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1 Exact Decomposed Dynamics and Row Balance

We write the full dynamics without row balance:

dh

dt
= −h + Jφ +

J1√
N

ξνTφ (1)

and we define

h̄ ≡ 1

N
ξTh φ̄ ≡ 1

N
ξTφ (2)

δh ≡ h− h̄ξ δφ = φ− φ̄ξ (3)

Applying these definitions to the full dynamics (and noting that νTφ = νT δφ), the exact coherent mode dynamics

are
dh̄

dt
= −h̄+

J1√
N

νT δφ +
ξT

N
Jφ (4)

and by subtracting these from the full dynamics of h, the decomposed dynamics are:

dδh

dt
= −δh + Jφ− ξξT

N
Jφ = −δh + Ĵφ (5)

where Ĵ ