for a certain number of free parameters 

indicating an appropriate choice of the number of hidden states. However, in our case, the 

BIC always decreased with an increasing number of states (see Figure S5, second row) 

implying at least ten different hidden states.  

Alternatively, we obtained a reasonable model size by investigating the variances of the steps 

delivered by the model by calculated the c2 values. The correct number of states should yield 

similar results for the steady traces (without NC2) and dynamic case (in the presence of NC2) 

(Figure 3, third row): 

  (S4) 

For the static FRET efficiency case in the absence of NC2, all ten hidden Markov models 

were expected to predominantly mark one step per molecule. Calculating the variances for 

these steps defined a lower bound, which was basically independent of the model. In the 

dynamic case of TBP-NC2-DNA, only suitable models were capable to assign the hidden 

states correctly. Incorrectly assigned steps included either missing jumps in the FRET 

efficiency, leading to raised variances, or falsely divided steps that fit the noise, resulting in 

underestimated variances. The results are shown in Figure S5 for the four different promotors 

investigated, both before (static in red) and after (dynamic in blue) addition of NC2. The c2-

curves of the dynamic cases suggested that already a two-state model should resolve the main 

behavior of the TBP-NC2-complex, i.e. jumps between the steady FRET-level (~0.4) and a 

second higher FRET-level (~0.8). Additional HMM states refined this picture and resolved 

more and more short-living intermediate states around ~0.65 between the two major states. A 

fourth additional low-FRET-state was found at EFRET ~0.2. We assumed that a sufficient 

model complexity should be achieved when the c2 values of the dynamic cases reached the c2 

value for the static conditions. Adding more than four states did not lead to any significant 

improvement of the c2 values for the AdML promoter and provided already reasonable 

information for the promoter H2B (Figure S5). As a result, a global HMM with a minimal 

number of four states was chosen to describe the main features of the TBP-NC2-DNA 

dynamics.  

2 21 1( ) , with 
step step

t step step t
step t T t Tstep
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The validity of the usual BIC analysis can be increased by taking into account a potential 

deviance of the gamma-factors between the molecules. Therefore, an additional BIC was 

calculated from the modified c2-value (Eq. S4) from the Loglikelihood: 

 (S5) 

where T denotes the total number of analyzed frames, c2 is the modified residual sum of 

squares according to Eq. S4, and q counts the number of free parameters. 

Like the usual BIC, the first summand decreases with increasing model complexity whereas 

the second increases acting like a “penalty term”. Both summands together should indicate the 

right model size by a minimum of the BIC value. The result is shown in Figure S5, forth row. 

The usual BIC decreases without interruption with increasing model complexity whereas the 

decrease of the modified BIC stagnates for all samples at four hidden states.  

The gain in validity of the c2-BIC is given by the modified calculation of the c2-value. The 

c2-value usually describes the squared difference between the fit and the data. Note, that the 

fit here was replaced by the mean value of a marked step instead of using the resulting FRET-

efficiency of the corresponding hidden state. Small deviances in the gamma-factors across the 

molecules yield to shifts of the FRET efficiencies of all hidden states. This usually increases 

the mismatch between the model and the data resulting in higher c2-value or lower 

loglikelihood values. With the modified c2-value, the influence of state shifts can be 

suppressed. 

In summary, the best model should have a maximum likelihood and a minimal BIC value. 

However, the likelihood always increased, as more states were included in the model. The 

usual BIC (second row) does not show any minimum, neither for the steady (red) nor for the 

dynamic (blue) FRET-trajectories. This suggests that the penalty term in the BIC for the 

complexity of the model was too small. For both the c2-value and the χ2-BIC, the static traces 

(without NC2, red), favoring a one-state model. For dynamic traces (after addition of NC2, 

blue) both values decrease with increasing model complexity up to four hidden states. 

Afterwards the c2-value and χ2-BIC stagnates indicating that a hidden Markov model with 

four hidden states is sufficient to describe the main feature of the dynamic traces. 

)log()log(BIC 2 TT qc +=



Supporting Information  Zarrabi et al. 

