

Supplementary Information for

Calditol-linked membrane lipids are required for acid tolerance in *Sulfolobus acidocaldarius*

Zhirui Zeng, Xiao-Lei Liu, Jeremy H. Wei, Roger E. Summons, and Paula V. Welander

Paula V. Welander Email: <u>welander@stanford.edu</u>

This PDF file includes:

Supplementary Methods Figs. S1 to S4 Tables S1 to S6 References for SI reference citations

Supplemental Methods

Molecular Biology Techniques. Oligonucleotides were purchased from Integrated DNA Technologies. Genomic DNA was isolated using the DNeasy Blood and Tissue Kit (Qiagen). PCR was performed according to the manufacturer's protocol using Taq DNA polymerase or Phusion high-fidelity DNA Polymerase (New England Biolabs). The GeneJET Plasmid Miniprep Kit (Thermo Scientific) was used for isolation of plasmid DNA from *E. coli*. The GeneJET gel extraction and PCR purification kits were used for purification of DNA fragments during cloning procedures. DNA sequences were confirmed by sequencing at ELIM Biopharm (Hayward, CA).

Plasmids were constructed by sequence and ligation independent cloning (SLIC) (1). For the *saci_1489* deletion construct, 729 bp of the *saci_1489* upstream and 714 bp of the downstream regions were PCR amplified with primers Z001F/R and Z002F/R, respectively, and inserted into the *Ncol* and *BamHI* restriction sites of pSVA407 (2) to yield plasmid pSVA407*saci_1489*UD. For the *saci_0343* deletion construct, 700 bp of the *saci_0343* upstream and 700 bp of downstream regions were PCR amplified with primers Z004F/R and Z005F/R, respectively, and inserted into the *Ncol* and *BamHI* restriction sites of pSVA407 to yield plasmid pSVA407-saci_0343UD. For the *conl* and *BamHI* restriction sites of pSVA407 to yield plasmid pSVA407-saci_0343UD. For the complementation construct, *saci_1489* was PCR amplified from genomic DNA with primers Z003F/R and inserted into the *Ncol* and *Xhol* sites of the self-replicating plasmid pSVA1561 (3) to yield pSVA1561-saci_1489. This plasmid contains a maltose inducible promoter for inducible expression of the cloned gene.

Electrocompetent *E. coli* and *S. acidocaldarius* cells were transformed by electroporation using a Micro-Pulser Electroporator (BioRad) with the program Ec1 (1.8 kv, 1 pulse for a 0.1 cm cuvette). *S. acidocaldarius* competent cells were prepared as described in Wagner et al. (2). Before transformation of *S. acidocaldarius*, all plasmids were methylated through *E. coli* ER1821 bearing the plasmid pM.EsaBC4I, and 1.5 µg of methylated plasmid DNA was used to transform 50 µL of competent cells. Electroporated *S. acidocaldarius* cells were recovered in 1

2

mL Brock medium supplemented with 0.1% NZ-Amine and 0.2% sucrose at 75°C for 1.5 hour. Cells were plated on the proper selective medium, plates were sealed in plastic bags, and incubated at 75°C for 5-7 days.

Construction of S. *acidocaldarius* mutants. The deletion construct (pSVA407-*saci_0343*UD) was transformed into the uracil auxotroph *S. acidocaldarius* MW001 and plated on solid medium lacking uracil to select for cells that had integrated the entire plasmid at the locus of interest. Integrants were visualized by spraying the resulting colonies with 5 mg/mL 5-bromo-4-chloro-3-indolyl- β -D-galactoside (X-gal). Positive colonies were single colony purified, inoculated into liquid medium, and grown to mid-exponential phase at 75°C. To induce loss of the integrated plasmid and potentially delete the gene of interest, 50 µL of culture were spread on plates containing 10 µg/mL uracil and 100 µg/mL 5-fluoroorotic acid (5-FOA) and incubated at 75°C for 5-7 days. 5-FOA is a fluorinated derivative of a pyrimidine precursor which can be converted to a toxic metabolite, 5-fluorouracil, by the orotidine 5'-phosphate decarboxylase encoded on the selection plasmid (*pyrEF*). Selection on 5-FOA forces the loss of the plasmid from the chromosome and this will produce either the wild type locus or result in the deletion of the gene of interest. Potential *Δsaci_1489* or *Δsaci_0343* mutant colonies were screened by PCR with primers Z006F/R or Z007F/R, respectively, and positive clones were verified by sequencing.

