3	Epidemiology and Liver Transplantation Burden of Primary Biliary Cholangitis: A
4	Retrospective Cohort Study Using National Administrative Data
5	A manuscript submitted to the Canadian Medical Association Journal for Open
6	Access publication
7	Date: July 5, 2018
8	Author List:
9	Eric M Yoshida ¹ , Andrew Mason ² , Kevork M Peltekian ³ , Hemant Shah ⁴ , Sherri
10	Thiele ⁵ , Richard Borrelli ⁵ , Aren Fischer ⁵
11	¹ University of British Columbia, Vancouver, British Columbia
12	² University of Alberta, Edmonton, Alberta
13	³ Dalhousie University and Queen Elizabeth II Health Sciences Centre, Division of
14	Digestive Care & Endoscopy, Halifax, Nova Scotia
15	⁴ University of Toronto, Toronto, Ontario
16	⁵ QuintilesIMS
17	⁵ QuintilesIMS Corresponding Author: Mr. Aren Fischer
18	Mr. Aren Fischer
19	6700 Century Avenue, Suite 300
20	ovoo contary rivenae, bane soo
21	Mississauga, ON, Canada, L5N 6A4
22	+1-(905) 816-5062 / +1-(416) 294-5795
23	Aren.Fischer@ca.imsbrogan.com
24	Funding and Disclosures
25	Aren Fischer, Sherri Thiele and Richard Borrelli are employees of IQVIA
26	(formerly QuintilesIMS) and have contributed to this study as consultants paid by
	1

- Intercept Pharmaceuticals. This study was supported by funding from Intercept
- Pharmaceuticals.
- Dr. Eric Yoshida has been an investigator of clinical trials sponsored by
- Intercept, Gilead Sciences, Merck Inc, Janssen Inc, Addvie Inc, Genfit Inc,
- Springbank Inc. He has received honoraria for CME/Ad Board lectures from Gilead
- Sciences Canada, Merck Canada, Abbvie Canada and Celgene Canada.

Main Body Word Count: 2445

List of Abbreviations:

PBC	Primary Biliary Cholangitis
ICD Diagnosis	International Classification of Diseases Diagnosis
MELD Score	Model of End-Stage Liver Disease

Number of Tables and Figures:

1		
3		
	3	3

ABSTRACT

Background & Aims:

There is a wealth of data documenting the epidemiology of primary biliary cholangitis

(PBC) globally; however, no recent assessment of PBC epidemiology in Canada.

Global data suggests the prevalence of PBC is a growing healthcare concern. To

investigate these trends, our study characterized the Canadian prevalence of PBC and

the number of liver transplantations due to PBC.

Methods:

- Hospital administrative records with national coverage from the Canadian Institute for
- Health Information (in-patient, ambulatory, outpatient), with the exception of Quebec,

48	and British Columbia transplant data, were used for the study. Patients were identified
49	by ICD-10 PBC diagnosis.
50	Results:
51	In 2015, 8,680 PBC patients were identified in Canada, translating to a prevalence of
52	318 cases per million. Annual prevalence by province varied, ranging from 283 to 465
53	(95% CI 275-309, 426-504) cases per million, and the 6-year PBC liver transplant rate
54	ranged from 3.17 to 5.92 (95% CI 1.27-6.54, 3.71-9.08) per million. The Atlantic
55	Provinces exhibited the highest PBC prevalence, and close to the highest 6-year liver
56	transplant rate per million [465 and 5.70 cases per million (95% CI 426-504, 3.19-
57	9.56) respectively]. We observed the lowest PBC prevalence and the second lowest 6-
58	year liver transplant rate in Ontario [283 and 3.37 cases per million (95% CI 269-297,
59	2.47-4.50) respectively].
60	Interpretation:
61	Our study demonstrates the prevalence of PBC in Canada is similar to other PBC
62	prevalence studies. Due to geographic clustering of PBC across the Canadian
63	Provinces, we hypothesize that PBC pathogenesis is linked to environmental and
64	genetic factors.
65	Key Words: Primary Biliary Cholangitis, Prevalence, Liver Transplant
	INTRODUCTION
66	Primary biliary cholangitis (PBC) is a chronic rare autoimmune cholestatic
67	liver disease characterized by destruction of the small intrahepatic bile ducts. It
68	predominantly affects middle-aged and elderly women.(1, 2) Despite its rarity, PBC is
69	an important cause of liver related morbidity.(2-5) In the US the annual economic
70	burden of PBC has been estimated to be \$69-115 million.(3) There is concern that the
71	economic impact of PBC could increase significantly in the future because of its
	3