 6 

Transition-Density Plots 

The transition density plots (TDPs) are 2D-density plots and are usually obtained by 

performing a 2D-binning of the data. The larger the binning size, the more counts there are 

per bin but with a reduction in the resolution of the maxima. We developed an alternative 

method to create the 2D-histograms without a loss of resolution. Starting with a picture of an 

arbitrary size, e.g. 300´300 pixels, the usual binning procedure is performed. This results in a 

2D-histogram, where only a few pixels have more than one count. This 2D-histogram is 

convoluted once with a 2D-Gaussian. Its standard deviation is a free parameter analogue to 

the binning size of the standard procedure. A higher standard deviation creates maxima with 

higher counts without loss of the position accuracy. A sharper 2D-Gaussian yields more 

maxima with lower count rates analogue to a higher binning in the standard procedure. 

The transition density plots (Figure 5b and Figure S7, right panel) where created with a 

resolution of 300´300 pixels and a standard deviation of 4 pixels.  

 

Trace-wise versus global HMM 

For a comparison of the four promoters, the transition rates between the two main states, state 

2 and state 4, were expected to unravel potential differences between the promoters. However, 

the intermediate states, only poorly represented by a global HMM, were involved in the 

determination of that transition rate. Therefore, one new HMM analysis with 10 states for 

each molecule was independently performed and optimized. The subsequent calculation of the 

individual Viterbi paths was performed and used to assign different steps. The number of 10 

states was sufficient to allocate all rarely appearing intermediate states in each molecule. The 

inordinate number of states used in the analysis did not disturb the results as states that were 

not needed were not occupied (5). The results are summarized as 2D-histograms according to 

their mean FRET-efficiencies and their dwell time in Figure 4. 

For the H2B promoter constructs, the steps derived of the molecule-wise HMM around the 

global HMM states 1 and 3 did not cluster into a clear peak in the histogram shown in 

Figure 4 in comparison to the two main states. This could support the existence of many 

different intermediate states rather than a single broad one. In the latter case, a global HMM 

would describe this region by allocating a single hidden state with a broadened emission 

function. In contrast, in our case, the HMM tried to sample this area by putting more and 

more intermediate states with slightly different FRET values. The same was true for the 

HMM state at EFRET = 0.2. 
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In order to derive global transition rates from these individual states from each molecule 

(Figure 6), we re-assigned these states back into the four global HMM states of interest, 

namely states 1, 2 and 4. For this purpose, the most likely global state ik was determined out 

of the subset  of those global states for every molecule-wise obtained step k individually: 

 (S6) 

Afterwards, adjacent steps of identical states were merged. This procedure led to local 

correctly assigned steps, whereas the short-living intermediate states were in this manner 

transferred to their best fitting neighboring main state. This enabled the determination of the 

transition rate  between all states by counting the number of corresponding transitions Nij 

related to the summed duration of all steps k with assigned state i: 

  (S7) 

Ti,k denotes the duration of the kth step assigned to the main state i, Ni counts their number, Nij 

is the number of all transitions from step i to step j.  
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Distribution of the FRET efficiency from normal distributed fluorescence 
intensities 

 

The probability density functions of both fluorescence channels can be, with the assumption 

of sufficient count rates, approximated by a normal distribution. 

The joint density function of both channels is then the product of both normal distributions 

 and  and is again a normal distribution: 

 (S8) 

 

ID and IA are the time dependent photon count rates of the donor- respectively acceptor 

channel with means  and  and variances  and . The variances are directly 

related to their corresponding means due to the intrinsic Poissonian characteristics of 

fluorescence count rates: 

 and  (S9) 

where  and  are one in the case of an ideal Poisson distribution. Due to the induced noise 

by the amplification from the EMCCD-camera used here, these parameters have a value of 

two (1) and increase further with an increasing level of subtracted background photons  

respectively and crosstalk : 

 

 

⇒ 

⇒ 

 

 
(S10) 

 

The following coordination transformation leads to the distribution functions for the measured 

FRET efficiency E and total intensity I: 

 

 
 

 
(S11) 
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  (S12) 

The dependence of the new joint density functions of the new variables, E and I, have the 

following form: 

  

 (S13) 

 

The final distributions in FRET efficiency and intensity can be determined by summing over 

the intensity or FRET efficiency respectively. For generality, we integrate from -∞ to +∞, 

although the density functions should only have amplitudes where the intensity is positive and 

for FRET efficiencies are between 0 and 1.  

