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Supplementary Methods

Assessing taxon sampling—In total, we obtained morphological data for 255 species in the
final tree (see figure S1). To assess the evenness of this taxonomic sampling, we used mean
nearest taxonomic distance (MNTD) [1]. We calculated the MNTD for species with
morphological data and compared this value to a null distribution generated by randomly
shuffling tips [1]. The observed MNTD was ~58 My, which was not significantly smaller than
expected by chance (Prang = 0.13) suggesting that our sampling is not significantly biased or
uneven [1].

Incorporating fossils—We added extinct lepidosaurs and turtles with available melanosome
data either as polytomies at the base of the Iguanidae clade or as the sister taxon to the lone
extant representative of the Testudines clade, respectively, following [2]. For theropod
dinosaurs, we used the R code, fossil ages, and published cladogram of [3] to generate a fossil
subtree with the timePaleoPhy function in paleotree [4]. We grafted this time-calibrated
fossil tree along the branch leading to birds in our extant supertree using custom R code
(available on Dryad). Additional extinct archosaur taxa not represented in the published
theropod tree [3] were added as sister taxa to clades in the supertree based on published
divergence times [3,5] and with fossils as minimum ages [2]. Finally, we added three
additional fossil taxa as polytomies (1 undescribed pterosaur, 1 undescribed psittaocosaur,
and 1 undescribed enantiornithine; see table S1 for specimen details).

Sensitivity analysis—-Comparative methods that estimate shifts in the rate of phenotypic
evolution generally do not require a fully resolved phylogeny, but rather that taxa are
sampled uniformly with respect to the trait of interest [6]. To assess the sensitivity of our rate
analyses to taxon sampling, we employed a jackknife approach following [7]. To do this, we
created 25 subtrees by randomly removing 10 taxa. We then re-ran rate shift analyses on all
random subtrees. The results show that the inferred rate shifts in Maniraptora (dinosaurs and
birds) and Passeres (songbirds) are robust to removal of taxa (n=10), while the decrease in
evolutionary rate at the base of the Sauropsida clade (non-avian reptiles, birds, crocodiles) is
not (figure S3). This could be because of denser sampling of taxa with fossil melanosomes in
feathered dinosaurs and birds (figure S2).

Clade-specific trends in evolutionary rates— We compared among clade differences in
evolutionary rates and covariation among traits using a Bayesian approach implemented in
the ratematrix package [8]. This method reconstructs shifts in evolutionary trait correlations
and rates while accounting for uncertainty in when different integumentary structures
evolved. We used stochastic character mapping [9] to map integument type (hair, skin/scales,
and feathers) onto the pruned phylogeny, with the ancestral state of integument type to
skin/scales based on extant and fossil evidence [10]. We fit separate models for brown and
black colours for melanosome length and melanosome diameter. We ran two MCMC chains
for 2 million generations each and assessed convergence (Gelman-Rubin R < 1.01) with the
checkConvergence function [8]. We compared evolutionary rates and covariation among



54  clades by calculating posterior distribution overlaps in the testRatematrix function [8].
55  Overlaps >5% suggest that clades do not show distinct macroevolutionary trends.

56



57

58
59
60

61
62

SUPPLEMENTARY TABLES

Table S1. List of fossil taxa used. Data for samples 1-18 taken from Li et al. 2014 [2] and images
used to measure melanosomes in sample 19 taken from McNamara et al. 2009 [11].

Sample Taxon

Catalogue number

O 00 NO UL WN B

R R R R R R R R R R
V0N D WN RO

Anchiornis huxleyi
Archaeopteryx lithographica
Caudipteryx zoui
Confuciusornis sanctus
Inkayacu paracasensis
Undescribed ornithurine
Microraptor

Undescribed enantiornithine
Undescribed enantiornithine
Beipiaosaurus
Sinosauropteryx
Undescribed pterosaur
Undescribed pterosaur
Psittacosaurus lujiatunensis
Psittacosaurus lujiatunensis
Undescribed turtle
Xianglong zhaoi
Yabeinosaurus sp.
Undescribed frog

BMNHC PH828
MB.Av.100

PMOL AD00020
CUGB G20070001
MUSM 1444
CUGB G20100053
BMNHC PH881
CUGB P1201
CUGB G20120001
BMNHC PHO00911
IVPP V14202
BMNHC PHO00988
PMOL AP00022
PKUP V1050

PKUP V1051

PKUP V1070
PMOL 000666
PKUP V1059
MNCN 63805
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Table S2. Relationship between rates of melanosome shape evolution and predicted
metabolic rates in amniotes. Results of ‘rate-by-state’ tests. P values < 0.05 indicate rates of
melanosome shape evolution are significantly correlated with predicted ancestral metabolic
rates for black (eumelanin-consistent) colours, brown (phaeomelanin-consistent) colours, and
species mean values ("All"). Significance was assessed by simulating trait evolution 500 times.