	Epidemiology of Primary Biliary Cholangitis in Canada
72	increasing incidence and prevalence;(6-12) however, with improved treatment
73	options, these costs may be attenuated.(13-15) The epidemiology of PBC was first
74	described as early as 40 years ago,(16) although decades later no study has
75	investigated the national prevalence of PBC in Canada. It predominantly affects
76	middle-aged and elderly women.(1, 2) A number of studies have examined the
77	epidemiology of PBC globally, illustrating considerable variability in the prevalence
78	ranging from 6.7 to 402 cases per million, while incidence rates range from 0.7 to 58
79	cases per million.(1) A growing number of studies suggest the incidence and
80	prevalence of PBC is increasing.(6-12) The driver of this growth remains unclear, but
81	may be the result of an increase in incidence, longer survival, as well as advances in
82	diagnosis and treatment. In addition, there is increasing evidence to suggest PBC
83	etiology is related to complex interactions between genetic predisposition and
84	environmental triggers,(3, 17-21) such as infectious disease agents.(3, 22-24)(25)
85	Recent advances in the understanding of PBCprovide the opportunity to
86	improve patient outcomes and to lower the economic and epidemiologic burden of
87	PBC. In this study our primary objective was to provide a national prevalence
88	estimate of PBC in Canada, as well as to investigate the regional PBC prevalence by
89	geographic areas across Canada. Our secondary objective was to characterize liver
90	transplantation trends and geographic distribution in PBC patients, since this is a
91	costly procedure, and a proportion of PBC patients require liver transplants.
92	METHODS
93	Data sources and study population:
94	The study used patient-level records over a 9-year period from April 1, 2007
95	to March 31, 2015 for the prevalent population, and over a 6-year period from April 1,
96	2010 to March 31, 2015 for the liver transplant population. This study sourced data
	4
	For Peer Review Only

97	across three databases from the Canadian Institute for Health Information (CIHI). The
98	National Ambulatory Care Reporting System (NACRS) database contains data on
99	hospital and community-based emergency and ambulatory care visits, including visits
100	to day surgery, and outpatient clinics in Canada. ⁽³⁶⁾ The Discharge Abstract Database
101	(DAD) contains data on hospitalizations from acute inpatient care, select day surgery,
102	chronic, rehabilitation and psychiatric institutions in Canada. ⁽³⁷⁾ The Canadian Organ
103	Replacement Register (CORR) records information on all transplanted organs across
104	Canada.(38) Data from 9 of 10 provinces in Canada, with the exception of Quebec,
105	was made available for the prevalence estimate, and 8 of 10 provinces in Canada, with
106	the exception of British Columbia and Quebec, for the transplant analysis. For the
107	provinces with incomplete data coverage or unreleased data we extrapolated results
108	from the other provinces by applying age adjusted prevalence or transplant rates to the
109	known populations within those provinces as reported by Statistics Canada.(39) To
110	capture diagnoses made in clinics the authors used the available data from Alberta to
111	estimate diagnoses in other provinces. Data of individual provinces were then grouped
112	into geographic regions: Atlantic (Nova Scotia, New Brunswick, Prince Edward
113	Island, and Newfoundland), Ontario, Prairies (Manitoba and Saskatchewan), Alberta,
114	and British Columbia. Ethics approval for this study was obtained from Institutional
115	Review Board Services (Pro00017376).
116	Administrative data case definition:

PBC case identification for the prevalent population required one hospital visit with a diagnosis code for PBC (International Classification of Diseases Version 10-Canadian Edition K74.3) recorded as the most responsible reason for a visit, or as a comorbidity diagnosis during the study period. In all study databases unique patient identifiers were used to prevent double counting patients. Similar to previous

studies, (2, 4, 5) PBC case identification for the liver transplant population required

the primary reason for the transplant to be PBC.

