- ¹ *Predicting wildlife reservoirs and global vulnerability to zoonotic*
- *Flaviviruses*
- *Pandit et al.*

Supplementary Figure 1. Trait profile of zoonotic Flavivirus-positive species. Partial dependence plots of the top 10 predictor traits from the generalized boosted regression trees model, arranged in order of variable importance. Lines (continuous variables) and dots (categorical variables) indicate the partial dependence of the variable on the prediction and the histogram indicates the distribution of the variable in the model data. Note: Diet preference: Fish: Fish; fruit: Fruit/drupes; Inv: Invertebrates including aquatic invertebrates; Nect: Nectar pollen, plant exudates, gums; PlantO: Other plant material; Seed: Seeds; Vect: Reptiles, snakes, amphibians; vend: Mammals, Birds; Vunk: Vertebrates-general or unknown

Supplementary Figure 2. Trait profile of zoonotic Flavivirus-positive species using a model excluding the variable PubMed hits. Partial dependence plots of the top 10 predictor
traits from the generalized boosted regression trees model, arranged in order of variable importance. Lines (continuous variables) and dots (categorical variables) indicate the
partial dependence of the variable on the prediction and the histogram indicates the distribution of the variable in the model data. Note: Diet preference: Fish: Fish; fruit:
Fruit/drupes; Inv: Invertebrates including aquatic invertebrates; Nect: Nectar pollen, plant exudates, gums; PlantO: Other plant material; Seed: Seeds; Vect: Reptiles, snakes,
amphibians; vend: Mammals, Birds; Vunk: Vertebrates-general or unknown

 Supplementary Figure 3. Partial dependence and interaction of latitude and longitude centroids of vertebrate species for being flaviviral host in the generic Flavivirus model.

21

Supplementary Figure 4. Partial dependence of variables related to the distributions of mosquito and tick vectors for the generic
Flavivirus model.

Supplementary Figure 5. Trait profile of YFV- and ZIKV-positive species. Partial dependence plots of the top 10 predictor traits from the generalized boosted regression trees model, arranged in order of variable importance. Lines (continuous variables) and dots (categorical variables) indicate the partial dependence of the variable on the prediction and the histogram indicates the distribution of the variable in the model data.

Supplementary Figure 6. Trait profile of WNV, SLEV, and USUV positive species: Partial dependence plots of the top 10 predictor traits from the generalized boosted regression trees model, arranged in order of variable importance. Lines (continuous variables) and dots (categorical variables) indicate the partial dependence of the variable on the prediction and the histogram indicates the distribution of the variable in the model data. Note: Diet preference: Fish: Fish; fruit: Fruit/drupes; Inv: Invertebrates including aquatic invertebrates; Nect: Nectar pollen, plant exudates, gums; PlantO: Other plant material; Seed: Seeds; Vect: Reptiles, snakes, amphibians; vend: Mammals, Birds; Vunk: Vertebrates-general or unknown

36

37 Supplementary Figure 7. Trait profile of RBV, ENTV, and DBV positive species. Partial dependence plots of the top 10 predictor traits from the generalized boosted regression trees 38 model, arranged in order of variable importance. Lines (continuous variables) and dots (categorical variables) indicate the partial dependence of the variable on the prediction and the histogram indicates the distribution of the variable in the model data.

41 Supplementary Figure 8. Trait profile of TBEV positive species. Partial dependence plots of the top 10 predictor traits from the generalized boosted regression trees model, 42 arranged in order of variable importance. Lines (continuous variables) and dots (categorical variables) indicate the partial dependence of the variable on the prediction and the 43 histogram indicates the distribution of the variable in the model data. Note: Diet preference: Fish: Fish; fruit: Fruit/drupes; Inv: Invertebrates including aquatic invertebrates; 44 Nect: Nectar pollen, plant exudates, gums; PlantO: Other plant material; Seed: Seeds; Vect: Reptiles, snakes, amphibians; vend: Mammals, Birds; Vunk: Vertebrates-general or unknown

