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1 Datasets

1.1 Simulated Read Generation

To generate simulated reads we constructed a pipeline utilising SPANKI (Sturgill et al., 2013) in order
to incorporate realistic sequencing error profiles and expression levels. The steps in this pipeline are as
follows:

1. Acquire genome file and reference annotation in GTF format for the species in question.

2. Use trimgalore http://www.bioinformatics.babraham.ac.uk/projects/trim galore to remove any adap-
tors from the original dataset.

3. Index genome using Bowtie (Langmead et al., 2009) and HISAT (Kim et al., 2015)

4. Align dataset with Bowtie and HISAT

5. Create error model using SPANKI based on Bowtie alignments

6. Sort and index HISAT data

7. Assemble HISAT alignments with cufflinks

8. Extract expression levels from cufflinks and convert to SPANKI format

9. Create simulated reads and alignments using SPANKI based on annotation and cufflinks (Trapnell
et al., 2010) expression levels

10. Use Portcullis to extract junctions from perfect SPANKI alignments.

The pipeline is complicated by the need to generate multiple datasets per species based on variable read
lengths and expression levels. In order to retain a valid error model we can only use read lengths that are
the same length or shorter than the original dataset. To vary expression levels we can take fractions or
multiples of the cufflinks expression levels and run the read generation step multiple times. In addition,
in order to speed the generation of simulated data we first chunk the expression levels, run the read
generation tools and then merge the resulting fastqs and BAM files after.

1.2 Simulated data

To compare performance between junction filtering tools we created several simulated RNA-Seq datasets
based on three known model organisms (Human, Drosophila and Arabidopsis), with error and expression
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profiles derived from real datasets using SPANKIsim (Sturgill et al., 2013). This produces reads derived
from a known region in the reference transcriptome, along with the perfect alignments of those reads.
From the alignments it is possible to unambiguously derive the true set of junctions for the given dataset,
providing a platform from which RNA-Seq mappers and SJ filtering tools can be benchmarked. The
complete pipeline used to generate the simulated reads is described in section 1.1. Basic statistics for
the datasets are described in table 1.

Table 1: Properties simulated datasets for each species

Properties of simulated dataset Arabidopsis Drosophila Human

Reference annotation TAIR10 DMEL78 HG38
Original accession PRJEB7093 SRA009364 PRJEB4208
Millions of reads (in original) 93 47 97
Mean quality (in original) 37 37 39
Depth fractions 10%,50%,100% 10%,50%,100% 10%,50%,100%,200%
Millions of paired reads 9,47,93 5,24,47 7,38,76,152
Read lengths @ 100% depth (bp) 76,101 76 76,101,151,201
# splice junctions @ max readlen and 100% depth 90,190 29,275 139,403
% of SJ’s in ref 71% 51% 42%
# transcripts @ max readlen and 100% depth 19723 9376 19853
% of transcripts in ref 47% 32% 12%

2 Performance Evaluation Metrics

For most of the experiments described in this paper, our truth set consists of a subset of genuine junctions
taken from a reference transcriptome. However, it is impractical to derive a comprehensive set of false
junctions (true negatives TNs) (every combination of start and stop sites in the genome that are not
genuine junctions). We therefore use the performance metrics recall, precision and F1 measure (Fawcett,
2006)). Note the equations for these metrics do not require TNs to be provided.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

F1 =
2TP

2TP + FP + FN
(3)

Recall represents the fraction of true junctions retrieved, otherwise known as sensitivity or the true
positive rate. Precision represents how often when the system makes a call it is correct, otherwise known
as the positive predictive value. F1 is the harmonic mean of recall and precision and a convenient proxy
for the overall accuracy of the system.

3 Rule-based filtering of splice junctions

A simple strategy to filtering false positive junctions is to apply cut-off values to selected features.
Figure 1 shows various rules individually applied to the TopHat2 alignments (black dot in figure) of our
simulated Human 101bp dataset. Limiting junctions to those with an entropy greater than 2 as suggested
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in SPANKI (Sturgill et al., 2013) does improve precision but can lead to an unacceptable loss of recall.
Using a MaxMMES cutoff of 8 on the other hand will almost always provide better precision than the
input with very little loss in recall. TopHat2’s own filtered junction file in yellow. As a comparison we
also show Portcullis’ self-trained machine learning approach in red.
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Figure 1: Effect on precision and recall of applying rules to junction metrics on TopHat2
alignments of our simulated Human 101bp dataset.