  

and 

  

 

We first consider :  

=   

where c represents a constant and O(E2) the exponent, which is a function of E2. The Gaussian 

integral converges. As I > 0, the absolute value operation can be ignored and the result is a 

normal distribution: 

 with  and  (S15) 

The mean values and variances of the fluorescence intensities just sum up to the sum 

intensity, as one would expect. 
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Solving the integral for  is more involved: 

 (S16) 

where O(I2) represents the exponent, which is a function of I2. The absolute value of the sum 

intensity |I| can be replaced by I, because both Gaussians correspond to approximations of 

Poissonian distributions with  or . The impact of negative I-values is therefore 

negligible.  

Assuming > 0 and > 0, the integral is soluble and given by:  

 (S17) 

where we have used Eqn (S9) to convert the variances  and  into  and 

 and introduced additional functions u(E), v(E) and  to simplify the 

representation of the formula; 

,  

 

and 
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function with a quadratic function as an exponent: 
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 (S19) 

By setting the coefficients of the quadratic exponent equal and solving for µx, σx and c yields 

Eqn S17 from the product of cµx.  

Eqn S17 approximates a normal distribution multiplied by a prefactor,  and a variance, 

, that depends on E. We can approximate the prefactor and variance using a Taylor 

series expansion about E = µE, which is the crucial region of the formula. For the prefactor: 

 (S20) 

and for the variance: 

 (S21) 

Replacing the arguments that depend on E with the zeroth terms of their Taylor-

approximations, the pre-factor becomes one and variance is replaced by the zeroth term: 

 (S22) 

Substituting this into Eqn (S17) yields:  

 (S23) 

Thus, the distribution in FRET efficiency can be well approximated by a Gaussian 
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Supplementary Figures 
 

 

Figure S1: Monte Carlo Simulations and Extended HMM analysis of spFRET histograms. (a,b) 
Histogram of the spFRET proximity ratio (blue) with 50,000 simulated data points with an average 
FRET efficiency of 0.20 and a standard deviation of 0.04 for (a) 20 counts/ms and (b) 100 counts/ms. 
Dotted green lines: the underlying hidden FRET distribution. Solid green lines: broadening due to the 
limited number of measured photons. (c) The estimator tested for mean FRET efficiencies of 0.1, 0.2, 
0.3 and 0.4 together with an inherent standard deviation of 0.05. The HMM works reliably over a wide 
range of values even when the underlying Gaussian distribution falls outside of the boarders of 0 and 1 
and the appearing asymmetry of the data is not accounted by the estimator. (d) The estimation of the 
variances at standard deviations of 0.01, 0.04, 0.07 and 0.10 together for a mean FRET efficiency of 
0.2. A slight systematic deviation at lower count rates and higher standard deviations is observed. 
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Figure S2: Experimental distribution of the total intensity per frame. Histograms of the total 
photons detected in the donor and acceptor channels per 5 ms frame are shown for TBP-DNA 
complexes in the absence (red) and presence (blue) of NC2. The different DNA sequences investigate 
are (a) a 70 bp upstream-labeled DNA containing the AdML TATA box, (b) a 110 bp upstream-
labeled DNA containing the AdML TATA box, (c) an 80 bp upstream labeled DNA containing the 
H2B TATA box and (d) an 80 bp downstream labeled DNA containing the H2B TATA box.   
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Figure S3: SpFRET trace with donor-quenching. An exemplary spFRET trace of the promoter 
AdML 110 bp upstream-labeled construct after addition of NC2 where the donor is transiently 
quenched. Purple: Total intensity per 5 ms, green: donor fluorescence counts per 5 ms, red: acceptor 
fluorescence counts per 5 ms, blue: FRET efficiency, orange: Viterbi path of the two-state model 
HMM analysis with the standard deviation due to shot noise shown as the envelope about the Viterbi 
path. The sudden drop in fluorescence intensity around 0.45 s due to transient quenching of the donor 
molecule leads to high fluctuations in the FRET efficiency trace. The new estimators are able to 
account for this effect: the density function (orange) is locally broadened when the total intensity 
drops, which ensures a correct assignment of the FRET conformation at this time to the low-FRET 
state. 
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Figure S4: Plots of the experimentally determined variances versus mean intensity. The variance 
determined from 50 consecutive frames is plotted as a function of the corresponding background-
corrected mean value for the donor (green) and acceptor (red) channels in the (a) absence (525 points) 
and (b) presence of NC2 (1519 points). The theoretical dependence expected from shot noise: 