Supplementary Figure 9: Trait profile of DENV positive species. Partial dependence plots of the top 10 predictor traits from the generalized boosted regression trees model, arranged in order of variable importance. Lines (continuous variables) and dots (categorical variables) indicate the partial dependence of the variable on the prediction and the histogram indicates the distribution of the variable in the model data. Note: Diet preference: Fish: Fish; fruit: Fruit/drupes; Inv: Invertebrates including aquatic invertebrates; Nect: Nectar pollen, plant exudates, gums; PlantO: Other plant material; Seed: Seeds; Vect: Reptiles, snakes, amphibians; vend: Mammals, Birds; Vunk: Vertebrates-general or unknown

Supplementary Figure 10. Trait profile of JEV positive species. Partial dependence plots of the top 10 predictor traits from the generalized boosted regression trees model, arranged in order of variable importance. Lines (continuous variables) and dots (categorical variables) indicate the partial dependence of the variable on the prediction and the histogram indicates the distribution of the variable in the model data.

- 0.9 - 0.6 - 0.3 - 0.0

Supplementary Figure 11: Hierarchically-clustered heatmap showing correlations between continuous host traits used as predictor variables and predicted probability for mammalian and avian species.

Supplementary Figure 12. Model-predicted probabilities. Boxplots show the distribution of model-predicted probabilities for species from modeled orders; dots show data points for species and diamonds show outlier species.

WNV, SELV, USUV (Virus isolation and PCR only)

65

Supplementary Figure 13: Overlapping geographical ranges of model predicted hosts in the 95th percentile of probability for
WNV, SLEV and USUV by relabeling positive hosts only when they are found positive by PCR or virus isolation. Map was
generated using species distribution data from IUCN¹, and BirdLife International and NatureServe².

Supplementary Figure 14: Geographical distribution of study effort shown by overlapping geographical ranges of all the mammalian and avian species and their associated studies reported in PubMed Central database. Map was generated using species distribution data from IUCN¹, and BirdLife International and NatureServe².

74 Supplementary Tables

75

76

77

		1		1			TT 11
	Postive samples		Total samples		Optimal	cv AUC score (SE)	Holdout
Model					Number of		AUC
	Training	Holdout	Training	Holdout	trees		
Generic	305	76	12236	3056	9250	0.906 (0.011)	0.923
Generic (without PubMed hits)	305	76	12236	3056	11200	0.894 (0.01)	0.924
Group 1: YFV, ZIKV	11	3	1774	444	1400	0.944 (0.03)	0.975
Group 2: WNV, SLEV, USUV	203	51	11112	2778	5850	0.903 (0.008)	0.938
Group 2: WNV, SLEV, USUV (PCR/virus isolation)	118	30	11197	2799	6450	0.924 (0.011)	0.892
TBEV	62	15	9038	2260	4400	0.978 (0.004)	0.972
Group 3: RBV, ENTV, DBV	13	3	871	218	1700	0.929 (0.031)	0.662
DENV	18	5	2740	685	2200	0.909 (0.041)	0.877
JEV	16	4	6501	1625	1250	0.834 (0.046)	0.992

Supplementary Table 1. M	Model parameters and	l the optimal number	of trees fo	or different mode	ls