Lipid extractions. Frozen cell pellets were freeze-dried and 30 mg of this lyophilized cell mass was homogenized with a laboratory spatula. An internal quantification standard, C₄₆ GDGT (500ng), was added to the ground pellets (4) prior to extracting in a 50 mL Teflon tube by sonicating first in 5 ml of methanol (MeOH) and then in 5 mL of 1:1 (vol/vol) MeOH and dichloromethane (DCM). Each sonication was performed in an ultrasonic bath for 15 min at room temperature, and samples were centrifuged at 4500×g for 10 min after sonication. The two supernatants were combined and filtered through 0.45-µm PTFE filter and dried under a stream

3

of nitrogen gas (N₂) to yield the "non-hydrolyzed fraction" containing intact polar GDGTs. The remaining cell pellet was resuspended in 10 ml of DCM and transferred to a 40 mL glass vial and dried under N₂. The dried cells were then acid hydrolyzed with 5 mL of 10% hydrochloric acid (HCl) in MeOH (vol/vol) at 70°C for 8 hours. Subsequently, 10 mL of DCM and 10 mL of Nanopure water were added and the mixture was transferred to a 50 mL Teflon tube. The sample was centrifuged for 10 min at 2800×g to separate the organic and inorganic phases. The top layer was removed and the bottom organic layer was dried under N₂ to yield the "acid hydrolyzed fraction" containing the GDCTs and the core GDGTs. For acetylation one aliquot of lipid extract was transferred into a 2 ml vial and dried with a stream of N₂, and then added 100 μ L pyridine and 100 μ L acetic anhydride to react at 60 °C for 2 hours. The reaction solution was then dried with a stream of N₂ and dissolved again in MeOH for injection.

Figure S1. Core GDGT lipid structures with 0 to 6 pentacyclic rings produced by *S. acidocaldarius* and observed in this study.

Figure S2. LC-MS analyses of *Sulfolobus acidocaldarius* lipid extracts. (A)Total ion chromatograms and (B) extracted ion chromatograms (EIC) of the acid hydrolyzed fractions from wild type, Δcds , and complemented Δcds cells. Note that the distribution of cyclized calditol-GDGT and core GDGT in wild type and mutant cells differ significantly. The exact nature of these differences and the reasons for this are currently under investigation.

Figure S3. The *S. acidocaldarius cds* mutant produces glycosylated GDGTs. Total ion chromatograms (TIC) and extracted ion chromatograms (EIC) of acetylated non-hydrolyzed fractions from *S. acidocaldarius* (A) wild type and (B) Δcds cells showing that both strains glycosylate their core lipids but only the wild type contains calditol. Calditol head groups are distinguished from hexose head groups through acetylation as calditol contains an extra hydroxyl group which increases its mass by 42 Da. (C) Tetraether structures shown in EIC in panels A and B.

Figure S4. Mass spectra of acetylated calditol-GDGTs and hexose-GDGTs. MS/MS spectra of acetylated glycosidic GDGT-4 and calditol-GDGT-4 showing the characteristic fragments for their identification.

Table S1. Proteins identified in S. acidocaldarius genome with a radical SAM motif (Pfam04055)

IMG Gene ID	IMG Locus Tag	IMG Annotation
638197012	Saci_0071	conserved Archaeal protein
638197176	Saci_0240	conserved Archaeal protein
638197231	Saci_0296	predicted Fe-S oxidoreductases
638197244	Saci_0309	lipoic acid synthetase
638197278	Saci_0343	radical SAM domain protein
638197279	Saci_0344	radical SAM domain protein
638197309	Saci_0374	conserved Archaeal protein
638197631	Saci_0703	conserved Archaeal radical SAM superfamily protein
638197889	Saci_0962	universally conserved protein
638197968	Saci_1044	conserved Archaeal protein
638198063	Saci_1141	conserved Archaeal protein
638198248	Saci_1331	conserved protein
638198392	Saci_1479	cyclic pyranopterin monophosphate synthase (MoaA)
638198402	Saci_1489	conserved Archaeal protein
638198497	Saci_1585	conserved Archaeal protein
638198516	Saci_1604	conserved Archaeal protein
638198543	Saci_1632	conserved Archaeal protein
638198693	Saci_1785	conserved Prokaryal protein