 Liver disease severity indexes:

Alberta patients were further identified as late-stage PBC if their medical records included at least one late-stage PBC associated diagnosis. The list of diagnosis codes associated with late-stage PBC were generated using published literature, (18, 34, 40) and expert clinical opinion(41). This additional analysis was limited to Alberta as it was the only province with full coverage of outpatient clinics and hospital visits required for a robust determination of late-stage disease. For the liver transplant population, the Model for End Stage Liver Disease (MELD) and Child Pugh score were used as a measure of prognostic survival, liver disease severity, and are traditionally used to determine liver transplant priority.(42) MELD score uses the patient's values for serum bilirubin, serum creatinine and the International normalized ratio for prothrombin time.(43) The Child Pugh score employs five clinical measures of liver disease namely: total bilirubin, serum albumin, prothrombin time, ascites and hepatic encephalopathy. Each measure is scored between 1 and 3, with 3 indicating most severe condition.(42) **Statistical analysis:** The prevalence estimate was evaluated between April 1, 2013 and March 31, 2015 for the prevalent population, and April 1, 2010 to March 31, 2015 for the liver transplant population. The annual prevalence was determined by dividing the number of PBC cases alive at March 31 for each year by the populations for each geographic area from Statistics Canada. Due to the disease's chronic nature, patients were considered prevalent with PBC until a hospital death occurred. Our study used all

- available history in the look-back period to establish prevalence. For geographic

distribution in the PBC liver transplant population, a 6-year liver transplant rate per million estimate was used to account for low annual transplant rates. Regional estimates were age and sex adjusted to the 2015 and 2013 Canadian population for the prevalent and liver transplant population, respectively.(44) Wait-time for liver transplantation was defined as the number of days from the date that the patient was placed on the transplant list to the date of liver transplant. Patients who died while on the transplant list were not included in CORR and therefore unavailable for analysis. Descriptive statistics were used to summarize the characteristics of the study cohorts. P-values between prevalence estimates were calculated using the two-sided Wilson method with a continuity correction. The Kaplan-Meier method was used to assess transplant wait-time and survival. RESULTS National Prevalence of PBC: In 2015, 8,680 cases of PBC patients were identified in Canada, excluding Quebec, which translates into a prevalence of 318 (95% CI 309-327) cases per million, Table 1). Geographic analysis revealed variance in the prevalence of PBC across the Canadian provinces. In 2015, Atlantic Provinces had the highest PBC prevalence (465 [95% CI: 426-504] cases per million) in Canada, followed by the Prairie Provinces (399 [95% CI: 360-438] cases per million), British Columbia (327 [95% CI: 302-352] cases per million), then Alberta (292 [95% CI 275-309] cases per million). The lowest prevalence PBC rate was observed in Ontario, (283 [95% CI: 269-297] cases per million) (Table 1). Relative to Ontario, the Atlantic Provinces

- 169 (p<0.01), Prairie Provinces (p<0.01), and British Columbia (p<0.05) had a
 - 170 significantly higher PBC prevalence. However, Alberta was not statistically different
- 171 from Ontario (p=0.4).

