Diatom diversity through HTS-metabarcoding in coastal European seas

Roberta Piredda, Jean-Michel Claverie, Johan Decelle, Colomban de Vargas, Micah Dunthorn, Bente Edvardsen, Wenche Eikrem, Dominik Forster, Wiebe H. C. F. Kooistra, Ramiro Logares, Ramon Massana, Marina Montresor, Fabrice Not, Hiroyuki Ogata, Jan Pawlowski, Sarah Romac, Diana Sarno, Thorsten Stoeck and Adriana Zingone

Supplementary Figure S1. Abundance of diatom and other protist reads at the six sampling sites.

Supplementary Figure S2. Observed (dark colour) and estimated diversity (from chao index, light colour) in the four groups of samples pooled by template and by habitat at each sampling site. The number after each site name corresponds to the number of sequences normalised among the four groups at each site.

Supplementary Table S1. List of BioMarKS diatom read samples used in this study. Colour codes in column B correspond to those merged and used in Fig. 1a to show the distribution of diatom genera in the water column (green nuances) and sediments (purple nuances). Colour codes in column D correspond to those used in Fig. 1b and Fig. 4 to indicate different sampling sites. Bold in column E indicates samples used for the cluster analysis shown in Fig. 4.

	Samples	Samples codes	#reads
	Blanes_Subsurface_Micro_DNA	S0044	19
	Blanes_Subsurface_Micro_RNA	S0155	360
	Blanes_Subsurface_Nano_DNA	S0076	387
	Blanes_Subsurface_Nano_RNA	S0066	2860
	Blanes_Subsurface_Pico_DNA	S0077	34
	Blanes_Subsurface_Pico_RNA	S0067	74
	Blanes_Sediment_total_DNA	S0078	126
	Blanes_Sediment_total_RNA	S0068	2553
	Giion Subsurface Nano DNA	\$0160	70
	Giion Subsurface Nano RNA	S0158	39
	Gijon Subsurface Pico DNA	S0159	6
	Gijon Subsurface Pico RNA	S0157	6
	Naples09_Subsurface_Micro_DNA	S0125	33
	Naples09_Subsurface_Micro_RNA	S0135	3101
	Naples09_Subsurface_Nano_DNA	S0047	8169
	Naples09_Subsurface_Nano_RNA	S0166	24777
	Naples09_Subsurface_Pico_DNA	S0169	783
	Naples09_Subsurface_Pico_RNA	S0163	1789
	Naples09_DCM_Micro_DNA	S0170	453
	Naples09_DCM_Micro_RNA	S0164	1996
	Naples09_DCM_Nano_DNA	S0171	6561
	Naples09_DCM_Nano_RNA	S0165	15698
	Naples09_DCM_Pico_DNA	S0168	286
	Naples09_DCM_Pico_RNA	S0162	694
	Naples09_Sediment_total_DNA	S0008	5484
	Naples09_Sediment_total_RNA	S0005	5524
	Naples10_Subsurface_Micro_DNA	S0083	72
	Naples10_Subsurface_Micro_RNA	S0073	18
	Naples10_Subsurface_Nano_DNA	S0084	150
	Naples10_Subsurface_Nano_RNA	S0074	58
	Naples10_Subsurface_Pico_DNA	S0095	54
	Naples10_Subsurface_Pico_RNA	S0085	15
	Naples10_DCM_Micro_DNA	S0096	76
	Naples10_DCM_Micro_RNA	S0086	63
	Naples10_DCM_Nano_DNA	S0097	223