Table S2. Sequences used to generate Cds phylogenetic tree

IMG Locus Tag	IMG Genome ID	Genome Name	GenBank Accession	NCBI Bioproject Accession	NCBI Biosample Accession
TB_LI09_3DRAFT_10005913	3300000229	Groundwater microbial communities from subsurface biofilms in sulfidic aquifier in Frasassi Gorge, Italy, sample from two redox zones- LI09_3	_	PRJNA336827	SAMN05518261
JGI2160J19893_100096772	3300001855	Marine sediment microbial communities from White Oak River estuary, North Carolina - WOR-2- 8_12	_	PRJNA366768	SAMN06268482
Ga0114920_100221603	3300009528	Deep subsurface microbial communities from South Pacific Ocean to uncover new lineages of life (NeLLi) - Chile_00310 metaG	_	PRJNA405477	SAMN07631026
Ga0114921_101774722	3300009150	Deep subsurface microbial communities from South Atlantic Ocean to uncover new lineages of life (NeLLi) - Benguela_00093 metaG	_	PRJNA367444	SAMN06267295
Ga0172363_100121925	3300013130	Sediment microbial communities from Lake Kivu, Rwanda - Sediment s2_kivu2a2	_	PRJNA404428	SAMN07630773
Ga0105105_102127021	3300009009	Freshwater sediment microbial communities from Prairie Pothole Lake near Jamestown, North Dakota, USA - PPLs Lake P8 Core (1) Depth 1-3cm September2015	_	PRJNA365086	SAMN06264427
Ga0129327_101115071	3300013010	Freshwater to marine salinity gradient microbial communities from Chesapeake Bay, USA - CPBay_Spr_31_0.8_DNA	-	PRJNA364792	SAMN06264995
Ga0099843_1258431	3300007155	Iron oxide microbial mat communities from Yellowstone National Park, Wyoming, USA - ECH_C_top_diel_T=5 metaT (Metagenome Metatranscriptome)	_	PRJNA365453	SAMN06264516

YNPsite14_CeleraDRAFT_106 210	2022920007	Hot spring microbial communities from One Hundred Springs Plain, Yellowstone National Park, Wyoming, USA - YNP14 OSP Spring	_	PRJNA337118	SAMN05518158
Ga0080003_10059782	3300005859	Hot spring microbial communities from Joseph's Coat, Yellowstone National Park, USA - JC2_E (SPADES assembly)	_	PRJNA366310	SAMN06268698
YNP1_75530	2014031002	Hot spring microbial communities from Yellowstone National Park, Wyoming, USA - YNP1 Alice Springs, Crater Hills	_	PRJNA337120	SAMN05518659
Ga0079042_10009966	3300006181	Hot spring microbial mat communities from Yellowstone National Park, Wyoming, USA - ECH_B nyco_MetaG	_	PRJNA375678	SAMN06343748
Ga0079041_10002292	3300006857	Hot spring microbial mat communities from Yellowstone National Park, Wyoming, USA - ECH_B host_MetaG	_	PRJNA375677	SAMN06343747
Ga0167615_10056683	3300013009	Extremophilic microbial mat communities from Yellowstone National Park, USA - BED_Mat_host_9_15 (v2)	_	PRJNA367343	SAMN06267146
Ga0182010_100210611	3300014490	Permafrost microbial communities from Stordalen Mire, Sweden - 611E1M metaG	_	PRJNA406790	SAMN07631786
Ga0187772_100080051	3300018085	Tropical peat soil microbial communities from peatlands in Department of Meta, Colombia - 0116_SJ02_MP15_20_MG	_	PRJNA443517	SAMN08776832
Ga0187780_1000007610	3300017973	Tropical peat soil microbial communities from peatlands in Department of Meta, Colombia - 1015_Q2_SP10_20_MG	_	PRJNA443525	SAMN08777027
Ga0187770_100660741	3300018090	Tropical peat soil microbial communities from peatlands in Department of Meta, Colombia - 0116_SJ02_MP02_20_MG	_	PRJNA443515	SAMN08776833