172	The demographic characteristics of the PBC population are shown in Table 2.
173	PBC was approximately five times as common among females in our study
174	population . The majority of PBC cases were diagnosed among individuals 40-64
175	years of age for women, and among 0-17 years of age for men. Disease severity
176	varied by province. Of the Alberta PBC patients, 29% (95% CI: 26%-32%) were
177	identified as having late-stage PBC due to a late-stage associated diagnosis. Further
178	segmenting the population by treatment location, 8% (95% CI 6%-10%) of PBC
179	treated only in a clinic were identified as late-stage, while 48% (95% CI 44%-53%) of
180	patients who received a PBC diagnosis in the hospital were considered late-stage.
181	National liver transplantation for PBC:
182	A total of 92 patients received a liver transplant due to PBC between April 1,
183	2010 and March 31, 2015 in Canada (excluding Quebec, British Columbia),
184	accounting for 5% of all liver transplants in this time frame. The annual rate of liver
185	transplants due to PBC varied and ranged from 0.49 to 1.03 cases per million in the
186	general population (Table 1). The geographic analysis showed that the 6-year liver
187	transplant rate per million due to PBC was highest in Alberta (5.92 [95% CI: 3.71-
188	9.08] cases per million) followed by the Atlantic Provinces (5.70 [95% CI: 3.19-9.56]
189	cases per million), then Ontario (3.37 [95% CI: 2.47-4.50] cases per million). The
190	lowest 6-year liver transplant rate per million due to PBC was observed in the Prairie
191	Provinces (3.17 [95% CI: 1.27-6.54] cases per million). Relative to Ontario, Alberta
192	(p<0.05) had a significantly higher 6-year PBC liver transplant rate per million.
193	However, the Atlantic (p=0.1) and Prairie (p=1) provinces were not statistically
194	different from Ontario.
195	Liver transplants were approximately 5 times more common among females
196	than among males, which aligns with findings with the PBC prevalence analysis.
	8

197	Further, PBC was the leading cause of liver transplantation among women. Among
198	males and females in this study, the highest number of liver transplants was observed
199	in patients between the ages of 40-64 (Table 3). Close to half of PBC liver transplant
200	patients have the most severe liver dysfunction measured by a Child Pugh score of 10-
201	15 (58%) and MELD score of >22 (39%) (Table 3).
202	When analyzing wait times to receive a transplant, the median wait time for
203	PBC patients was 2 months (95% CI: 1-3) (Figure 1). Post-transplant, the 2-year
204	survival for PBC patients was estimated to be 89% (95% CI: 83%-96%) (Figure 1).
205	INTERPRETATION
206	This study improves upon previous studies estimating the regional or local
207	prevalence of PBC by describing the first national epidemiological trends of PBC and
208	associated liver transplants in and across Canada. This study found that the annual
209	prevalence varied by province from 283 to 465 (95% CI 275-309, 426-504) cases per
210	million, and the 6-year PBC liver transplant count ranged from 3.17 to 5.92 (95% CI
211	1.27-6.54, 3.71-9.08) per million. The last time prevalence of PBC in the United
212	States was published was for the period of 1975-1995.(9) Previous prevalence studies
213	of PBC show a wide range of estimates ranging from 6.7 to 402 per million.(1, 7, 9-
214	12, 16, 45) The PBC prevalence figures reported in this study (2015 prevalence of 318
215	per million) are among the highest reported, and when projected nationally to
216	extrapolate for the Quebec population, correspond to 11,290 prevalent PBC cases in
217	Canada in 2015. Earlier, Canadian studies(11, 12) have reported prevalence estimates
218	of between 3 and 25 per million, an order of magnitude lower than the current study.
219	The most recent Canadian estimate by Myers and colleagues reported a 2002
220	prevalence of 227 per million(10) which is consistent with our estimate for the PBC
221	prevalence in the province of Alberta (292 per million).
	9

222	There are several potential contributing factors to the increase in PBC
223	prevalence. It is possible greater disease awareness and testing, earlier diagnosis, or
224	prolonged survival could each contribute. Several studies on the temporal trends of
225	liver transplants and outcomes of PBC patients suggest prolonged survival may be a
226	key factor.(9, 33, 46, 47) Lee and colleagues described a reduction in the number of
227	transplantations for PBC patients thought to be attributed to the introduction of
228	ursodeoxycholic acid (UDCA), indicating possible improved outcomes and therefore
229	prolonged survival.(9, 33, 48)
230	The current study provides the first analysis of clustering effects of PBC
231	across Canada. Our geographic analysis showed large disparities in the PBC
232	prevalence across Canadian provinces ranging from 283 to 465 per million for the
233	prevalence analysis, and 3.17 to 5.92 liver transplants per million in the general
234	population for the liver transplant analysis. Notably, the Atlantic Provinces had high
235	PBC prevalence (465 per million) and 6-year PBC liver transplant rate per million
236	(5.7 per million). This geographic clustering of PBC may suggest genetic and
237	environmental influences on the aetiology and pathogenesis of PBC. In particular,
238	these patterns could potentially be explained by the founder effect. A large percentage
239	of the Atlantic populations are descendent of immigrants from the British Isles and
240	Northern France. Approximately 29% of Newfoundland and Labrador's, 19% of
241	PEI's, 16% of Nova Scotia's, and 12% of New Brunswick's population are descended
242	solely from the United Kingdom, with even higher proportions having some United
243	Kingdom descent.(49) In comparison, only 9% of the Ontario population, the
244	Canadian province with the lowest estimated PBC prevalence, is solely from the
245	United Kingdom.(49) A systematic review by Boonstra et al. found that the United

