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Materials and Methods:  

 

1. Urine sample collection. The samples have been collected under the active IRB at the 

Dartmouth-Hitchcock Medical Center (DHMC) and Cleveland Clinic. Urine was collected in 

the middle of urination- avoiding first morning urination, following recommendations for 

VUC. 25 mL of urine was used to avoid inadequate cellularity, which is close to 30mL 

recommended in (1). The human subjects were recruited from healthy individuals, patients 

with previous history of bladder cancer who did not have cancer at the moment, and patients 

with bladder cancer.  Diagnostic of cancer and the cancer stage were done using standard 

liquid cytology and cytoscopy protocols, and/or transurethral resection of tumor (TURBT). 

2. Patients tested. Urine samples were collected from 22 patients identified with cancer (12 low- 

and 10 high- grade as defined by TURBT after collecting urine samples) and 43 non-cancer 

individuals (healthy volunteers and patients with previous history of cancer) at DHMC and 3 

cancer (2 low and one high- grade) patients. The age of the subjects ranged from 54 to 87, 

about 20% females (this cancer is prevalent among males). The samples were processed as 

described above, fixed, and sent to the microscopy lab at Tufts University, where the cells 

were washed, freeze-dried, and processed through the three-step -protocol described below. 

As a result, cancer patients: 1 sample without cells (24 with cells), non-cancer individuals: 18 

samples without cells (25 with cells).  

 

3. Cell preparation protocol. The cell samples are extracted from urine samples by 

centrifugation. The precipitant is re-suspended in PBS buffer and fixed. The preliminary 

results were obtained with Karnovsky fixative (2). Following the fixation protocol (3-5), the 

cells are subsequently washed with DI water, and transferred to the AFM lab for analysis. To 

protect the cell from drying artifacts, the cells are dried using freeze-drying. To do that cells as 

received are first washed by centrifugation, re-suspension, and centrifugation again in clean 

DI water. The precipitant with a small amount of water is transferred on a precooled glass 

slide and quickly frozen using a standard freeze-dryer freezer (by Labconco) for five minutes. 

The glass slide with frozen sample is then placed in a freeze dryer operating in -45°C (the 
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time depends on the specific freeze dryer and the amount of sample; it can be as fast as 30 

minutes). The AFM imaging is applied to cells or cell-like objects) randomly chosen with the 

help of an optical microscope build-in the AFM, see, e.g., Fig.1 A (main text). The cells are 

imaged directly on the glass slide taken from the freeze dryer. No further preparation of the 

sample is needed. 
 

4. Cells chosen for the AFM imaging. Cells prepared as described above, were ready for 

imaging with AFM. Specific objects to image were chosen randomly with the help of an 

optical microscope built-in the AFM setup.  The only criterion was to pick up a relatively 

round object which looked like as a cell with the optical microscope.  
However, several objects, which we call “cell-like objects”, were excluded from the 

analysis. The following protocol for the exclusion was used. Three representative optical 

images of these objects are demonstrated in Fig.S1 a-c. Optically these objects are hardly to 

distinguish from cells. However, AFM images of these objects showed an unusual layered 

structure. Figs.S1 d-g show representative examples of AFM images of these objects. One can 

see a distinctive layered structure, which had not been seen on biological cells (shown in 

Fig.1c-f).  In addition, the adhesion channel showed clear horizontal lines on these objects, 

Fig.S1 e,g, which are very rarely seen on cells.  These two features allowed us to 

unambiguously differentiate these objects and cells. These objects were not considered to be 

cells and not used for the analysis. As a result, the individual who had just such cell-like 

objects were classified as “no cells”. 
 

5. AFM imaging. Bioscope Catalyst (Bruker/Veeco, Inc., Santa Barbara, CA) atomic force 

microscope equipped with Nanoscope V controller was used to image cells found in urine. 

Bruker ScanAssyst cantilevers for imaging in air were used. To collect the maps of cells, two 

sub- resonant tapping modes were used, a standard PeakForce tapping (Bruker/Veeco, Inc., 

Santa Barbara, CA) , and new Ringing mode (NanoScience Solutions, Inc., Arlington, VA)  

(6).  Both modes were verified to give the same surface parameters for the height and 

adhesion channels. The reason of using two modes was that ringing mode allows collecting 

images faster (initially data were collected using PeakForce tapping, and we switched to 

ringing mode later on). Although PeakForce tapping and Ringing modes allow collecting 6 

and 14 different channels, respectively, only 2 channels were present in both modes and were 

sufficiently robust to be used for cell classification, cell height and adhesion. The images are 

collected at the scan size of 10x10 microns (at the resolution of 512x512 pixels). The speed of 

scanning is 0.1Hz in the PeakForce and 0.4Hz in ringing mode; the scan (peak) force is 5nN. 