It is difficult to set cut-off values appropriate for all species and datasets. For example, setting a limit
on intron size may be appropriate for one species but not another. Similarly, relying on the Shannon
entropy score of the junction may produce good results on a deep sequenced dataset but poor results on
a shallow one.

Although generally not recommended in most cases, Portcullis can interpret a user-define configuration
that describes individual metrics selected for filtering, along with cut-off values. The user can chain rules
together with ’and’, ’or’ and ’not’ operations in order to come up with their own filtering strategy.

3.1 Using rule-based filtering to create training sets

Although, it is difficult to compete with the most accurate methods using rule-based approaches it is
possible to select high-precision subsets using rules, which then can be used to train a machine learning
approach. Portcullis uses a combination of rules to do exactly this. For our simulated human 101bp
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dataset, our rules for extracting the positive set containing 111, 217 genuine junctions achieves a precision
of 99.94% with recall of 80.05%. Rules for collecting the negative set contains 13, 870 false junctions
compared to only 63 true ones. To achieve good results with using machine learning, it is important to
capture representative subsets of both true and false junctions, while keeping near perfect precision. It
is also important the rules work over a range of datasets and species. In Portcullis we try to accomplish
this using multiple rules. Portcullis version 1.1.2 uses the following set of rules for creating the positive
set:

• Layer 1 ( Reliable alignments >= 1 & MaxMMES >= 8 & Entropy > 1 & Hamming 5’ >= 4 &
Hamming 3’ >= 4 & Mean mismatches <= 1 & Uniquely spliced alignments >= 1 & Reliable to
raw alignment ratio >= 0.25 )

• Layer 2 (( Reliable alignments >= 5 & MaxMMES >= 20 ) | ( Reliable alignments >= 3 &
MaxMMES > 12 & Hamming 5’ >= 7 & Hamming 3’ >= 7 & Mean mismatches < 0.33 ) | (
Hamming 5’ >= 9 & Hamming 3’ >= 9 & Mean mismatches == 0 ))

• Layer 3 ((( Is canonical ) | ( Is semi-canonical & reliable to raw ratio >= 0.75 & Hamming 5’ >= 6
& Hamming 3’ >= 6 ) | ( Is non-canonical & reliable to raw ratio >= 0.75 & Hamming 5’ >= 7
& Hamming 3’ >= 7 & Mean mismatches < 0.1 & Entropy > 1.5 )) | ( Is primary junction ))

The result of each layer in the positive set is treated as input to the second, effectively acting as an
”and” operation. For the negative set, each layer is treated as an ”or” operation. The negative rules are
as follows:

• Layer 1 ( MaxMMES < 15 & Uniquely spliced reads <= 1 & Reliable to raw ratio == 0 )

• Layer 2 ( Uniquely spliced reads <= 1 & MaxMMES < 15 & ( Is NOT canonical |Mean mismatches
>= 1 ) )

• Layer 3 ( Is NOT canonical & Is Potential False Positive )

• Layer 4 ( MaxMMES < 15 & Reliable to raw ratio < 0.3 )

• Layer 5 ( Reliable alignments == 0 & Entropy == 0 & Is NOT primary junction & Is suspicious )

• Layer 6 - currently unused

• Layer 7 ( Reliable 2 raw ratio == 0 & Hamming 5’ <= 3 & Hamming 3’ <= 3 )

4 Deciding on a classifier

For classifying junctions we considered two widely used machine learning methods: logistic regression
with L1 regularisation (Ng, 2004) and random forests (Breiman, 2001). Deep learning frameworks we
not considered at this time primarily due to computational cost, portability concerns and maturity at
time of development, although we plan to look into these in the future.

Across all our simulated datasets and aligners we found the mean F1 measure to be similar for both
methods: Logistic regression = 97.50% and random forests = 97.44%. Despite a slightly lower score,
we chose a random forest as the learning method to build into Portcullis because they are suitable for
handling categorical variables, which means we can more easily extend our learning model with new
categorical features in the future. An additional benefit of Random Forests is that they do not have as
many hyperparameters that require optimisation. The actual random forest implementation used inside
Portcullis is derived from an R package called ranger (Wright and Ziegler, 2015).