246 Kingdom population has one of the highest PBC prevalence.(1)

Epidemiology of Primary Biliary Cholangitis in Canada

247	Literature suggests that PBC is typically considered a disease of middle
248	age,(11, 12) and our results echoed the same findings. Out of the total study
249	population, approximately 55% of patients were found to be PBC prevalent within the
250	age group of 40-59 years.(49) Liver transplantation survival rates for PBC patients in
251	the present analysis (2-year survival: 89%) is comparable to the CORR annual report
252	(5-year survival: 81.8%). Fosby and colleagues observed a similar PBC liver
253	transplant survival rate in Nordic countries between 2004 and 2013, with the 1-year
254	and 5-year survival for patients transplanted for PBC reported to be 94% and 87%,
255	respectively.(4)
256	As our study has several limitations due to the challenges inherent in using
257	administrative datasets, we recommend careful interpretation of results. Our study is
258	potentially limited by the risk of misclassification of individuals with PBC due to
259	reliance on administrative data. The definition used by Myers and colleagues required
260	two distinct diagnoses of PBC and was shown to have a positive predictive value
261	(PPV) of 73% for definite or probable PBC cases(51); therefore, we can expect our
262	PPV value would be lower based on a single PBC diagnosis in this study. Second, the
263	data coverage for the DAD and NACRS (emergency department) database was not
264	complete across the provinces. However, the number of PBC patients identified
265	through the ER was small (5%), hence we consider this adjustment was minor. For
266	clinic visits, we used Alberta, which had 100% clinic coverage, to project for lack of
267	visibility in other provinces. We observed 58% the PBC population is identified
268	through the clinic, and therefore this part of the projection had a greater impact on the
269	prevalence estimate.

In conclusion, using population-based administrative data we have providedinsight into the geographic distribution and temporal trends of PBC in Canada for

- both the PBC prevalent and liver transplant population. Notwithstanding the
- 273 limitations outlined above, the observed prevalence demonstrate that PBC is a
- 274 growing healthcare concern in Canada, and warrants further investigations of the
- 275 interplay between genetic and environmental influences on PBC disease.