Fig. 1 shows an example of images of bladder cells prepared as described above and imaged 

with the sub- resonant imaging (either PeakForce tapping or Ringing) mode. 
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                 (a)                                                   (b)                                                               (c) 

 

 

 
 

Figure S1. Representative examples of cell-like objects. (a-c) 400x600 µm
2 

optical images of cell-

like objects obtained using Nikon TE 2000U microscope; a shadow on the right comes from the 

AFM cantilever. (d-g) AFM recorded 10x10 µm
2
 maps of height (d,f) in adhesion (e,g). Horizontal 

lines clearly seen in the adhesion channel are due to picking up debris by the AFM probe, a feature 

almost never seen on cells.  

(d) (e) 

(f) 
(g) 



 

4 

 

6. Calculation of surface parameters. Surface parameters are routinely used in multiple 

engineering applications to characterize surfaces (7)  We used software SPIP (by Image 

Metrology A/S, Denmark),  which automatically calculates 44 surface parameters  for 3D image 

surface arrays recorded by AFM. Here we apply it for both height and adhesion images (AFM 

images are digital arrays of either heights or adhesion, respectively). A complete list of surface 

parameters used in the present work is as follows: Roughness Average, Root Mean Square 

(RMS), Surface Skewness, Surface Kurtosis, Peak-Peak, Ten Point Height, Max Valley Depth, 

Max Peak Height, Mean Value, Mean Summit Curvature, Texture Index,  Root Mean Square 

Gradient, Area Root Mean Square Slope, Surface Area Ratio, Projected Area , Surface Area, 

Surface Bearing Index,  Core Fluid Retention Index,  Valley Fluid Retention Index, Reduced 

Summit Height, Core Roughness Depth, Reduced Valley Depth, l-h% height intervals of 

Bearing Curve, Density of Summits, Texture Direction, Texture Direction Index,  Dominant 

Radial Wave Length, Radial Wave Index, Mean Half Wavelength, Fractal Dimension, 

Correlation Length at 20%, Correlation Length at 37%, Texture Aspect Ratio at 20%, Texture 

Aspect Ratio at 37%.  To take into account no-cells results, we added a new “no cell” parameter 

(to keep the same data structure assigned “no-cell” samples artificial negative values to the 

surface parameters; the statistical results do not depend on a particular value assigned). 

 

Examples of a few surface parameters, which are among most important for the 

classification shown in Fig.2 of the main text, Svi, Sdr, S3A. They are defined as follows. 

The Valley Fluid Retention Index (“Svi”):  
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Surfaces Area Ratio (“Sdr”) parameter expresses the increment of the interfacial surface area 

relative to the area of the projected (flat) x, y plane: 
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The Surface Area, (“S3A”) is the 3D area of the surface given by the following formula: 

                        S3A=

 

.     (S3) 

 

The surface parameters were calculated for the AFM images as follows.  Each 10x10 µm
2
 

cell image of 512x512 pixels was split into 4 zoomed areas (5x5 µm2). Thus, each cell is 

quantified with 4 sets of surface parameters calculated for each quadrant. A few images (less 

than 134 out of 1,460) showed a clearly identified small round-shaped junk, see an example in 

Fig.S2. The images with that junk were excluded. Although it is possible to write an algorithm 

to identify this junk and make the method completely operator-independent, we noticed that 

these artifacts can easily be excluded by just considering median values of the parameters for 

each cell instead of the mean values. The results described in this work are virtually unchanged 

if we consider either median values per cell of all parameters without excluding the artifacts or 

average parameter values per cell excluding the artifacts.  

 

Fig.S2. A representative example of the artifacts because of possible contamination of the cell 

surface.  

 

 

7. Use of human subjects. This study was approved by the Geisel School of Medicine 

Institutional Review Board of Dartmouth College, under trial registration number (CPHS 

Study: 29124), Cleveland clinic (IRB Case 2815; 14-1222 Comprehensive bladder cancer 

database),  and Tufts University (Health Science IRB 12605). 

 

8. Data availability statement. The data used in the work which support the findings of  

this study are available from the authors upon reasonable request and with permission of the 

Geisel School of Medicine. Restrictions apply to the availability of the medical 
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training/validation data, which were used with permission for the current study, and so are not 

publicly available.  