	Naples10_DCM_Nano_RNA	S0087	245
	Naples10_DCM_Pico_DNA	S0098	6
	Naples10_DCM_Pico_RNA	S0088	18
	Naples10_Sediment_total_DNA	S0099	1587
	Naples10_Sediment_total_RNA	S0089	879
	Oslo09_Subsurface_Micro_DNA	S0075	2159
	Oslo09_Subsurface_Micro_RNA	S0065	2924
	Oslo09_Subsurface_Nano_DNA	S0142	3832
	Oslo09_Subsurface_Nano_RNA	S0132	3530
	Oslo09_Subsurface_Pico_DNA	S0141	1032
	Oslo09_Subsurface_Pico_RNA	S0131	1592
	Oslo09_DCM_Micro_DNA	S0138	636
	Oslo09_DCM_Micro_RNA	S0128	3100
	Oslo09_DCM_Nano_DNA	S0136	1413
	Oslo09_DCM_Nano_RNA	S0126	2797
	Oslo09_DCM_Pico_DNA	S0137	163
	Oslo09_DCM_Pico_RNA	S0127	282
	Oslo09_Sediment_103_DNA	S0139	1903
	Oslo09_Sediment_103_RNA	S0129	1074
	Oslo09_Sediment_24_DNA	S0140	2057
	Oslo09_Sediment_24_RNA	S0130	1451
	Oslo10_Subsurface_Micro_DNA	S0118	122
	Oslo10_Subsurface_Micro_RNA	S0108	453
	Oslo10_Subsurface_Nano_DNA	S0117	2950
	Oslo10_Subsurface_Nano_RNA	S0107	415
	Oslo10_Subsurface_Pico_DNA	S0116	33
	Oslo10_Subsurface_Pico_RNA	S0106	20
	Oslo10_DCM_Nano_DNA	S0115	5283
	Oslo10_DCM_Nano_RNA	S0105	3999
	Oslo10_DCM_Pico_DNA	S0143	150
	Oslo10_DCM_Pico_RNA	S0133	57
	Oslo10_Sediment_total_DNA	S0144	3596
	Oslo10_Sediment_total_RNA	S0134	975
ì	Poscoff Subsurface Micro DNA	\$0070	285
l	Poscoff Subsurface Micro PNA	50079	265
l	Roscoff Subsurface Nano DNA	50069	1406
l	Roscoff Subsurface Nano RNA	50080	2976
	Roscoff Subsurface Pico DNA	50070 CAA21	2570
	Roscoff Subsurface Dico PNA	20021	22
	Poscoff Sediment total DNA	20082	05 761
	Roscoff Sediment total DNA	20082	204 705
1		30072	790
ļ	Varna_Subsurface Micro DNA	S0100	1238
	 Varna_Subsurface_Micro_RNA	S0090	339
- C			

Varna_Subsurface_Nano_DNA	S0101	42
Varna_Subsurface_Nano_RNA	S0091	19
Varna_Subsurface_Pico_DNA	S0102	12
Varna_DCM_Micro_DNA	S0103	473
Varna_DCM_Micro_RNA	S0093	301
Varna_DCM_Nano_DNA	S0104	170
Varna_DCM_Nano_RNA	S0094	122
Varna_DCM_Pico_DNA	S0122	22
Varna_DCM_Pico_RNA	S0112	20
Varna_Sediment_total_DNA	S0123	3
Varna_Sediment_total_RNA	S0113	311

Supplementary Table S2. List of samples grouped by habitat and template with their corresponding number of reads, as used in Figs. 5.