JGI24147J26652_10017966	3300002103	Arctic peat soil from Barrow, Alaska - Barrow Graham LP Incubations 11- 33A	_	PRJNA330169	SAMN05422026
JGIcombinedJ26865_10164291	3300002347	Arctic peat soil from Barrow, Alaska - NGEE Surface sample 415-1 deep- 072012 (NGEE Surface samples 415 (1, 2, 3 deep-072012) AP id is 1030520, ASSEMBLY_DATE=20131219)	_	PRJNA330294	SAMN05421916
JGI24721J44947_100034043	3300002966	Hot spring thermophilic microbial communities from Obsidian Pool, Yellowstone National Park, USA - OP-RAMG-01	_	PRJNA366136	SAMN06268369
JGI20128J18817_100000859	3300001684	Hot spring microbial communities from Joseph's Coat, Yellowstone National Park, USA - JC2_E	_	PRJNA366310	SAMN06268698
Ga0180298_10149462	3300014869	Subseafloor sediment microbial communities from Guaymas Basin, Gulf of California, Mexico - Guay13, Core 4488-10, 4-6 cm	_	PRJNA406717	SAMN07632361
Ga0116200_102257641	3300010332	Marine hydrothermal vent microbial communities from Guaymas Basin, Gulf of California to study Microbial Dark Matter (Phase II) - Marker 14 Mat core 4571-4 3-6 cm metaG	_	PRJNA365032	SAMN06264874
Ga0164310_101961912	3300014913	Subseafloor sediment microbial communities from Guaymas Basin, Gulf of California, Mexico - Guay1, Core 4569-9, 0-3 cm	_	PRJNA368383	SAMN06269071
Ga0190329_100035017	3300021494	Hydrothermal vent sediment bacterial communities from Southern Trench, Guaymas Basin, Mexico - 4872-04-2-3_MG	_	PRJNA445005	SAMN08777168
Ga0080003_100005160	3300005859	Hot spring microbial communities from Joseph's Coat, Yellowstone National Park, USA - JC2_E (SPADES assembly)	_	PRJNA366310	SAMN06268698
Ga0080003_10166501	3300005859	Hot spring microbial communities from Joseph's Coat, Yellowstone	_	PRJNA366310	SAMN06268698

		National Park, USA - JC2_E (SPADES assembly)			
Ga0080006_11902124	3300005861	Ferric oxide microbial mat and aquatic microbial communities from Rainbow Spring, Yellowstone National Park, USA - RS3B (SPADES assembly)	_	PRJNA366317	SAMN06268705
OneHSP_7476CDRAFT_10003 425	3300000342	Ferrous microbial mat communities from One Hundred Spring Plain, Yellowstone National Park, USA - T=74-76	_	PRJNA336650	SAMN05518653
Ga0079044_10017752	3300006855	Hot spring microbial mat communities from Yellowstone National Park, Wyoming, USA - ECH_C host_MetaG	-	PRJNA375680	SAMN06343750
Ga0040879_1048251	3300003730	Thermal spring microbial communities from Beowulf Spring, Yellowstone National Park, Wyoming, USA - Beowulf (BE_D) (Metagenome Metatranscriptome)	_	PRJNA365740	SAMN06267756
JGI20133J14441_100012826	3300001340	Ferric oxide microbial mat and aquatic microbial communities from Rainbow Spring, Yellowstone National Park, USA - RS3B	_	PRJNA366317	SAMN06268705
JGI20133J14441_100004255	3300001340	Ferric oxide microbial mat and aquatic microbial communities from Rainbow Spring, Yellowstone National Park, USA - RS3B	-	PRJNA366317	SAMN06268705
YNP_08_myell_20060	2502894001	Metallosphaera archaeon	_	_	_
Ga0128346_103192	2681813019	Sulfolobus sp. JCM 16833	_	_	PRJDB820
ST1392	638154519	Sulfolobus tokodaii 7, JCM 10545	BAB66459	_	PRJNA246
Aboo_0737	646564501	Aciduliprofundum boonei T469	YP_003483110	_	PRJNA38403
MflrDRAFT_02178	2518645542	Methanoflorens stordalenmirensis	_	_	_
Ga0128335_100238	2681813032	Sulfolobus metallicus DSM 6482, JCM 9184	_	-	PRJDB806
Ga0172927_111534	2728369534	Sulfolobus sp. A20	_	_	PRJNA339201
Ga0199187_11746	2740892001	Acidianus manzaensis YN-25	_	_	PRJNA380321