 

9. Statistical analysis of the obtained results. Here we analyze ROC (receiver operating 

characteristic) curve and the confusion matrix. ROC curve allows to define a range of 

sensitivity ( “accuracy” of cancer diagnosis)  and specificity ( “accuracy” of healthy diagnosis), 

which are defined as follows: 

sensitivity = TP/(TP+FN);  

specificity = TN/(TN+FP); 

accuracy= (TN+TP)/(TP+FN+TN+FP); 

It makes sense to define these two important parameters, sensitivity and specificity for a 

ROC point that corresponds to the minimum error of classification of both cancer and normal 

cases. It is shown in Tables 1 and Tables S3 and S4. 

In principle, the sensitivity and specificity can also be defined around so-called balanced 

point, in which sensitivity = specificity. Because of a limited number of human subjects, it is 

rather difficult to define the precise point when sensitivity = specificity, therefore, we defined 

this point as the one in which |sensitivity − specificity| < 5%. These results are shown in 

Tables 1, S5 and S6. 

 

10. Machine learning methods adopted to the present data structure. To classify cells as coming 

from either cancer patients or non-cancer individual (two possible classes), and to check if the 

results stay similar for different machine learning methods, we chose three different methods: 

Random Forest, Extremely Randomized Forest, and Gradient Boosting Trees. These methods 

were chosen as the least prone to overtraining, a common problem of machine-learning 

methods. The first two methods are bootstrap unsupervised ones, and the last one is a 

supervised method of building trees.  All data manipulation and analysis was carried out in 

Jupyter Notebook (version 4.2.1), which is an interactive Python desktop environment. We 

imported the data from SPIP (version 6.5) output using Pandas Python package (version 0.18.1). 

Variable ranking, classifier training and validations were calculated using appropriate Classifier 

functions from scikit-learn Python machine-learning package (version 0.17.1). 

Below we give a short description of these methods (detail description can be found in 

references (8-15) ), highlighting the difference between these methods, and the adoption of our 

data structure to be used with these methods, as well as generalization of these methods to the 

case of diagnostics based on the analysis of multiple cells. 

Random Forest and Extremely Randomized Forest methods are based on growing many 

classification trees, so-called bootstrap methods. Each of such trees predicts some classification, 

whereas the final classification is defined by votes of all trees of the method. The trees are 

grown on the training part of the total data set. It is typical to use 70% of all data for 

training/growing the tree, and us the remaining 30% for validation of the method, testing the 

accuracy of the training. These splitting are random, and repeated multiple times (similar to the 
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known Monte-Carlo idea).  If there are N_p input variables (the surface parameters in our case), 

a subset of these variables is randomly chosen out of N_p input variables for each branching 

node (we use the default, a squire root of N_p). The best split of the tree branches with these 

chosen parameters is found (each node is a split on one of the chosen parameters). The criteria 

for the split threshold is based on estimation of the classification error. The classification error 

criterion for binary splits cannot be defined as a usual statistical error of measurements. It has 

been suggested to use the classification error rate. Specifically, each parameter is assigned to a 

parameter region with respect to the most commonly occurring class of the training set.  The 

classification error is defined as a fraction of the training samples in that region that does not 

belong to the most common class: 

 

     .                                                 (1) 

Here pmk represents a proportion of training samples in the mth region that belongs to the 

kth class. However, for a practical use, equation (1) is not sufficiently sensitive to unnecessary 

overgrowing the tree. Thus two other measures have been introduced, the Gini index and cross-

entropy. The Gini index is defined as follows: 

.                                                 (2) 

 

It represents a measure of total variance across all K classes. The Gini index has a small 

value if all pmks are close to zero or one, which means that it can be used to measure node purity 

(meaning that a particular node contains mostly samples from a single class). For example, each 

tree is grown until the Gini-index results in complete separation of classes (Gini impurity 

criterion: for the two descendent nodes the Gini-index is less than the one for the parent node). 

There is no pruning of the growing brunches in these Random Forest methods.  