Water Column rDNA

Water Column rRNA

grouped samples	#reads	grouped samples		#reads
Naples09_DCM_Micro_DNA	453	Naples09_DCM_Micro_RNA		1996
Naples09_DCM_Nano_DNA	6561	Naples09_DCM_Nano_RNA		15698
Naples09_DCM_Pico_DNA	286	Naples09_DCM_Pico_RNA		694
Naples10_DCM_Micro_DNA	76	Naples10_DCM_Micro_RNA		63
Naples10_DCM_Nano_DNA	223	Naples10_DCM_Nano_RNA		245
Naples10_DCM_Pico_DNA	6	Naples10_DCM_Pico_RNA		18
Oslo09_DCM_Micro_DNA	636	Oslo09_DCM_Micro_RNA		3100
Oslo09_DCM_Nano_DNA	1413	Oslo09_DCM_Nano_RNA		2797
Oslo09_DCM_Pico_DNA	163	Oslo09_DCM_Pico_RNA		282
Oslo10_DCM_Nano_DNA	5283	Oslo10_DCM_Nano_RNA		3999
Oslo10_DCM_Pico_DNA	150	Oslo10_DCM_Pico_RNA		57
Varna_DCM_Micro_DNA	473	Varna_DCM_Micro_RNA		301
Varna_DCM_Nano_DNA	170	Varna_DCM_Nano_RNA		122
Varna_DCM_Pico_DNA	22	Varna_DCM_Pico_RNA		20
Blanes_Subsurface_Micro_DNA	19	Blanes_Subsurface_Micro_RNA		360
Blanes_Subsurface_Nano_DNA	387	Blanes_Subsurface_Nano_RNA		2860
Blanes_Subsurface_Pico_DNA	34	Blanes_Subsurface_Pico_RNA		74
Gijon_Subsurface_Nano_DNA	70	Gijon_Subsurface_Nano_RNA		39
Gijon_Subsurface_Pico_DNA	6	Gijon_Subsurface_Pico_RNA		6
Naples09_Subsurface_Micro_DNA	33	Naples09_Subsurface_Micro_RNA		3101
Naples09_Subsurface_Nano_DNA	8169	Naples09_Subsurface_Nano_RNA		24777
Naples09_Subsurface_Pico_DNA	783	Naples09_Subsurface_Pico_RNA		1789
Naples10_Subsurface_Micro_DNA	72	Naples10_Subsurface_Micro_RNA		18
Naples10_Subsurface_Nano_DNA	150	Naples10_Subsurface_Nano_RNA		58
Naples10_Subsurface_Pico_DNA	54	Naples10_Subsurface_Pico_RNA		15
Oslo09_Subsurface_Micro_DNA	2159	Oslo09_Subsurface_Micro_RNA		2924
Oslo09_Subsurface_Nano_DNA	3832	Oslo09_Subsurface_Nano_RNA		3530
Oslo09_Subsurface_Pico_DNA	1032	Oslo09_Subsurface_Pico_RNA		1592
Oslo10_Subsurface_Micro_DNA	122	Oslo10_Subsurface_Micro_RNA		453
Oslo10_Subsurface_Nano_DNA	2950	Oslo10_Subsurface_Nano_RNA		415
Oslo10_Subsurface_Pico_DNA	33	Oslo10_Subsurface_Pico_RNA		20
Roscoff_Subsurface_Micro_DNA	285	Roscoff_Subsurface_Micro_RNA		756
Roscoff_Subsurface_Nano_DNA	1406	Roscoff_Subsurface_Nano_RNA		2976
Roscoff_Subsurface_Pico_DNA	55	Roscoff_Subsurface_Pico_RNA		83
Varna_Subsurface_Micro_DNA	1238	Varna_Subsurface_Micro_RNA		339
Varna_Subsurface_Nano_DNA	42	Varna_Subsurface_Nano_RNA		19
Varna_Subsurface_Pico_DNA	12		TOTAL	75596
TOTAL	38858			

Sediment rDNA			Sediment rRNA		
grouped samples		#reads	grouped samples		#reads
Blanes_Sediment_total_DNA		126	Blanes_Sediment_total_RNA		2553
Naples09_Sediment_total_DNA		5484	Naples09_Sediment_total_RNA		5524
Naples10_Sediment_total_DNA		1587	Naples10_Sediment_total_RNA		879
Oslo09_Sediment_103_DNA		1903	Oslo09_Sediment_103_RNA		1074
Oslo09_Sediment_24_DNA		2057	Oslo09_Sediment_24_RNA		1451
Oslo10_Sediment_total_DNA		3596	Oslo10_Sediment_total_RNA		975
Roscoff_Sediment_total_DNA		264	Roscoff_Sediment_total_RNA		795
Varna_Sediment_total_DNA		3	Varna_Sediment_total_RNA		311
	TOTAL	15020		TOTAL	13562

Supplementary Table S3. Summary of sample grouping and number of sequences available for analyses represented in the Suppl. Fig. S2.