A Random Forest is a method that uses random sampling and random feature selection of the input
feature vectors to produce an ensemble of decision trees. In our context, we take the mean of probability
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scores produced from all trees in the forest to provide a way to differentiate between a genuine and
invalid SJ. A score close to 0 indicates an invalid junction and close to 1 a genuine SJ.

One parameter that requires optimising in a Random Forest is the number of trees in the forest. To
determine the optimal number we trained and executed a random forest classifier across our various
simulated datasets with inputs from TopHat2, GSNAP, STAR and HISAT2. In this experiment we look
at classification performance based off off each input aligners junction set. This enables us to definitely
count the number of True Negative’s in each dataset and in turn allows us to use Matthew’s Correlation
Coefficient (Powers, 2011), as defined in equation (4). This is a better measure of the classifiers predictive
performance when class sizes are very different, which is often the case for us.

Matthew′s CorrelationCoefficient (MCC) =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

The mean MCC after 10-fold cross validation across each mapper is shown in figure 2. The MCC appears
to plateau at 100 trees across all species so this is set as the default value when running Portcullis.

Figure 2: Matthew’s Correlation Coefficient with respect to the number of trees in the random
forest run datasets from for each species separately as well as with a combined dataset. 10-fold
cross validation was used.
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5 Junction Detection Performance

5.1 Effect of dataset on SJ accuracy

Figure 3 shows the effect of varying dataset size and read lengths across multiple mapping methods on
variations of our simulated human dataset. Although each mappers performance varies the same trends
occur in each case: increased depth produces more false positive junctions, and increased read length
enables the methods to recall more genuine junctions and at the same time generally improve precision.
The only data point where this trend is not supported is with HISAT2 201bp reads, where precision
is slightly less than at 151bp, indicating that HISAT2 may have problems with longer reads that span
multiple junctions.
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(a) TopHat v2.1.0
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(b) GSNAP v20180530

0.0 0.5 1.0 1.5 2.0
Depth multiplier

60

65

70

75

80

85

90

95

100

%

80 100 120 140 160 180 200
Read length

60

65

70

75

80

85

90

95

100

%

Recall Precision F1

(c) STAR v2.6.0a

0.0 0.5 1.0 1.5 2.0
Depth multiplier

60

65

70

75

80

85

90

95

100

%

80 100 120 140 160 180 200
Read length

60

65

70

75

80

85

90

95

100

%

Recall Precision F1

(d) STAR (2Pass) v2.6.0a
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Figure 3: In this plot we show the effect on recall and precision of junction calling for multiple
alignment methods over variations of our simulated human dataset. Left-side of each sub-plot
shows the effect of varying dataset size, with all datasets containing 201bp reads. 1.0X depth
multiplier represents a dataset of ∼76 million read pairs. The right-side of each sub-plot shows
the effect of varying read length with all datasets containing ∼76 million read pairs.

6



5.2 Agreement between mappers

(a) ∼30Gbp of 76bp reads (b) ∼30Gbp of 201bp reads (c) ∼60Gbp of 201bp reads

Figure 4: Five way Venn diagrams showing levels of agreement between mapping tools and the human
junction truth set. (a) shows agreement with 76bp simulated reads, (b) shows agreement with 201bp
simulated reads with the same dataset size as (a): ∼30Gbp. (c) Shows 201bp reads at twice the depth
of (b).
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Figure 5: Junction set results after requiring consensus between a varying number of mappers: TopHat2,
GSNAP, STAR and HISAT2. Agreement level 1 is the union of junctions found in all mappers. Agreement
level 4 is the intersection of junctions found in all mappers. All input datasets were from simulated 76bp
paired reads.