,
 

are shown as a solid lines for the respective channels. For a Poissonian distribution, the variance is 
equal to the mean of the detected photons (signal and background). The factor of two accounts for the 
additional noise generated by the on-chip gain of the EMCCD camera. Before addition of NC2 (a), the 
data points lie close to the theoretical curve whereas, after addition of NC2 (b), the variances from the 
data points are much higher than the theoretical curve revealing the presence of additional 
conformational dynamics. 

  

σ D/A,theo
2 (µD/A ) = 2 µD/A + ID/A0

background( )
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Figure S5: Determination of the number of relevant FRET states. Various criteria were tried to 
determine the number of distinguishable FRET states in the spFRET measurements. The 
Loglikelihood, c2-value and their corresponding Bayesian Information Criterion (BIC) are shown for 
the four different samples in the absence (red) and presence (blue) of NC2. First row: The 
Loglikelihood is plotted as a function of the number of states. Second row: The BIC calculated 
according to the obtained Loglikelihood-value. Third row: A plot of the c2 for the comparison of the 
Viterbi path to the spFRET data is plotted as a function of the number of states in the HMM. Fourth 
row: The BIC calculated according to the modified c2-value.  

  



Supporting Information  Zarrabi et al. 

 17 

0 10 20 30 40 50
0.00

0.01

0.02

0.03

0.04

0.05
18.3%

pr
ob

ab
ilit

y

dwell time (ms)

t = 24.7 ms

81.7%

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S6: Fraction of Missed Transitions. The survival probability of the 0.64 FRET efficiency 
state for TBP bound to the 70 bp upstream-labeled DNA containing the AdML TATA box in the 
presence of NC2 determined from the HMM analysis is shown. An exponential function with a 
lifetime of 24.7 ms is shown for comparison. Assuming a minimum dwell time of 5 ms for a transition 
to be detected with the HMM analysis, ~ 18 % of the transitions from E = 0.40 to E = 0.64 on to E = 
0.83 would be detected as a direct transition between the E = 0.40 and E = 0.83 FRET efficiency 
states.  
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Before addition of NC2                    After addition of NC2 
   

    AdML 70 bp up   AdML 70 bp up  

   
   AdML 110 bp up AdML 110 bp up  

  
 

   H2B 80 bp up   H2B 80 bp up  

  
 

 H2B 80 bp down   H2B 80 bp down  

  
 

Figure S7:  SpFRET traces and TDPs of all four sample preparations. Representative spFRET traces 
are shown for the four constructs investigated in this work in the absence (left) and presence (middle) of 
NC2. The total intensity is shown in purple, the intensity of the donor fluorophore is shown in green, the 
intensity of the acceptor fluorophore is shown in red, the frame-wise FRET efficiency is shown in blue and 
the Viterbi path and uncertainty due to shot-noise are shown in orange. (right) The TDPs are shown for the 
different complexes. The optimized Viterbi path from the global four-well HMM analysis was calculated 
for the individual traces and average FRET efficiency plotted as a Gaussian with a width of 2% for each 
level. The plots are normalized to the maximum number of transitions and indicates how often the 
transitions were observed with rare transitions given in blue and more frequent transitions highlighted in 
yellow. The corresponding color bar is shown to the right. The white pluses represent the values returned 
from the global four-well HMM analysis.  
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Supplementary Tables 