	Water o	column	Total water column	Sedime	ents	Deep sedime) nts	Total sediments
Site	rDNA	rRNA		rDNA	rRNA	rDNA	rRNA	
Blanes	440	3294	3734	126	2553			2679
Gijon	76	45	121					
Naples_09	16285	48055	64340	5484	5524			11008
Naples_10	581	417	998	1587	879			2466
Oslo_09	9235	14225	23460	2056	1451	1904	1074	6485
Oslo_10	8538	4944	13482	3596	975			4571
Roscoff	1746	3815	5561	264	795			1059
Varna	1957	801	2758	3	311			314
TOTAL	38858	75596	114454	13116	12488	1904	1074	28582

Total rDNA	53878
Total rRNA	89158

Supplementary Table S5. Percent of OTUs shared or exclusive among subsets (reads in brackets). Total Template is based on merged habitats, while Total Habitats is based on merged templates. rRNA showed the highest number of exclusive OTUs and sequences in both the water column and the sediments.

Total Template					
	rDNA	rRNA			
percent shared OTUs (% seqs)	17% ((95%)			
percent exclusive OTUs (% seqs)	14% (0.7%)	69% (4.2%)			
Water Colu	umn				
	rDNA	rRNA			
percent shared OTUs (% seqs)	35% ((92%)			
percent exclusive OTUs (% seqs)	12% (1.2%)	52% (5.8%)			
Sedimen	ts				
	rDNA	rRNA			
percent shared OTUs (% seqs)	14% ((87%)			
percent exclusive OTUs (% seqs)	10% (1.3%)	60% (10%)			
Total Hab	itat				
	Column	Sediment			
percent shared OTUs (% seqs)	10% ((80%)			
percent exclusive OTUs (% seqs)	52% (12%)	36% (8.6%)			

Supplementary Table S6. Summary of normalized alpha diversity in the four groups of samples merged by template and habitat (see Supplementary Table S2).

	#seqs	sobs	chao	shannon
Water Column_rDNA	13563	632	1359	3.63
Sediment_rDNA	13563	576	1230	3.53
Water Column_rRNA	13563	1451	3722	4.82
Sediment_rRNA	13563	1784	4192	5.41

Supplementary Table S7. Number of OTUs generated at different thresholds of similarity. The number of OTUs at the threshold of 93% represented the best match with the number of taxonomic assignation (341 taxa).

Clustering threshold	99%	98%	97%	96%	95%	94%	93%	92%
#OTUs	4587	1740	1102	784	580	435	343	275

Supplementary Dataset 1. Skeletonema tropicum and S. pseudocostatum V4 sequences.

>DQ396517.1_S._tropicum_strain_CCMP_2070 AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGGC AGGAGTGACCGACCACACACCGTGTGTGAGTTGTGTCATTCTGGCCATCCTTGGTGAG ATCCTATTTGGCATTAAGTTGTCGGGTAGGGGATAACCATCGTTTACTGTGAAAAAATTA GAGTGTTTAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATAAGATAGGACT TTGAGTCTATTTTGTTGGTTTGCGAGTCAAAGTAATGATTAATAGGGACAGTTGGGGGGTA TTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTCTGAAAGACGAACTACTGCGAAA GCATTTACCAAGGATGTTTTCA >DQ396516.1_S._tropicum_strain_B210 AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGGC AGGAGTGACCGACCACACACCGTGTGTGAGTTGTGTCATTCTGGCCATCCTTGGTGAG ATCCTATTTGGCATTAAGTTGTCGGGTAGGGGGATAACCATCGTTTACTGTGAAAAAATTA GAGTGTTTAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATAAGATAGGACT TTGAGTCTATTTTGTTGGTTTGCGAGTCAAAGTAATGATTAATAGGGACAGTTGGGGGGTA TTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTCTGAAAGACGAACTACTGCGAAA GCATTTACCAAGGATGTTTTCA >DQ396515.1_S._tropicum_strain_B205 AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGGC AGGAGTGACCGACCACACACCGTGTGTGAGTTGTGTCATTCTGGCCATCCTTGGTGAG ATCCTATTTGGCATTAAGTTGTCGGGTAGGGGATAACCATCGTTTACTGTGAAAAAATTA GAGTGTTTAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATAAGATAGGACT TTGAGTCTATTTTGTTGGTTTGCGAGTCAAAGTAATGATTAATAGGGACAGTTGGGGGGTA TTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTCTGAAAGACGAACTACTGCGAAA