5.3 Accuracy of splice site prediction tools

Figures 6 to 8 show how F1 scores vary between methods when varying sequencing depth and read
length and species. This analysis highlights some notable characteristics of the methods we tested. First,
SOAPsplice performs well with read lengths <= 101bp but performance degrades significantly with longer
reads; likely due to a failure of handling reads containing multiple splice junctions. Second, MapSplice,
FineSplice and Portcullis show consistent and reliable behaviour across datasets. Third, as expected the
RNA-Seq mappers fall far behind the more computationally expensive tools, particular at high depth and
low read length. Fourth, TrueSight is difficult to use due to long runtimes and high memory usage (see
section 5.4 for more information), meaning that we could not collect results for this method from many
datasets. Fifth, TopHat2’s own rule-based filtering approach provides limited improvement to accuracy.
Finally, Portcullis improves results over input mappers and is either competitive or has the highest F1

in all cases.
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Figure 6: F1 scores across all Human simulated datasets and all methods. Left-hand side shows effect of
varying depth, right hand side shows varying read length. Depth variations all used 201bp reads. Read
length variations used a 1X expression multiplier of a dataset containing ∼76 million reads, so each read
length variation contains the same number of bases in the input. Not all TrueSight runs completed, as
we automatically killed jobs after one week of processing. (a) shows the full set of results and (b) shows
F1 scores over 94% to show the characteristics of the best performing methods.
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Figure 7: F1 scores across all Arabidopsis simulated datasets and all methods. Left-hand side shows
effect of varying depth, right hand side shows varying read length. Depth variations all used 101bp
reads. Read length variations used a 1X expression multiplier of a dataset containing ∼93 million reads,
so each read length variation contains the same number of bases in the input. (a) shows the full set of
results and (b) shows F1 scores over 95% to show the characteristics of the best performing methods.
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Figure 8: F1 scores across all Drosophila simulated datasets and all methods. Left-hand side shows effect
of varying depth, right hand side shows varying read length. Depth variations all used 76bp reads. Read
length variations used a 1X expression multiplier of a dataset containing ∼47 million reads, so each read
length variation contains the same number of bases in the input. (a) shows the full set of results and (b)
shows F1 scores over 95% to show the characteristics of the best performing methods.
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5.4 Runtimes of splice site prediction tools

In general we see Portcullis as being relatively frugal in terms of memory usage. However, we note that
its memory usage does increase in deep datasets, becoming more obvious when using more frugal aligners
such as HISAT2. This can be seen in figure 9 at 2X depth and reflects the way Portcullis processes the
BAM files, where each thread processes reads aligning to different reference sequences. This requires
all reads supporting a given junction to be in memory at a given time, for each running thread. All
examples here were run with 8 threads, so a simple way to reduce memory usage is to reduce the number
of threads used, although this will have an impact on runtime.
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Figure 9: Runtimes and max memory usage of Portcullis when varying read length on our
Human dataset containing ∼76 million paired reads.
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Figure 10: Runtimes and max memory usage of Portcullis when varying read length on our
Human dataset containing ∼76 million paired reads.

To analyse this runtime / memory trade off in more detail, we plotted runtime and memory usage as the
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Figure 11: Runtimes and max memory usage of Portcullis when varying depth on our 101bp
paired-end Arabidopsis dataset.

number of threads is varied on our human dataset with ∼76 million 201bp paired reads (figure 12). All
axis are logscale to show whether memory and runtime scale linearly, indeed memory appears to scale
linearly with thread count, approximately doubling when jumping from using 1 to 16 threads. In terms
of runtime, Portcullis scales well up to 4 threads after which point diminishing returns are encountered,
particularly with deeper datasets.
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Figure 12: Portcullis’ runtime and max memory usage when varying
thread count on our human dataset containing 80 million 201bp paired
reads.
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5.5 Analysis of real data
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Figure 13: This plot shows a class breakdown of junctions found using simulated 76bp reads
from the human dataset. Correct junctions belong exclusively to class 1, where as classes 2,3
and 4 show false positives.

6 Junctools

Portcullis comes bundled with a supplementary toolkit called Junctools, which provides the user with a
number of features for manipulating and analysing junction files in many commonly used formats.

Convert - Junctools can convert between commonly used junction files, such as BED and GFF, or between
these and input to guide several popular RNA-Seq mappers so they can be easily driven in two-pass mode
without requiring the user to do their own scripting.

Compare - Junctools can compare junction files against each other, which can be useful to see how many
junctions from Portcullis are present in a given reference.

Set operations - In addition, Junctools supports set operations between junction files, which can be useful
for merging results between several Portcullis runs, or to separate junctions not found in a reference
annotation for example.

GTF - Finally Junctools offers the user the ability to filter out or markup transcripts in GTF files, that
do not contain junctions found in a separate junctions file. This allows the user to filter out transcripts
that do not have junctions that are supported by Portcullis for example.