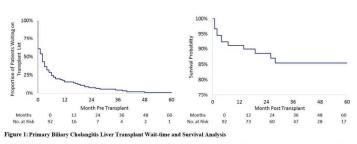
REFERENCES

Boonstra K, Beuers U, Ponsioen CY. Epidemiology of primary sclerosing 1. cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol. 2012;56(5):1181-8. Prince M, Chetwynd, A., Newman, W., Metcalf, J. V. & James, O. F. Survival 2. and symptom progression in a geographically based cohort of patients with primary biliary cirrhosis: follow-up for up to 28 years. Gastroenterology. 2002;123:1044-51. Gershwin ME, Selmi C, Worman HJ, Gold EB, Watnik M, Utts J, et al. Risk 3. factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology. 2005;42(5):1194-202. 4. Neuberger J. Recurrent primary biliary cirrhosis. Liver Transpl. 2003;9:539-46. Fosby B, Melum E, Bjoro K, Bennet W, Rasmussen A, Andersen IM, et al. 5. Liver transplantation in the Nordic countries - An intention to treat and post-transplant analysis from The Nordic Liver Transplant Registry 1982-2013. Scand J Gastroenterol. 2015;50(6):797-808. Charatcharoenwitthaya P, Pimentel S, Talwalkar JA, Enders FT, Lindor KD, 6. Krom RA, et al. Long-term survival and impact of ursodeoxycholic acid treatment for recurrent primary biliary cirrhosis after liver transplantation. Liver Transpl. 2007;13(9):1236-45. Hurlburt KJ, McMahon BJ, Deubner H, Hsu-Trawinski B, Williams JL, 7. Kowdley KV. Prevalence of autoimmune liver disease in Alaska Natives. Am J Gastroenterol. 2002;97(9):2402-7. James OF, Bhopal R, Howel D, Gray J, Burt AD, Metcalf JV. Primary biliary 8. cirrhosis once rare, now common in the United Kingdom? Hepatology. 1999;30(2):390-4. 9. Kim WR, Lindor KD, Locke GR, 3rd, Therneau TM, Homburger HA, Batts KP, et al. Epidemiology and natural history of primary biliary cirrhosis in a US community. Gastroenterology. 2000;119(6):1631-6. Myers RP, Shaheen AA, Fong A, Burak KW, Wan A, Swain MG, et al. 10. Epidemiology and natural history of primary biliary cirrhosis in a Canadian health region: a population-based study. Hepatology. 2009;50(6):1884-92. 11. Villeneuve JP FD, Infante-Rivard C. Descriptive epidemiology of primary biliary cirrhosis in the province of Quebec. . Can J Gastroenterol. 1991;5:174-8. 12. Witt-Sullivan H, Heathcote J, Cauch K, Blendis L, Ghent C, Katz A, et al. The demography of primary biliary cirrhosis in Ontario, Canada. Hepatology. 1990;12(1):98-105. 13. Lee YM, Kaplan MM. Efficacy of colchicine in patients with primary biliary cirrhosis poorly responsive to ursodiol and methotrexate. Am J Gastroenterol. 2003;98(1):205-8.

1		Epidemiology of Primary Binary Cholangius in Canada
1		
2 3	315	14. Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, et al.
4	316	A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. N
5	317	Engl J Med. 2016;375(7):631-43.
6	318	15. Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet.
7	319	2015;386(10003):1565-75.
8	320	16. Hamlyn AN, Sherlock S. The epidemiology of primary biliary cirrhosis: a
9	320	survey of mortality in England and Wales. Gut. 1974;15(6):473-9.
10	321	17. McNally RJ, James PW, Ducker S, Norman PD, James OF. No rise in
11	323	incidence but geographical heterogeneity in the occurrence of primary biliary
12	323	cirrhosis in North East England. Am J Epidemiol. 2014;179(4):492-8.
13	324	18. Leung PS, Chuang DT, Wynn RM, Cha S, Danner DJ, Ansari A, et al.
14	325	Autoantibodies to BCOADC-E2 in patients with primary biliary cirrhosis recognize a
15	320 327	conformational epitope. Hepatology. 1995;22(2):505-13.
16 17	327	19. Kimura Y, Selmi C, Leung PS, Mao TK, Schauer J, Watnik M, et al. Genetic
17	328 329	polymorphisms influencing xenobiotic metabolism and transport in patients with
19	329	primary biliary cirrhosis. Hepatology. 2005;41(1):55-63.
20	330	20. Cordell HJ, Han Y, Mells GF, Li Y, Hirschfield GM, Greene CS, et al.
21	331	International genome-wide meta-analysis identifies new primary biliary cirrhosis risk
22	333	loci and targetable pathogenic pathways. Nat Commun. 2015;6:8019.
23	333 334	21. Ala A, Stanca CM, Bu-Ghanim M, Ahmado I, Branch AD, Schiano TD, et al.
24	334 335	Increased prevalence of primary biliary cirrhosis near Superfund toxic waste sites.
25	335	Hepatology. 2006;43(3):525-31.
26	330	22. Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for
27	338	primary biliary cirrhosis in two United Kingdom populations. Gut. 2010;59(4):508-
28	338 339	12.
29	339 340	 Corpechot C, Chretien Y, Chazouilleres O, Poupon R. Demographic, lifestyle,
30 31	340 341	medical and familial factors associated with primary biliary cirrhosis. J Hepatol.
32	341	2010;53(1):162-9.
33	342	24. Zein CO, Beatty K, Post AB, Logan L, Debanne S, McCullough AJ. Smoking
34	343 344	and increased severity of hepatic fibrosis in primary biliary cirrhosis: A cross
35	344 345	validated retrospective assessment. Hepatology. 2006;44(6):1564-71.
36	343 346	25. Mason AL, Zhang G. Linking human beta retrovirus infection with primary
37	340 347	biliary cirrhosis. Gastroenterol Clin Biol. 2010;34(6-7):359-66.
38	347	26. Wang J, Yang G, Dubrovsky AM, Choi J, Leung PS. Xenobiotics and loss of
39	348 349	tolerance in primary biliary cholangitis. World J Gastroenterol. 2016;22(1):338-48.
40	349	27. Danielsson A, Boqvist L, Uddenfeldt P. Epidemiology of primary biliary
41	350 351	cirrhosis in a defined rural population in the northern part of Sweden. Hepatology.
42		
43	352	1990;11(3):458-64. 28. Tsuji K, Watanabe Y, Van De Water J, Nakanishi T, Kajiyama G, Parikh-
44 45	353 354	5 7 7 5 5 7
45 46		Patel A, et al. Familial primary biliary cirrhosis in Hiroshima. J Autoimmun.
40	355	1999;13(1):171-8.
48	356	29. Bach N, Schaffner F. Familial primary biliary cirrhosis. J Hepatol.
49	357	1994;20(6):698-701.
50	358	30. Hirschfield GM, Liu X, Xu C, Lu Y, Xie G, Lu Y, et al. Primary biliary
51	359 360	cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med.
52	360	2009;360(24):2544-55. 21 Malls CE Floyd IA Marlay KL Cardall HL Franklin CS. Shin SV, at al
53	361	31. Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY, et al.
54	362	Genome-wide association study identifies 12 new susceptibility loci for primary
55	363	biliary cirrhosis. Nat Genet. 2011;43(4):329-32.
56	364	32. Prince MI, Chetwynd A, Craig WL, Metcalf JV, James OF. Asymptomatic
57 59		13
58 59		
60		For Peer Review Only
00		· ·