Colour r P value
Black 0.270 0.004
Brown 0.303 0.010
All 0.189 0.006
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Table S3. Bayesian phylogenetic mixed models (BPMM) results. Columns show response
variables and estimates with 95% Bayesian credible intervals calculated with the HPDinterval
function in coda [12]. For multivariate response models, Wald tests showed overall significance
between melanosome morphology and metabolic rate for black (eumelanin-consistent) colours
(p <0.001) but not brown (phaeomelanin-consistent) colours (p = 0.52).

Response Term Estimate (95% Cl) Pmcmc
Univariate Intercept 2.36(2.07, 2.65) <0.001
(aspect ratio) Colour (brown) -0.46 (-0.86, -0.10) <0.001
BMR 0.65 (0.30, 1.04) 0.019
BMR:Colour (brown) -1.00 (-1.48, -0.51) <0.001
Multivariate Length 6.63 (6.54, 6.73) <0.001
(length, diameter)  Diameter 5.85 (5.75, 5.95) <0.001
Length:BMR 0.36 (0.24, 0.48) <0.001
Diameter:BMR 0.15(0.02, 0.29) 0.027
Length:Colour (brown) -0.27 (-0.41, -0.13) <0.001
Diameter:Colour (brown) -0.07 (-0.20, 0.07) 0.33
Length:BMR:Colour (brown) -0.44 (-0.62, -0.24) <0.001
Diameter:BMR:Colour (brown) -0.13 (-0.31, 0.05) 0.16
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Table S4. Quadratic discriminant function analysis performance with and without including
body mass. Variables included: melanosome length, melanosome diameter, melanosome
aspect ratio, and log mass (for ‘Mass’ model only). See [13] for details.

Model Cross-validation Self-test
No mass 0.753 0.630
Mass 0.798 0.686



85 SUPPLEMENTARY FIGURES

86  Figure S1. Full synthetic supertree and taxon sampling in amniotes. Tips coloured according to
87 clade (red: birds, blue: mammals, green: non-avian reptiles), with darker shades indicating

88  species with morphological data (n = 255) and lighter shades without morphological data.

89  Species without morphological data were dropped from the tree prior to analysis. A tree file

90 with readable tips is available on Dryad.

91
92



93  Figure S2. Full auteur rate shift results. Branch colours correspond to estimated rates of
94 melanosome evolution (blue: slow, red: fast). Circles at nodes indicate estimated locations of
95 rate shifts, with size of circle indicating probability of a rate shift occurring at a given node.
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Figure S3. Sensitivity analysis for rate shifts estimated with auteur. Points show estimated
shift probabilities for clades of interest (nodes highlighted in figure S2) after randomly removing
10 taxa from the tree (i.e. ‘taxonomic jack-knifing’). This analysis indicates the shifts in
Maniraptora (feathered dinosaurs and birds) and Passeres (songbirds) are robust to taxon
removal, but the decrease in evolutionary rate at the base of the Sauropsida clade (non-avian
reptiles, birds, crocodiles) is not. Values prior to jack-knifing are shown in blue.
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108  Figure S4. Clade-specific differences in rates of melanosome shape evolution for black

109 (eumelanin-consistent) integument colours. Plots show posterior distribution of evolutionary
110 rates (plot diagonals) and covariation (off-diagonal plots) between melanosome length and
111  diameter for birds (red), mammals (blue), and non-avian reptiles (green). Birds and mammals
112 show higher rates of morphological evolution compared to non-avian reptiles.
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116  Figure S5. Weak among-clade differences in rates of melanosome shape evolution for brown
117 (phaeomelanin-consistent) integument colours. Plots show evolutionary rates (diagonals) and
118  covariance (off-diagonals) between melanosome length and diameter for birds (red), mammals
119  (blue), and non-avian reptiles (green).
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123 Figure S6. Relationship between melanosome morphology and resting metabolic rate. Results
124  are for a subset of 31 species with both brown and black colour patches on the body.
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Figure S7. Relationship between melanosome morphology and mass-derived metabolic rate.
Results are shown for a subset of 77 species with both body mass and mass-specific metabolic
rate data. Slopes for best-fit lines are derived from MCMCglmm analyses.
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