7 List of Software

This section outlines the software and command lines used for experiments in this paper. For reasons of
brevity we have used variables and kept listed the static parts of the command lines. Variables we used
to modify species, datasets and runtime characteristics of the tool. The variables related to species are
were MIN INTRON and MAX INTRON are are listed in Table 2. THREADS, was generally set at 8,
except when varying thread count as shown in Figure 12. The remaining variables, vary according to
the dataset used.
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Table 2: Species associated variables

Variable Arabidopsis Drosophila Human

MIN INTRON 50 50 50
MAX INTRON 50,000 50,000 500,000

The following RNAseq aligners were used for experiments in this:

• Tophat v2.1.0

– Indexing: bowtie2-build REF ALIGN DIR/tophat/index/NAME

– Running: tophat2 –output-dir=OUTDIR –num-threads=THREADS –min-intron-length=MIN INTRON
–max-intron-length=MAX INTRON –microexon-search –library-type=STRAND INDEXDIR
R1 R2

• GSnap v20180530

– Indexing: gmap build –dir=ALIGN DIR/gsnap/index –db=NAME INPUT

– Running: gsnap –gunzip –dir=ALIGN DIR/gsnap/index –db=NAME –novelsplicing=1 –
localsplicedist=MAX INTRON –nthreads=THREADS –format=sam –npaths=20 R1 R2

• STAR v2.6.0a

– Indexing: STAR –runThreadN THREADS –runMode genomeGenerate –genomeDir INDEXDIR
–genomeFastaFiles INPUT

– Running: STAR –readFilesCommand zcat –runThreadN THREADS –runMode alignReads –
genomeDir INDEXDIR –readFilesIn R1 R2 –outSAMtype BAM Unsorted –outSAMstrandField
intronMotif –alignIntronMin MIN INTRON –alignIntronMax MAX INTRON –alignMatesGapMax
20000 –outFileNamePrefix OUTDIR/

– Running (2pass): STAR –readFilesCommand zcat –runThreadN THREADS –runMode align-
Reads –genomeDir INDEXDIR –readFilesIn R1 R2 –outSAMtype BAM Unsorted –twopassMode=Basic
–outSAMstrandField intronMotif –alignIntronMin MIN INTRON –alignIntronMax MAX INTRON
–alignMatesGapMax 20000 –outFileNamePrefix OUTDIR/

• HISAT v2.1.0

– Indexing: hisat2-build INPUT ALIGN DIR/hisat/index/NAME

– Running: hisat2 -p THREADS –min-intronlen=MIN INTRON –max-intronlen=MAX INTRON
STRAND -x INDEXDIR -1 R1 -2 R2

For splice junction aligners:

• Finesplice v0.2.2: FineSplice.py -i BAM -l READLEN

• Truesight v0.06: truesight pair.pl -i MIN INTRON -I MAX INTRON -v 1 -r INDEX -p THREADS
-o . -f R1 R2

• Soapsplice v1.10: soapsplice -d INDEX -1 R1 -2 R2 -I 500 -o OUTDIR/ss-READS -p THREADS
-t MAX INTRON -c 0 -f 2 -L MAX INTRON -l MIN INTRON

• Mapsplice v2.2.1: mapsplice.py -c REFDIR -1 R1 -2 R2 -o OUTDIR/ -p THREADS –bam -i
MIN INTRON -I MAX INTRON

Portcullis v1.1.2 was run with each stage executed independently for maximum flexibility:
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• Prep stage: portcullis prep -o OUTDIR -t THREADS REF BAM

• Analysis stage: portcullis junc -o OUTDIR/PREFIX –orientation=FR –strandedness=STRAND
-t THREADS PREPDIR

• Filter stage: portcullis filter -t THREADS -o OUTDIR/PREFIX PREPDIR TAB

Transcript assemblers:

• Cufflinks v2.2.1: cufflinks –output-dir=OUTDIR –num-threads=THREADS –library-type=STRANDEDNESS
–min-intron-length=MIN INTRON –max-intron-length=MAX INTRON -F ISO FRAC –no-update-
check BAM

• Stringtie v1.3.0: stringtie BAM -l NAME -f ISO FRAC -m 200 -o GTF -p THREADS
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