CM19_05805	2574180086	<i>Candidatus</i> Acidianus copahuensis ALE1	_	_	PRJNA240874
Ga0180371_11429	2721755441	Unclassfied Crenarchaeota ZZQ bin_1	_	_	_
ASUL_01974	2588254065	Sulfolobales archaeon AZ1	_	_	PRJNA198460
Mcup_0901	650716051	Metallosphaera cuprina Ar-4	YP_004409490	_	PRJNA65497
Ahos_1265	650716001	Acidianus hospitalis W1	YP_004458446	_	PRJNA60875
AciM339_0328	2508501109	Aciduliprofundum sp. MAR08-339	_	_	PRJNA73039
NAG2ff85r04_00864	2524023239	NAG2_ff85-r04	_	_	_
A474_10477	2514885039	Sulfolobales sp. HSU1	_	_	_
Myr05_01008	2551306706	Metallosphaera yellowstonensis r05	_	_	_
Ga0100943_111650	2645727535	Metallosphaera sedula ARS120-2	_	_	PRJNA289699
Ga0081668_111464	2648501262	Sulfolobus solfataricus SULA	_	_	PRJNA279935
Ga0126086_11463	2684622731	Sulfolobus acidocaldarius NG05B_CO5_10	_	_	PRJNA304349
Ga0180374_106163	2721755443	Sulfolobus sp. ZZQ bin_3_2nd	_	_	_
_	-	<i>Candidatus</i> Marsarchaeota G1 archaeon BE_D (taxid:1978158)	PSN85745.1	PRJNA362583	SAMN06639946
_	-	<i>Candidatus</i> Marsarchaeota G2 archaeon OSP_D (taxid:1978157)	PSN91903.1	PRJNA362583	SAMN06639947
_	_	Candidatus Marsarchaeota G2 archaeon ECH_B_SAG-G16 (taxid:1978167)	PSN97909.1	PRJNA362583	SAMN06639953
_	_	Candidatus Korarchaeota archaeon	PMB77276.1	PRJNA419931	SAMN08107309

Ecosystem Category	Ecosystem Subtype	Ecosystem Type	Habitat	No. of Cds hits
	Alkaline	Non-marine Saline and Alkaline	Hypoxic/sulfidic aquatic	1
	Coastal	Marine Freshwater to marine saline gradient		5
	Groundwater	Freshwater	Groundwater	1
			Acidic hot water	3
			Ferric mat	4
	Hot $(12.000C)$	Thormal oprings	Hot spring	97
	HOL (42-90-C)	rheimai spiiriys	Hypersaline mat	16
			Microbial mats	14
			Thermal spring	21
Aquatic	Hydrothermal vents	Marine	Marine sediment	21
	Hypersaline	Non-marine Saline and Alkaline Hot spring		13
	Lake	Freebwater	Anoxic zone freshwater	2
		Fleshwater	Sediment	8
	Oceanic	Marino	Deep subsurface	2
		Marine	Marine sediment	2
	Linglogoified	Non-marine Saline	Ferric oxide microbial mat	7
	Unclassified	and Alkaline	Ferrous mat	21
	Watlands	Freshwater	Bog	11
	Wellanus	Fleshwater	Peatland	123
			Peat	18
	Linclossified	Soil	Arctic peat soil	69
Tanadal	Unclassified	5011	Permafrost	2
I errestrial			Soil	13
			Bog	2
	Wetlands	Soil	Fen	11
			Tropical peatland	25

Table S3. Ecological characteristics of metagenomes with Cds hits

Table	S4.	Strains	used	in	this	study

Strains		Genotype	Sources or reference
Escherichia coli	DH10B	F ⁻ endA1 recA1 galE15 galK16 nup GrpsL ΔlacX74 Φ80lacZΔM15 araD139 Δ(ara,leu)7697 mcrA Δ(mrr-hsdRMS-mcrBC)λ ⁻	D.K. Newman (Caltech)
	ER1821	F ⁻ glnV44 e14 ⁻ (McrA ⁻) rfbD1 relA1 endA1 spoT1 thi- 1 Δ(mcrC- mrr)114::IS10	New England Biolabs
	MW001	ΔpyrE (uracil auxotrophic parent strain)	(2)
	ZZsa001	MW001 + pSVA1561	This work
Sulfolobus	ZZsa002	MW001 <i>∆saci_</i> 0343	This work
acidocaldarius	ZZsa003	MW001 <i>∆saci_1489</i>	This work
	ZZsa004	MW001 <i>∆saci_1489</i> + pSVA1561	This work
	ZZsa005	MW001 Δsaci_1489 + pSVA1561-saci_1489	This work