The cross-entropy is defined as: 

  .                                              (3) 

Similarly to the Gini index, cross-entropy has a small value if all pmks are close to zero, 

and it is indicative of a pure node. To obtain a measure of the importance of each parameters 

(importance coefficient or variable importance), one can use, for example, the Gini index. We 

add up all values of the decrease of the Gini index at the tree nodes for each of the variables, 

and average over all the trees  (16). A importance coefficient plot can be made in the form of a 

histogram shown in Figs.2, a,b and S7.The number of trees used was 100-300 (there was no 

noticeable dependence of the results on the number of trees), the maximum number of variables 

used was the square root of the total number of variables available (default), and classification 

error criterion was the Gini index. An example of a binary tree build as described above is 

shown in Scheme S1. 
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The described above method is implemented for in our bootstrap methods. Extremely 

randomized trees method is different from Random Forest in terms of the choice of the split. 

Instead of computing optimal parameter/split combination (using Gini index) for Random 

Forest, each parameter value is randomly selected from the parameter empirical range. To keep 

such a random choice converge to the pure classification (zero Gini index), only the best split 

among random uniform splits in the set of selected variables for the current tree is chosen.  

 

 
Scheme S1. One of the trees from the ensemble out of 100-300 trees used in our bootstrap 

methods. In the first split, the fourth variable was chosen with split value of 15.0001, which 

yielded the Gini index of 0.4992 and split 73 samples (38 class 1 and 35 class 2) into two bins, 

each having 30 and 43 samples, respectively. At the second level split, looking at left hand side 

node, the sixth variable was chosen with split value of 14.8059, which yielded the Gini index of 

0.2778 and split 30 samples (5 class 1 and 25 class 2) into two bins with 27 and 3 samples, 

respectively. The split continues until a tree node has the Gini index of 0 indicating presence of 

only one of the two classes. 

 

Gradient Boosting Trees is a technique based on the building of a series of trees, each of 

which converges with respect to some cost function. Each subsequent tree is built to minimize 

the deviation from the exact prediction (for example, the mean squared error). The (Friedman) 



 

9 

 

algorithm of “treeboost” is used in this process of regression (implemented in the use scikit-

learn Python package). Because there is no criterion for pure nodes (like the one based on Gini 

index in the previous two methods), the size of the tree has to be predefined, or alternatively, by 

the limiting of the number of individual regressions (maximum depth). The trees built in this 

way can easily be overfitted though. To avoid the overfitting effect, there are some constraints 

imposed, like the number of boosting iterations and weakening the iteration rate (done by 

introducing a dimensionless parameter, which is called the learning rate). It is also possible to 

limit the minimum number of trees terminal nodes (minimum number of leaves). In the used 

here algorithms (scikit-learn Python package) the following parameters were used: minimum 

number of leaves=1 (default), learning rate = 0.01, the maximum depth=3 (default). Note that 

the learning rate was put 10x less than the default value. This was chosen to decrease variance 

due to a relatively small finite number of human subjects. Other multiple parameters were used 

at their default values. The only exception was in the use of subsample parameter (0.45 instead 

of 1). This parameter dictates the use of the stochastic gradient boosting. It was chosen to 

reduce variance (frequently at the expense of bias), which might be large due to a relatively 

limited number of human subjects. 

Specific care was used to create the appropriate data sets for training and verification. The 

algorithm is described in Scheme S2. In addition, we deal with a hierarchical data structure: 

each human subject has several cells, and each cell has several (four) images associated with it.  

Each image was evaluated visually for the presence of artifacts shown in figure S2. If an artifact 

was present, the corresponding data set was assigned the attribute of artifact. These data were 

ignored in the later analysis.  Because for different areas were analyzed per each cell, we first 

combine them for each cell by either averaging or taking median (no significant difference in 

using either one was observed; the results presented in this work are done for the median values 

of the parameters calculated for each cell). Then, the data set was randomly split to have S% of 

the total data for training and 100-S% for testing. Here we consider S=50, 60, 70%. The 

splitting is done by keeping the data from the same individuals in just one of the either subsets 

to avoid artificial over-training due to correlation between different cells of the same individual.  

To decrease the number of variables/surface parameters, the following algorithm was used. 

First, we rank the parameters with respect to the Gini index (importance coefficient as defined 

above), for example, Fig. 2a,b. Then, we keep Np best parameters for each channel (height and 

adhesion), which are identified by (i) their segregation power and (ii) low inter-parameter 

correlation (to exclude the parameters that are correlated with the others, see Section 1 of the 

supplementary materials below). The dependence of the classification accuracies on the number 

of used parameters are shown in figure 2c,f.  

To test the verification data set (or to test any new test data), the trained trees have to be used 

to obtain the answer on the predicted class. One can get the results of tree “voting”, and 

consider it as a “probability of prediction”. If the probability of belonging to class A greater 

than a threshold (default is 0.5), the result belongs to class A. When building ROC curve, the 

threshold should be moved. 
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Scheme S2.