State FRET Efficiency µ Width σ Dwell Time (ms) 

Model Standard 
HMM 

Extended 
HMM 

Model Standard 
HMM 

Extended 
HMM 

Model Standard 
HMM 

Extended 
HMM 

s1 0.250 0.246 0.251 0.002 0.011 0.002 100.0 80.3 106.1 

s2 0.450 0.449 0.450 0.002 0.015 0.002 100.0 90.3 108.8 

s3 0.650 0.651 0.648 0.002 0.014 0.002 100.0 73.9 92.5 

s4 0.850 0.850 0.849 0.002 0.008 0.002 100.0 87.5 110.8 
Table S1: Comparison of the Standard HMM and the Extended HMM. Results from a simulation of 20 
molecules using either the standard HMM or the HMM where the camera noise is incorporated into the analysis.  
 

 AdML 70 bp 
up stream 

AdML 110 bp 
up stream 

H2B 80 bp 
up stream 

H2B 80 bp 
down stream 

without NC2 103 141 132 62 

with NC2 432 315 279 55 

Table S2: Number of molecules used by the hidden Markov analysis. Data were collected at 5 ms/frame or 
200 Hz. From each molecule, the donor and acceptor intensities where extracted and a FRET trajectory was 
calculated.  

 

 AdML 70 bp 
up stream 

AdML 110 bp 
up stream 

H2B 80 bp 
up stream 

H2B 80 bp 
down stream 

 –NC2 +NC2 –NC2 +NC2 –NC2 +NC2 –NC2 +NC2 

1 hidden state 103 432 141 315 132 279 62 55 

2 hidden states 147 3643 217 2610 252 1113 82 128 

3 hidden states 173 8146 241 4128 330 1829 123 184 

4 hidden states 160 9546 252 6416 304 1966 112 291 

5 hidden states 176 9786 256 6381 323 1984 124 340 

6 hidden states 181 9299 234 6008 354 2031 129 366 

7 hidden states 183 11797 239 6126 378 1885 140 411 

8 hidden states 150 11746 262 7002 315 1853 137 358 

9 hidden states 200 12688 263 6489 273 1807 128 367 

10 hidden states 180 12582 296 8235 313 1930 132 371 

Table S3: Transitions found in Various HMM Analyses. The number of detected transitions for the different 
hidden Markov models for each sample before (steady) and after (dynamic) the addition of NC2.  
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Number 
of 