GCATTTACCAAGGATGTTTTCA

>X85393.1_S._pseudocostatum_strain_CCAP_1077/6

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGGC AGGAGTGACCGACCACACACACCGTGTGTGAGTTGTGTCATTCTGGCCATCCTTGGTGAG ATCCTATTTGGCATTAAGTTGTCGGGTAGGGGATAACCATCGTTTACTGTGAAAAAATTA GAGTGTTTAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATAAGATAGGACT TTGAGTCTATTTTGTTGGTTTGCGAGTCAAAGTAATGATTAATAGGGACAGTTGGGGGTA TTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTCTGAAAGACGAACTACTGCGAAA GCATTTACCAAGGATGTTTTCA

>X85394.1_S._pseudocostatum_strain_CCAP_1077/7

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGGC AGGAGTGACCGACCACACACCGTGTGTGAGTTGTGTCATTCTGGCCATCCTTGGTGAG ATCCTATTTGGCATTAAGTTGTCGGGTAGGGGATAACCATCGTTTACTGTGAAAAAATTA GAGTGTTTAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATAAGATAGGACT TTGAGTCTATTTTGTTGGTTTGCGAGTCAAAGTAATGATTAATAGGGACAGTTGGGGGTA TTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTCTGAAAGACGAACTACTGCGAAA GCATTTACCAAGGATGTTTTCA

>AJ632208.1_S._pseudocostatum_strain_SZN-B78

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGGC AGGAGTGACCGACCACACACCGTGTGTGAGTTGTGTCATTCTGGCCATCCTTGGTGAG ATCCTATTTGGCATTAAGTTGTCGGGTAGGGGATAACCATCGTTTACTGTGAAAAAATTA GAGTGTTTAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATAAGATAGGACT TTGAGTCTATTTTGTTGGTTTGCGAGTCAAAGTAATGATTAATAGGGACAGTTGGGGGTA TTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTCTGAAAGACGAACTACTGCGAAA GCATTTACCAAGGATGTTTTCA

>AB948148.1_S._pseudocostatum_strain_FMR120 AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTCTGGC AGGAGTGACCGACCACACACCGTGTGTGAGTTGTGTCATTCTGGCCATCCTTGGTGAG ATCCTATTTGGCATTAAGTTGTCGGGTAGGGGATAACCATCGTTTACTGTGAAAAAATTA GAGTGTTTAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATAAGATAGGACT TTGAGTCTATTTTGTTGGTTTGCGAGTCAAAGTAATGATTAATAGGGACAGTTGGGGGTA TTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTCTGAAAGACGAACTACTGCGAAA GCATTTACCAAGGATGTTTTCA >AJ632206.1_S._pseudocostatum_strain_CCAP1077-7 AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAAGCTCGTAGTTGGATTTCTGGC AGGAGTGACCGACCACACACACCGTGTGTGAGTTGTGTCATTCTGGCCATCCTTGGTGAG ATCCTATTTGGCATTAAGTTGTCGGGTAGGGGATAACCATCGTTTACTGTGAAAAAATTA GAGTGTTTAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATAAGATAGGACT TTGAGTCTATTTTGTTGGTTTGCGAGTCAAAGTAATGATTAATAGGGACAGTTGGGGGTA TTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTCTGAAAGACGAACTACTGCGAAA GCATTTACCAAGGATGTTTTCA Supplementary Dataset 2. Pseudo-nitzschia australis and P. multiseries V4 sequences.

>JN599166.1_P_australis

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTGTGGT GTGTCCAGTCGGCCTTTGCTCTTTGAGTGATTGCGCTGTACTGGTCTGCCATGTTTGGGT GGAATCTGTGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTTGTTGGTTTGCGCACTAAGGTAATGATTAAGAAGGGACAGTTGGGGGG TATTTGTATTCCATTGTCAGAGGTGAAATTCTTGGATTTT-TGGAAGACAAACTACTGCG AAAGCATTTACCAAGGATGTTTTCA