Table S5. Plasmids used in this study

Plasmids	Description	Source or reference
pSVA407	S. acidocaldarius deletion plasmid	(2)
pSVA1561	S. acidocaldarius expression plasmid	(2)
pSVA407- saci_1489UD	Deletion plasmid containing <i>saci_1489</i> upstream and downstream regions for <i>saci_1489</i> deletion. The upstream and downstream regions were amplified by PCR with primers Z001F/R, and Z002F/R, respectively, and cloned into the <i>Ncol</i> and <i>BamHI</i> sites of pSVA407 plasmid.	This work
pSVA407- <i>saci_0343</i> UD	Deletion plasmid containing <i>saci_0343</i> upstream and downstream regions for <i>saci_0343</i> deletion. The upstream and downstream regions were amplified by PCR with primers Z004F/R, and Z005F/R, respectively, and cloned into the <i>Ncol</i> and <i>BamHI</i> sites of pSVA407 plasmid.	This work
pSVA1561- saci_1489	$\Delta saci_{1489}$ mutant complementation plasmid. The saci_1489 gene was amplified by PCR with primers Z003F/R, and cloned into the <i>Ncol</i> and <i>Xhol</i> site of pSVA1561 plasmid.	This work

Table S6.	Primers	used in	this	study
-----------	---------	---------	------	-------

Primers	Sequence (5' to 3')	Notes
Z001F	CCCGACGTCGCATGCTCCCGGCCGCATTTATCAAG TTATCAAAAACAATT	saci_1489 upstream cloning forward
Z001R	ATTTGGTTAGGCTCTTCTATTCATAATTTAAGAAACC TC	saci_1489 upstream cloning reverse
Z002F	AAATTATGAATAGAAGAGCCTAACCAAATGTATTTT AT	saci_1489 downstream cloning forward
Z002R	TACTAGAACTGCTCAAACCTAGGTCAGAGTAACTAA TTCAGACGTAAACGC	saci_1489 downstream cloning reverse
Z003F	ATAAATAATTACGTGATTAAGTTAACCATGAATAGAG ATATTAAAGCGTTTAGA	Complementation saci_1489 forward
Z003R	CCCTTAATGGTGATGATGGTGATGTTAGGCTCTACC TAAAAATCTCC	Complementation saci_1489 reverse
Z004F	CCCGACGTCGCATGCTCCCGGCCGCGAGATAAGG GGATAATACTCTCAGG	saci_0343 upstream cloning forward
Z004R	AATATACATGGACATAGTCATGAAACACCACCTGA	saci_0343 upstream cloning reverse
Z005F	TGGTGTTTCATGACTATGTCCATGTATATTCCTACTG GTT	saci_0343 downstream cloning forward
Z005R	TACTAGAACTGCTCAAACCTAGGTCAGAGATTGGTT TATTTTCCAAAACC	saci_0343 downstream cloning reverse
Z006 F	ATGACAAGAAAAACAAAGAAGATTTA	saci_1489 deletion check forward
Z006R	CGCAATAAAGGATTTCCTAGAT	saci_1489 deletion check reverse
Z007F	GTGCCTTTAATTGTAAACATTGTG	<i>saci_0343</i> deletion check forward
Z007R	AAGTCTATTAAGTCTCCCTCTTCCA	saci_0343 deletion check reverse

SI Appendix References

- 1. Li MZ & Elledge SJ (2012) SLIC: a method for sequence- and ligationindependent cloning. *Methods Mol Biol* 852:51-59.
- Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, & Albers SV (2012) Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 3:214.
- Hoffmann L, Schummer A, Reimann J, Haurat MF, Wilson AJ, Beeby M, Warscheid B, & Albers SV (2017) Expanding the archaellum regulatory network the eukaryotic protein kinases ArnC and ArnD influence motility of *Sulfolobus acidocaldarius*. *Microbiologyopen* 6(1):e00414.
- Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Damste JSS, & Schouten S (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. *Organic Geochemistry* 37(9):1036-1041.