 
 

Algorithm Cancer Detection using Cell Surface Parameters 

 
function make_dataset()  Inputs: CSV file, statistics parameter [mean or median] 

 Steps: 

1) Load data from CSV file 

2) Reject variables where all samples have the same value 

3) Reject samples where data acquisition artifacts are present 

4) Store data-frame with preprocessed data 

5) Create data-frame with non-cancer samples with no cells 

6) Merge preprocessed and non-cancer sample data-frames 

7) Group samples by patient ID 

8) Get mean or median values of all variables per cell, from cell quadrants, for all patient IDs 

and store in data-frame 

Return: Cell samples data-frame 

 

function split_data_train_test() Inputs: data-frame, train-test sample ratio 

Steps: 

1) Split data-frame into training and testing samples, based on patient IDs, using selectable 

train-test sample ratio 

2) Store training and testing samples data-frames 

Return: training and testing samples data-frames 

 

function make_classifier_model() Inputs: model name, model parameters 

Steps: 

1) Select one of the following classification models: random forest, extra-trees, or gradient 

boosted trees 

2) Specify selected model’s parameters and instantiate the model 

Return: Classification model object 

 

function classification_performance_metrics() Inputs: classification model object, cell samples 

data-frame, M number of cells, N number of cells, R number of iterations 

Steps: 

for n-th run in R number of iterations: 

 run make_classifier_model() 

 run split_data_train_test() 

1) Select M number of cells per patient ID to be used in measuring classification 

performance metrics for testing data-frame 

2) Select N number of cells per patient ID which need to be classified as cancer to 

classify the whole patient ID as cancer 

3) Using all cells available per patient ID, make all possible combinations of M cells for 

all patient IDs in the testing samples and store in data-frame 

4) Calculate model classification performance metrics: ROC curve, ROC AUC score, 

accuracy, and confusion matrix 

Return: ROC curves, ROC AUC scores, accuracy scores, confusion matrices 
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Supplementary Text 

1. Cross-correlation between surface parameters. 

Historically several of the surface parameters (their total number is 44) are just redundant redefinition 

of others. Here we excluded already several of these parameters because of explicit 100% correlation 

with other parameters (based on their formal definition). It reduces the number parameters to 39. 

Next, two parameters (Srw and S2A) were dropped as ill-defined for our particular type of surfaces, 

which leaves us with only 37 surface parameters. Further reduction is done through the analysis of 

correlation coefficients between these parameters. Obviously, the parameters having high correlation 

between each other carry redundant information, and therefore, can be removed with a little penalty 

to the classification power.  

To find the correlation matrix between surface parameters, we analyzed specific formulas 

defining some parameters and calculate the parameters for a large family of random surfaces. The 

latter was done due to the complexity of definition of some parameters, which were defined by an 

algorithm rather than a single formula. The random surfaces were generated with the help of iPython  

language using the algorithms described  in 
1
.  An example of a simulated surface is shown in figure 

S3. One can see a good resemblance to realistic services. 

 
Figure S3. Two examples of a simulated surface used to estimate correlation between 

different surface parameters. 

 

Various surfaces of cells imaged with AFM were also used to test the parameters correlation. 

The surface parameters were calculated by using SPIP software. The correlation matrix obtained 

based on about hundred cells and 7000 similar to surfaces. The convergence analysis of the 

coefficients of correlation matrix showed good convergence after using approximately 1000 

simulated surfaces, see figure S3 as an example. The correlation matrix is shown in Supplementary 

Table 1.  
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See the attached corr.csv file 

 

Table S1. Values of the correlation coefficients between the surface parameters. 

 

 

Considering different threshold for the correlation parameter, one can find the number of 

surface parameters selected. If the threshold is zero, we have just one parameter. If it is 1, then we 

have all surface parameters chosen. Figure S4 shows the dependence of the number of surface 

parameters selected on the different threshold of the correlation parameter for the example of Random 

Forest model. The other models show similar dependences. 

 
 

Figure S4. RANDOM FORESTS. Number of variables selected per threshold value by comparing 

correlation coefficients of the most important variable and the reminder of variables for: (A) height 

channel; (B) adhesion channel; (C) combined height and adhesion channels. 

 

 
 

 

2. Why the described method can easily tolerate presence of cells carrying no-cancer 

signature in samples from cancer patients 

 

Based on our results, we definitely have a confirmation of the field carcinogenesis approach. 