hidden 
states 

AdML 70 bp 
up stream 

AdML 110 bp 
up stream 

H2B 80 bp 
up stream 

H2B 80 bp 
down stream 

µ σ f µ σ f µ σ f µ σ f 

1 0.61 0.22 100% 0.57 0.22 100% 0.46 0.18 100% 0.45 0.19 100% 

2 0.39 
0.78 

0.09 
0.12 

43% 
57% 

0.36 
0.75 

0.12 
0.09 

45% 
55% 

0.36 
0.71 

0.09 
0.09 

72% 
28% 

0.33 
0.68 

0.10 
0.11 

66% 
34% 

3 
0.34 
0.60 
0.82 

0.10 
0.08 
0.05 

32% 
23% 
44% 

0.26 
0.48 
0.77 

0.09 
0.08 
0.07 

21% 
30% 
49% 

0.30 
0.44 
0.73 

0.08 
0.06 
0.08 

39% 
36% 
25% 

0.31 
0.52 
0.76 

0.09 
0.07 
0.07 

56% 
25% 
19% 

4 

0.20 
0.40 
0.64 
0.83 

0.08 
0.07 
0.07 
0.04 

7% 
29% 
23% 
41% 

0.20 
0.38 
0.62 
0.81 

0.07 
0.06 
0.06 
0.04 

10% 
29% 
24% 
37% 

0.26 
0.39 
0.58 
0.76 

0.07 
0.06 
0.06 
0.07 

19% 
47% 
14% 
19% 

0.19 
0.36 
0.56 
0.78 

0.06 
0.06 
0.06 
0.06 

15% 
47% 
22% 
17% 

5 

0.18 
0.36 
0.50 
0.70 
0.85 

0.08 
0.06 
0.06 
0.07 
0.03 

6% 
21% 
15% 
24% 
34% 

0.18 
0.35 
0.50 
0.68 
0.83 

0.07 
0.05 
0.05 
0.06 
0.03 

9% 
23% 
15% 
26% 
28% 

0.23 
0.36 
0.47 
0.69 
0.82 

0.07 
0.06 
0.06 
0.05 
0.06 

10% 
43% 
22% 
18% 
7% 

0.19 
0.35 
0.49 
0.63 
0.79 

0.06 
0.05 
0.05 
0.03 
0.05 

13% 
42% 
18% 
12% 
14% 

6 

0.15 
0.32 
0.42 
0.57 
0.73 
0.86 

0.07 
0.06 
0.05 
0.06 
0.06 
0.03 

4% 
12% 
19% 
11% 
27% 
27% 

0.16 
0.30 
0.41 
0.57 
0.71 
0.84 

0.06 
0.05 
0.05 
0.06 
0.05 
0.02 

6% 
13% 
20% 
13% 
26% 
23% 

0.20 
0.33 
0.41 
0.55 
0.72 
0.86 

0.07 
0.06 
0.05 
0.06 
0.04 
0.05 

7% 
30% 
30% 
11% 
18% 
4% 

0.17 
0.30 
0.40 
0.54 
0.71 

0.83± 

0.06 
0.05 
0.04 
0.05 
0.04 
0.04 

10% 
22% 
29% 
18% 
11% 
9% 

7 

0.14 
0.28 
0.39 
0.51 
0.65 
0.80 
0.89 

0.06 
0.06 
0.05 
0.05 
0.06 
0.03 
0.02 

4% 
7% 

20% 
10% 
16% 
31% 
13% 

0.13 
0.26 
0.37 
0.49 
0.62 
0.75 
0.85 

0.06 
0.05 
0.05 
0.05 
0.06 
0.04 
0.02 

4% 
9% 

20% 
10% 
14% 
25% 
18% 

0.17 
0.29 
0.37 
0.47 
0.63 
0.74 
0.88 

0.06 
0.06 
0.05 
0.05 
0.05 
0.04 
0.05 

3% 
16% 
35% 
18% 
10% 
14% 
3% 

0.15 
0.27 
0.37 
0.49 
0.62 
0.75 
0.86 

0.05 
0.05 
0.05 
0.05 
0.03 
0.03 
0.03 

8% 
16% 
34% 
16% 
11% 
11% 
5% 

8 

0.13 
0.25 
0.36 
0.44 
0.57 
0.67 
0.81 
0.89 

0.06 
0.06 
0.05 
0.05 
0.05 
0.06 
0.02 
0.02 

3% 
4% 

15% 
14% 
7% 

16% 
29% 
12% 

0.11 
0.22 
0.33 
0.42 
0.55 
0.66 
0.78 
0.86 

0.06 
0.05 
0.05 
0.04 
0.05 
0.06 
0.02 
0.02 

3% 
7% 

14% 
15% 
9% 

16% 
22% 
14% 

0.16 
0.27 
0.35 
0.43 
0.54 
0.67 
0.75 
0.88 

0.06 
0.06 
0.05 
0.05 
0.05 
0.04 
0.03 
0.04 

3% 
12% 
32% 
21% 
9% 

10% 
11% 
3% 

0.14 
0.25 
0.35 
0.43 
0.52 
0.64 
0.75 
0.86 

0.05 
0.05 
0.05 
0.05 
0.04 
0.03 
0.02 
0.03 

6% 
12% 
32% 
14% 
12% 
9% 

10% 
5% 
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Number 
of 

hidden 
states 