3	365	primary biliary cirrhosis: clinical features, prognosis, and symptom progression in a
4	366	large population based cohort. Gut. 2004;53(6):865-70.
5	367	33. Lee J, Belanger A, Doucette JT, Stanca C, Friedman S, Bach N.
6	368	Transplantation trends in primary biliary cirrhosis. Clin Gastroenterol Hepatol.
7	369	2007;5(11):1313-5.
8	370	34. Lindor KD, Gershwin ME, Poupon R, Kaplan M, Bergasa NV, Heathcote EJ,
9	371	et al. Primary biliary cirrhosis. Hepatology. 2009;50(1):291-308.
10	372	35. Sclair SN, Little E, Levy C. Current Concepts in Primary Biliary Cirrhosis and
11	373	Primary Sclerosing Cholangitis. Clin Transl Gastroenterol. 2015;6:e109.
12	374	36. Informatics CIHI. National Ambulatory Care Reporting System Annual
13	375	Report. 2016.
14 15	376	37. Information CIHI. Discharge Abstract Database Annual Report. 2016.
16	377	38. Information. CIHI. Canadian Organ Replacement Register Report. 2016.
17	378	39. Canada S. Estimates of population, by age group and sex - TABLE 051-001.
18	379	2016.
19	380	40. Carey EJ, Ali, A. H. & Lindor, K. D. Primary biliary cirrhosis. Lancet.
20	381	2015;386:1565-75.
21	382	41. Desai S, Peltekian KM. Canadian mortality rates for liver disease: taking a
22	383	closer look at ICD coding. Can J Public Health. 2004;95(3):198-200.
23	383	42. Chaurasia RK, Pradhan B, Chaudhary S, Jha SM. Child-Turcotte-Pugh versus
24	385	model for end stage liver disease score for predicting survival in hospitalized patients
25		
26	386	with decompensated cirrhosis. J Nepal Health Res Counc. 2013;11(23):9-16.
27	387	43. Chawla YK, Kashinath RC, Duseja A, Dhiman RK. Predicting Mortality
28	388	Across a Broad Spectrum of Liver Disease-An Assessment of Model for End-Stage
29	389	Liver Disease (MELD), Child-Turcotte-Pugh (CTP), and Creatinine-Modified CTP
30	390	Scores. J Clin Exp Hepatol. 2011;1(3):161-8.
31	391	44. Canada S. Life tables, Canada, provinces and territories. Available at:
32	392	http://www.statcangcca/pub/84-537-x/84-537-x2013005-enghtm.Accessed November
33 34	393	2016.
34 35	394	45. Delgado J, Sperber AD, Novack V, Delgado B, Edelman L, Gaspar N, et al.
36	395	The epidemiology of primary biliary cirrhosis in southern Israel. Isr Med Assoc J.
37	396	2005;7(11):717-21.
38	397	46. Gross RG, Odin JA. Recent advances in the epidemiology of primary biliary
39	398	cirrhosis. Clin Liver Dis. 2008;12(2):289-303; viii.
40	399	47. Chuang N, Gross RG, Odin JA. Update on the epidemiology of primary
41	400	biliary cirrhosis. Expert Rev Gastroenterol Hepatol. 2011;5(5):583-90.
42	401	48. Borman M, & Swain, Mark G. Changing epidemiology and natural history of
43	402	primary biliary cirrhosis. Clinical Liver Disease. 2014;3(1):12-4.
44	403	49. Information CIfH. Canadian Organ Replacement Registry Annual Report.
45	404	2017.
46	405	50. Kuiper EM, Hansen BE, Metselaar HJ, de Man RA, Haagsma EB, van Hoek
47	406	B, et al. Trends in liver transplantation for primary biliary cirrhosis in the Netherlands
48	407	1988-2008. BMC Gastroenterol. 2010;10:144.
49	408	51. Myers RP, Shaheen AA, Fong A, Wan AF, Swain MG, Hilsden RJ, et al.
50	409	Validation of coding algorithms for the identification of patients with primary biliary
51	410	cirrhosis using administrative data. Can J Gastroenterol. 2010;24(3):175-82.
52	-	
53 54		
54 55		
56		
57		14
		14