78 Note: tree complexity: 5, learning rate: 0.001, bag fraction: 0.5, cv: 10

Virus Groups	Orders
Group 1: YFV, ZIKV	Primates, Rodentia
Group 2: WNV, SLEV, USUV	Accipitriformes, Passeriformes, Charadriiformes,
	Strigiformes, Galliformes, Primates, Anseriformes,
	Pelecaniformes, Chiroptera, Rodentia, Cetartiodactyla,
	Pilosa, Bucerotiformes, Carnivora, Caprimulgiformes,
	Falconiformes, Piciformes, Columbiformes, Gruiformes,
	Cathartiformes, Suliformes, Perissodactyla,
	Phoenicopteriformes, Cuculiformes, Psittaciformes,
	Coraciiformes, Ciconiiformes, Struthioniformes,
	Lagomorpha, Didelphimorphia
Group 2: WNV, SLEV, USUV	Accipitriformes, Passeriformes, Charadriiformes,
PCR/Isolation only)	Strigiformes, Galliformes, Primates, Anseriformes,
	Pelecaniformes, Chiroptera, Rodentia, Cetartiodactyla,
	Bucerotiformes, Carnivora, Caprimulgiformes,
	Falconiformes, Piciformes, Columbiformes, Gruiformes,
	Cathartiformes, Suliformes, Perissodactyla,
	Phoenicopteriformes, Psittaciformes, Coraciiformes,
	Ciconiiformes, Struthioniformes, Didelphimorphia
TBEV	Rodentia, Cetartiodactyla, Eulipotyphla, Primates,
	Lagomorpha, Carnivora, Passeriformes, Piciformes,
	Galliformes, Charadriiformes, Anseriformes, Gruiformes,
	Accipitriformes, Columbiformes
Group 3: RBV, ENTV, DBV	Chiroptera
DENV	Chiroptera, Didelphimorphia, Perissodactyla,
	Primates, Rodentia
JEV	Cetartiodactyla, Columbiformes, Eulipotyphla,
	Perissodactyla, Chiroptera, Passeriformes, Primates

Supplementary Table 2. Taxonomic Orders known to have confirmed species for viruses from
each virus group that are used for predictions in respective models

81 *Note: Blue: avian orders*

Model Category	Variable	Variable Type	Description	Source
Conservation Status	IUCN status	categorical		1
	Population Trend	categorical		1
Ecology	Habitat breadth	numeric	Number of habitats	3
	Diet preference	categorical	predominant diet type	4
	Foraging strata	categorical	Foraging Strata	4
	Activity time	categorical	diurnal-nocturnal	4
Physiology	Metabolic rate (W)	numeric	metabolic rate	4
	Body temperature (°C)	numeric	body temperature	4
	Body mass (g)	numeric	body mass	4
Distribution	Centroid (X, Y)	numeric	centroids of distribution shapefile	
	Northernmost bound	numeric	Y maximum value	-
	Southernmost bound	numeric	Y minimum value	-
	Easternmost bound	numeric	X maximum value	-
	Westernmost bound	numeric	X minimum value	-
	Distribution Area (km ⁻²)	numeric	area of the distribution shapefile	-

82 Supplementary Table 3. Feature dataset used in the generalized boosted regression model for predicting flavivirus potential hosts

84

85

Supplementary Table 4. Model variables calculated from global raster datasets

Model Category	Variable	Variable Type	Description	Source	Statistic
Bio-Climatic	Annual precipitation (mm)	numeric		5	mean
	Annual Mean Temperature	numeric		5	mean
	(°C)				
	Isothermality	numeric	comparison of daily difference to the yearly	5	mean
			difference		
	Slope	categorical		<u>6</u>	mode
Diversity	Mammal diversity ($n \times 10 \text{ km}^{-2}$)	numeric	mammalian diversity in the range of species	7	mean
	Bird diversity ($n \times 10 \text{ km}^{-2}$)	numeric	avian diversity in the range of species	7	mean
Anthropogenic	Human population density (km ⁻	numeric	Human population diversity in the range of species	6	mean

variables	2)				
	Crops	categorical		6	mode
	Livestock density	categorical		6	mode
	Land use	categorical		6	mode
Vectors	Mosquitoes	numeric	additive distribution of mosquito vectors	8	mean
			$(probability \times 10)$		
	Ticks	numeric	additive distribution of tick vectors (probability $ imes$		mean
			10)		