AdML 70 bp 
up stream 

AdML 110 bp 
up stream 

H2B 80 bp 
up stream 

H2B 80 bp 
down stream 

µ σ f µ σ f µ σ f µ σ f 

9 

0.12 
0.24 
0.34 
0.42 
0.52 
0.66 
0.68 
0.82 
0.89 

0.06 
0.06 
0.05 
0.05 
0.05 
0.05 
0.07 
0.02 
0.02 

3% 
4% 

11% 
14% 
9% 

11% 
9% 

28% 
11% 

0.11 
0.21 
0.32 
0.40 
0.51 
0.61 
0.71 
0.80 
0.88 

0.05 
0.05 

00.05 
0.04 
0.05 
0.06 
0.04 
0.02 
0.01 

2% 
6% 

12% 
16% 
7% 

12% 
13% 
25% 
6% 

0.15 
0.25 
0.32 
0.38 
0.46 
0.57 
0.68 
0.76 
0.88 

0.06 
0.06 
0.05 
0.05 
0.05 
0.05 
0.04 
0.03 
0.04 

3% 
6% 

19% 
27% 
15% 
7% 

10% 
9% 
3% 

0.14 
0.22 
0.31 
0.38 
0.49 
0.62 
0.73 
0.80 
0.87 

0.05 
0.05 
0.05 
0.04 
0.05 
0.03 
0.03 
0.01 
0.03 

5% 
9% 

19% 
26% 
16% 
10% 
8% 
6% 
3% 

10 

0.11 
0.21 
0.30 
0.38 
0.45 
0.56 
0.69 
0.68 
0.82 
0.89 

0.05 
0.06 
0.06 
0.05 
0.05 
0.05 
0.05 
0.07 
0.01 
0.02 

2% 
3% 
7% 

15% 
10% 
7% 

12% 
8% 

26% 
10% 

0.08 
0.19 
0.29 
0.38 
0.47 
0.59 
0.63 
0.71 
0.81 
0.88 

0.05 
0.05 
0.05 
0.04 
0.05 
0.05 
0.06 
0.03 
0.01 
0.01 

1% 
5% 

10% 
15% 
10% 
9% 
6% 

13% 
25% 
5% 

0.14 
0.23 
0.30 
0.37 
0.44 
0.54 
0.66 
0.73 
0.79 
0.90 

0.06 
0.05 
0.06 
0.05 
0.05 
0.05 
0.04 
0.03 
0.03 
0.03 

2% 
5% 

14% 
30% 
18% 
8% 
8% 
9% 
5% 
2% 

0.13 
0.20 
0.30 
0.37 
0.45 
0.53 
0.63 
0.74 
0.81 
0.88 

0.05 
0.05 
0.04 
0.04 
0.05 
0.04 
0.03 
0.02 
0.02 
0.02 

4% 
7% 

17% 
24% 
12% 
10% 
9% 
7% 
7% 
2% 

Table S4: Results from various HMM Analyses. The FRET efficiencies µ with their residual standard 
deviations σ beyond shot-noise broadening and the relative occurrences for a global hidden Markov model 
analysis with 1 to 10 states for all four samples after addition of NC2. 
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Results from Global 

four-well HMM 
Results from a Global HMM to a 

linear four-well model 

Transition 
Probability 
Matrix 

0.9659 0.0313 0.0022 0.0005 0.9658 0.0342 0.0000 0.0000 

0.0087 0.9459 0.0405 0.0049 0.0093 0.9431 0.0476 0.0000 

0.0007 0.0509 0.8170 0.1314 0.0000 0.0575 0.8050 0.1375 

0.0001 0.0034 0.0789 0.0005 0.0000 0.0000 0.0870 0.9130 

Rates (s-1) 
krow→column 

- 6.26 0.44 .01 - 6.84 0.00 0.00 

1.74 - 8.10 0.98 1.86 - 9.52 0.00 

0.14 10.18 - 26.28 0.00 11.50 - 27.5 

.02 0.68 15.78 - 0.00 0.00 17.4 - 

Dwell times (ms) 144.3 89.9 24.7 58.1 143.6 85.3 23.1 55.0 

Log-Likelihood 9.0771e+004 9.0670e+004 

BIC 1.8140e+005 1.8110e+005 

χ2 0.008742 0.010625 

Table S5: Transition Rates Matrices. The transition rate matrices and rate matrix for the four state HMM 
analysis and for a linear four-well model plotted in the presence and absence of direct transitions between the E 
= 0.40 and E = 0.83 FRET efficiency states. 
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