Table 1. Annual P	revalence Among Primary Biliary Cholangitis (PBC) and PBC Liver
Transplant Popul	ation
	Prevalence (95% CI)


Year	Prevalence (95% CI)		
	PBC Prevalent Population	PBC Liver Transplant Population	
2010	-	1.03 (0.93-1.06)	
2011	-	0.55 (0.37-0.73)	
2012	-	1.02 (0.92-1.11)	
2013	255 (248-264)	0.59 (0.47-0.71)	
2014	288 (279-297)	0.58 (0.52-0.65)	
2015	318 (309-327)	0.49 (0.41-1.06)	
	fidence interval. Data shows national an	1 0	
1. / 1 1		.11. 1	

adjusted prevalence as PBC or Liver Transplant cases per million population.

0-17		Female (%)
0-1/	62%	38%
18-39	35%	65%
40-64	20%	80%
65-79	22%	78%
>80+	17%	83%

Age	Male (%)	Female (%)	
0-17	4%	0%	
18-39	0%	11%	
40-64	60%	83%	
65+	36%	6%	
Child Pugh Category	Proportion Patients (%)		
5-6	0%		
7-9	41%		
10-15	58%		
MELD Category	Proportion Patients (%)		
<12	7%		
12-15	24%		
15-22	29%		
>22	39%		
Note: MELD = model of end-stage	liver disease. The data are show	the crude unadjusted coun	
for the liver transplant population b	v age The data show the 2010-2	015 PBC liver transplant	

(A)

(B)

A) Transplant Wait-Time Analysis. The data shown is the proportion of patients waiting to receive a liver transplant by month since being listed on the transplant list. B) Survival Post Liver Transplant. The data shown demonstrates the probability of survival post-liver transplant by month.

Primary Biliary Cholangitis Liver Transplant Wait-time and Survival Analysis

599x776mm (72 x 72 DPI)