Consequently, the signature of cancer should be all cells exfoliated from the cancerous bladder. 

However, it is known that a number of cells can be exfoliated (squamous) not from bladder but from 

the rest of the urinal tract. It is no clear reason why the squamous cells should care any signature of 

bladder cancer. However, here we demonstrate that the described method has a high tolerance to the 

presence of such cells, and the accuracy of cancer detection can still be very high.   

Before doing that, let us note about other than squamous cells mentioned above. Besides urothelial 

cells coming from bladder, urine can also have red blood cells, white blood cells, neutrophils. 
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However, such cells can easily be separated with the help of an optical microscope based on their 

small size. Thus, the only confusion one may have is a mix of squamous and urothelial cells. 

Although urothelial cells are typically a bit smaller than squamous cells, it is not easy, and 

sometimes, virtually impossible to distinguish between these two types of cells. So, it is natural to 

assume that our sample will contain some amount of squamous cells. 

Let X% of cells extracted from urine of a cancer patient carry a signature of cancer. It is natural to 

assume that the number of such cells would be more than number of cells exfoliated from other 

places of the body, i.e., X>50%. Nonetheless, let’s start from an example of the algorithm work for 

the case of X=50% (only half of the cells extracted from urine of cancer patients carry the signature 

of cancer (“cancerous” cells). 

 

The algorithm works as follows: 

 

A. The learning stage.  

Assume that we image 4 cells for each patient. Then, the most probably one gets 2 cancer 

cells for a cancer patient and 0 for normal. Because our algorithm “learns” the features of 

cancer and normal cells, after learning from one cancer and one normal samples, it will 

identify (see Fig.S5): 

 2  distinctive cells (derived and defined as cells coming from cancer patient),  

 2 ubiquitous cells  (derived and defined as cells coming from both cancer and normal 

patients), 

 4 distinctive cells (derived and defined as cells coming from normal patient). 

 

For the sake of simplicity, let us assume that our algorithm can have 100% accuracy to 

segregate between cancer (C) and non-cancer (N) cells. Thus, assuming random choice of a 

cell, one can identify one true cancer cell with accuracy of 50%, and normal cells with 

accuracy of 67% (4 normal cells from normal patient /6 all normal cells). This is certainly an 

oversimplified calculation for demonstration only. We considered only the most probable 

situation. In reality even with X= 50%, there are probabilities of having from 0 to 4 cancer-

signature carrying cells in the cancer patient sample; all that have to be taken into account to 

calculate the exact accuracy. A particularly “dangerous” case of cancer-signature carrying 

cells is considered below; its probability is estimated. 
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is a cancerous cell

is a normal cell

 
where 

is a cell that carries some signature of cancer (C). 

Is a cell that carries no signature of cancer (N). 

 

Fig.S5. An example of work will be used algorithm for the case of testing 4 cells, when X=50% 

(only half of the cells extracted from a cancer patient carries some signature of cancer). 

 

 

 

 

B. Testing stage.  

One can define diagnosis of cancer if at least M cells are identified by the algorithm as 

cancerous (derived from the cancer patients). Within the above example, if M=1,2 the 

accuracy of finding cancer will be 100%. If M=3,4, one will start missing cancer patients. In 

reality the accuracy is definitely lower because the algorithm is not 100% accurate. 

 

 

 

Note about possible complete missing of cancerous cells in cancer patient samples  

Let us estimate what is the probability of missing a cancer cell when we randomly pick cells for AFM 

imaging. If one considers a rather conservative percentage of cancer-signature carrying cells in the 

entire urine sample, X=50%, the probability of not having cancer cells in the sample of N cells is 

(1/2)
N
. For example if N=4, it is 6%. This can be neglected if you are speaking about accuracy to 

identify cancer  ~90%.  

       In reality, the probability of missing cancer cells is even less because X>50% (the percentage of 

cells in the urine sample which are exfoliated from bladder). 
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Fig.S6. Absence of overtraining. Example of Random Forest Method. (a) ROC curves are shown for 

the same algorithms and data as in Fig.2 but with randomized diagnoses. One can see no “cancer” 

detection (which could be if the results were an artifact of overtraining).  (b) histogram of AUC 

showing the scatter around 0.5 (no classification power). 
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Figure S7. The importance coefficient indicating segregation power between normal and cancer 

patients (Gini-index measure) of the surface parameters for (a) height, (b) adhesion.  The averaged 

value and one standard deviation of each parameter are shown for the Random Forest method (a,b), 

Extremely Randomized Forest (c,d), and Gradient Boosting Trees (e,f). 1000 randomly chosen 

(70/30%) splits for training and testing data sets were used.  
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Table S2. Statistics of diagnosis of cancer for an individual by considering N cells and requesting that 

M cells out of the considered N ( M N ) were classified as collected from a cancer patient to put 

diagnosis of cancer. Sensitivity and specificity, averaged AUC and accuracy were calculated for 1000 

random splits of the entire data onto training and versification sets (70% training and 30% 

verification split) for all three methods. The accuracy is found for the smallest error of classification. 