Vector	Number of viruses				Viruses			
Aedes aegypti	7	DENV	ILHV	SLEV	WSLV	WNV	YFV	ZIKV
Culex pipiens	6	JEV	SLEV	TMUV	USUV	WNV	ZIKV	
Culex tritaeniorhynchus	6	BAGV	DENV	JEV	TMUV	WSLV	WNV	
Aedes albopictus	5	DENV	MVEV	USUV	WNV	ZIKV		
Aedes vexans	5	JEV	TBEV	USUV	WSLV	WNV		
Culex quinquefasciatus	5	JEV	SLEV	TMUV	WNV	ZIKV		
Aedes africanus	5	BOUV	WSLV	WNV	YFV	ZIKV		
Culex annulirostris	4	JEV	KUNV	MVEV	WNV			
Psorophora ferox	4	ILHV	ROCV	SLEV	WNV			
Mansonia uniformis	4	JEV	WSLV	WNV	ZIKV			
Ixodes persulcatus*	4	LIV	OMSKV	TBEV				
Culex univittatus	3	USUV	WSLV	WNV				
Culex vishnui	3	JEV	TMUV	WNV				
Culex pseudovishnui	3	JEV	KUNV	TMUV				
Dermacentor marginatus*	3	OMSKV	TBEV	WNV				
Culex bitaeniorhynchus	3	JEV	MVEV	WNV				
Aedes scapularis	3	ILHV	ROCV	SLEV				
Sabethes chloropterus	3	ILHV	SLEV	YFV				
Hyalomma marginatum*	3	LIV	TBEV	WNV				
Aedes luteocephalus	3	WSLV	YFV	ZIKV				
Anopheles hyrcanus	3	JEV	WNV					
Amblyomma variegatum*	2	WNV	YFV					
Rhipicephalus muhsamae*	2	WSLV	WNV					
Ixodes ricinus*	2	LIV	TBEV					
Dermacentor reticulatus*	2	OMSKV	TBEV					
Amblyomma cajennense*	1	CPCV						

Supplementary Table 5: Known Flavivirus mosquitoes and tick vectors and viruses carried by these vectors

*Tick species.

Note: APOIV: Apoi virus, BAGV: Bagaza virus, BANV: Banzi virus, BOUV: Bouboui virus, CPCV: Cacipacore virus, DBV: Dakar bat virus, DENV:

Dengue virus, ENTV: Entebbe bat virus, IGUV: Iguape virus, ILHV: Ilheus virus, JEV: Japanese encephalitis virus, KFDV: Kyasanur forest virus, KUNV:

98 Kunjin virus, LIV: Louping-ill virus, MODV: Modoc virus, MVEV: Murray Valley encephalitis virus, OMSKV: Omsk hemorrhagic fever virus, RBV: Rio

96 97

99 100	Br US	avo virus, ROCV: Rocio virus, SLEV: St. Louis Encephalitis virus, TBEV: Tickborne encephalitis virus, TMUV: Tembusu virus, UGSV: Uganda S virus, SUV: Usutu virus, WNV: West Nile virus, WSLV: Wesselsbron virus, YFV: Yellow fever virus, ZIKV: Zika virus.
101		
102	Suppl	lementary References
103	1.	IUCN. The IUCN Red List of Threatened Species. Version 2017-1 edn (2017).
104 105 106	2.	BirdLife International and Nature Serve. Bird species distribution maps of the world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA. (2015).
107 108 109	3.	Vilela B, Villalobos F. letsR: a new R package for data handling and analysis in macroecology. <i>Methods Ecol Evol</i> 6 , 1229-1234 (2015).
110 111 112	4.	Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W. EltonTraits 1.0: Species level foraging attributes of the world's birds and mammals. <i>Ecology</i> 95 , 2027-2027 (2014).
113 114 115	5.	Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. <i>Int J Climatol</i> 25 , 1965-1978 (2005).
116 117	6.	FAO. FAO Geonetwork. Food and Agriculture Organization of the United Nations (2017).
118 119 120	7.	Jenkins CN, Pimm SL, Joppa LN. Global patterns of terrestrial vertebrate diversity and conservation. <i>Proc Natl Acad Sci U S A</i> 110 , E2602-2610 (2013).
121 122	8.	The Walter Reed Biosystematics Unit. VectorMap. http://vectormap.si.edu/. Smithsonian Institution (2016).
123		
124		