>GU373964.1_P_multiseries

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTGTGGT GTGTCCAGTCGGCCTTTGCTCTTTGAGTGATTGCGCTGTACTGGTCTGCCATGTTTGGGT GGAATCTGTGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTTGTTGGTTTGCGCACTAAGGTAATGATTAAGAAGGGACAGTTGGGGG TATTTGTATTCCATTGTCAGAGGTGAAATTCTTGGATTTT-TGGAAGACAAACTACTGCG AAAGCATTTACCAAGGATGTTTTCA

>U18241.1_P_multiseries

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTGTGGT GTGTCCAGTCGGCCTTTGCTCTTTGAGTGATTGCGCTGTACTGGTCTGCCATGTTTGGGT GGAATCTGTGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTTGTTGGTTTGCGCACTAAGGTAATGATTAAGAAGAGAAAACTACTGCG TATTTGTATTCCATTGTCAGAGGTGAAATTCTTGGATTTT-TGGAAGACAAACTACTGCG AAAGCATTTACCAAGGATGTTTTCA

>AM235381.1_P_multiseries_strain_TKA_2-28 AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTGTGGT GTGTCCAGTCGGCCTTTGCTCTTTGAGTGATTGCGCTGTACTGGTCTGCCATGTTTGGGT GGAATCTGTGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTTGTTGGTTTGCGCACTAAGGTAATGATTAAGAGGGACAGTTGGGGG TATTTGTATTCCATTGTCAGAGGTGAAATTCTTGGATTTT-TGGAAGACAAACTACTGCG AAAGCATTTACCAAGGATGTTTTCA

>AY221947.1_P_multiseries

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTGTGGT GTGTCCAGTCGGCCTTTGCTCTTTGAGTGATTGCGCTGTACTGGTCTGCCATGTTTGGGT GGAATCTGTGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTTGTTGGTTTGCGCACTAAGGTAATGATTAAGAAGGGACAGTTGGGGGG TATTTGTATTCCATTGTCAGAGGTGAAATTCTTGGATTTT-TGGAAGACAAACTACTGCG AAAGCATTTACCAAGGATGTTTTCA

>U18241.1_P_multiseries

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTGTGGT GTGTCCAGTCGGCCTTTGCTCTTTGAGTGATTGCGCTGTACTGGTCTGCCATGTTTGGGT GGAATCTGTGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTTGTTGGTTTGCGCACTAAGGTAATGATTAAGAAGGGACAGTTGGGGG TATTTGTATTCCATTGTCAGAGGTGAAATTCTTGGATTTT-TGGAAGACAAACTACTGCG AAAGCATTTACCAAGGATGTTTTCA

>GU373961.1_P_australis

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTTGTGGT GTGTCCAGTCGGCCTTTGCTCTTTGAGTGATTGCGCTGTACTGGTCTGCCATGTTTGGGT GGAATCTGTGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTTGTTGGTTTGCGCACTAAGGTAATGATTAAGAAGGGACAGTTGGGGG TATTTGTATTCCATTGTCAGAGGTGAAATTCTTGGGTTTT-TGGAAGACAAACTACTGCG

AAAGCATTTACCAAGGATGTTTTCA

>AM235382.1_P_multiseries_strain_POMX

AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGGATTCGTGGT GTGTCCAGTCGGCCTTTGCTCTTTGAGTGATTGCGCTGTACTGGTCTGCCATGTTTGGGT GGAATCTGTGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTTGTTGGTTTGCGCACTAAGGTAATGATTAAGAAGAGGGACAGTTGGGGG TATTTGTATTCCATTGTCAGAGGTGAAATTCTTGGATTTT-TGGAAGACAAACTACTGCG AAAGCATTTACCAAGGATGTTTTCA >AM235380.1_P_multiseries_strain_Nparl AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTGACGATGCGTGGTCGGCCATGGTGGGCATTAAGTGGTGGCATTAAGTTGTCGTGCAGGGGATGCCCATCGTTTACTGTGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATAATATTAGCATGGAATAATGAAAAAAT TAGAGTGTTCAAAGCAGGCTTATGCCGTTGAATATATTAGCATGGAATAATGATATAGGA CCTTGGTACTATTTGTGGTTTGCGCACTAAGGTAATGATTAAGAGGGAACAACTACTGCG

AAAGCATTTACCAAGGATGTTTTCA