Sensitivity and specificity are given for that case (the left colon of Sens/Spec part of the table); the 

right colon of Sens/Spec part is another example demonstrating higher sensitivity (the threshold to 

separate cancer from noncancer cases was chosen to keep the difference between sensitivity and 

specificity close to 5%). The best case is highlighted.  All data was used.   
 

 data Random forest Extremely Randomized Forest Gradient Boosting Trees 

AUC/ 
Accuracy 

Sens/spec AUC/ 
Accuracy 

Sens/spec AUC/ 
Accuracy 

Sens/spec 

N=1 

M=1 

height 75/73 50/84 76/69 77/74 53/84 77/70 74/73 46/86 75/68 

adh. 88/83 68/90 84/77 88/83 69/90 85/78 87/82 69/89 84/77 

N=2 

M=1 

height 75/77 40/91 76/69 77/78 44/91 77/71 75/77 40/92 75/69 

adh. 89/87 71/93 86/80 89/86 70/93 87/80 89/87 71/93 86/80 

N=2 

M=2 

height 77/78 43/92 76/69 78/79 48/91 78/71 75/78 38/93 74/68 

adh. 89/86 69/93 86/80 90/87 70/94 86/79 89/87 69/94 85/79 

N=3 

M=1 

height 73/81 34/95 75/66 74/81 35/95 76/67 73/81 35/95 74/66 

adh. 90/89 70/95 88/81 89/88 69/94 86/79 89/90 70/96 87/80 

N=3 

M=2 

height 75/82 36/95 75/68 78/82 42/94 77/69 73/81 34/96 73/66 

adh. 91/90 73/96 87/80 90/90 72/96 87/80 89/90 69/96 85/78 

N=3 

M=3 

height 75/82 37/95 76/67 78/83 42/95 77/69 72/81 32/96 73/66 

adh. 90/90 71/96 87/80 90/90 70/96 87/79 88/89 65/96 85/77 

N=4 

M=1 

height 69/84 31/97 71/61 70/84 33/97 73/64 69/84 34/97 73/64 

adh. 89/91 75/95 88/80 88/90 71/96 87/79 90/92 74/96 88/80 

N=4 

M=2 

height 72/84 35/97 73/64 74/85 37/96 76/67 71/84 37/96 72/63 

adh. 91/92 77/97 88/80 90/92 74/96 88/80 90/92 73/97 87/79 

N=4 

M=3 

height 72/84 34/97 74/64 76/85 41/96 76/67 70/84 32/97 71/62 

adh. 89/92 72/97 88/79 90/92 72/97 87/79 87/91 64/97 84/75 

N=4 

M=4 

height 72/84 32/97 74/64 75/85 38/96 76/66 70/84 32/97 72/62 

adh. 89/91 71/96 88/79 89/91 71/96 87/78 86/90 64/97 84/75 

N=5 

M=1 

height 66/86 33/98 69/57 66/85 36/97 72/60 67/86 35/98 70/59 

adh. 88/93 77/96 87/78 87/92 75/96 87/78 89/94 77/97 88/79 

N=5 

M=2 

height 69/86 34/97 72/61 70/86 39/96 76/64 68/86 36/97 70/61 

adh. 91/94 81/98 91/82 90/94 78/97 89/80 91/94 78/98 88/80 

N=5 

M=3 

height 68/86 31/98 72/61 72/87 39/97 76/65 67/86 34/97 69/58 

adh. 90/93 77/97 88/78 90/93 77/97 88/78 88/93 70/98 85/75 
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N=5 

M=4 

height 67/86 34/97 72/60 72/87 39/97 76/64 65/85 30/97 69/57 

adh. 89/93 75/97 87/77 88/93 73/97 88/77 85/92 61/98 84/74 

N=5 

M=5 

height 68/86 30/97 72/59 74/87 39/97 76/63 67/85 32/97 71/59 

adh. 88/93 74/97 88/77 88/93 73/97 88/77 84/91 62/97 84/73 

 

 

Table S3. Statistics of diagnosis of cancer for an individual by considering N cells and requesting that 

M cells out of the considered N ( M N ) were classified as collected from a cancer patient to put 

diagnosis of cancer. Sensitivity and specificity, averaged AUC and accuracy were calculated for 1000 

random splits of the entire data onto training and versification sets (70% training and 30% 

verification split) for all three methods. The accuracy is found for the smallest error of classification. 

Sensitivity and specificity are given for that case (the left colon of Sens/Spec part of the table); the 

right colon of Sens/Spec part is another example demonstrating higher sensitivity (the threshold to 

separate cancer from noncancer cases was chosen to keep the difference between sensitivity and 

specificity close to 5%). The best case is highlighted.  Only data with cells was used.  
 

 data Random forest Extremely Randomized Forest Gradient Boosting Trees 

AUC/ 
Accuracy 

Sens/spec AUC/ 
Accuracy 

Sens/spec AUC/ 
Accuracy 

Sens/spec 

N=1 

M=1 

height 60/64 35/84 62/55 62/65 40/82 63/56 60/65 35/85 62/54 

adh. 80/77 63/87 76/68 80/77 65/86 76/69 80/77 64/87 76/68 

N=2 

M=1 

height 62/71 31/92 63/56 63/72 33/91 65/58 62/72 34/91 63/56 

adh. 84/83 68/91 79/72 82/82 65/90 78/72 82/83 66/91 79/73 

N=2 

M=2 

height 63/72 33/91 64/57 65/73 38/90 66/59 60/71 31/91 62/56 

adh. 83/83 66/92 78/72 83/83 65/93 78/72 83/83 67/92 78/72 

N=3 

M=1 

height 62/78 28/96 63/55 64/78 29/95 65/57 63/78 30/96 65/57 

adh. 85/88 69/95 82/75 83/86 65/94 80/73 85/88 69/95 82/74 

N=3 

M=2 

height 63/78 29/95 65/57 67/79 35/95 68/60 62/78 28/96 63/56 

adh. 86/88 70/95 82/74 85/87 69/94 81/73 86/88 70/96 82/75 

N=3 

M=3 

height 63/77 30/95 65/57 66/78 36/94 67/59 60/77 26/95 63/55 

adh. 84/87 68/95 82/74 84/87 66/95 80/72 84/87 67/95 81/73 

N=4 

M=1 

height 62/83 30/97 64/54 63/82 28/97 65/56 64/83 35/97 66/57 

adh. 86/91 75/95 84/75 85/90 70/95 81/72 87/92 67/95 84/76 

N=4 

M=2 

height 63/82 29/97 65/57 66/83 36/96 69/60 63/82 30/97 64/56 

adh. 87/92 76/97 85/77 86/91 73/96 84/76 87/92 74/97 85/77 

N=4 

M=3 

height 61/82 28/97 66/57 66/82 34/96 69/59 59/81 25/97 62/53 

adh. 86/91 72/96 84/75 86/90 70/96 83/74 86/91 71/97 83/75 

N=4 

M=4 

height 62/82 28/97 66/56 66/84 35/96 69/59 59/81 24/97 62/52 

adh. 85/90 71/96 82/73 84/90 70/96 83/73 84/90 69/96 83/74 

N=5 height 61/86 31/98 66/53 63/86 32/98 66/54 63/86 34/97 67/56 
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M=1 adh. 86/93 78/96 86/75 85/92 74/96 84/74 87/94 78/97 85/75 

N=5 

M=2 

height 62/85 31/97 66/56 65/86 34/97 69/59 64/86 34/97 67/58 

adh. 90/95 82/98 88/79 89/94 79/97 86/77 90/95 80/98 87/79 

N=5 

M=3 

height 60/85 28/98 65/55 65/86 37/97 68/57 58/84 29/97 62/52 

adh. 88/94 80/97 87/77 86/92 73/97 85/75 87/93 75/98 86/76 

N=5 

M=4 

height 61/85 29/97 66/54 65/86 35/97 69/57 56/85 25/98 62/51 

adh. 86/93 76/97 86/75 85/92 73/97 85/74 85/93 73/97 85/74 

N=5 

M=5 

height 60/85 24/98 67/54 66/86 33/97 70/57 58/85 24/98 62/50 

adh. 84/93 75/97 86/75 85/92 71/96 84/72 85/93 73/97 85/74 
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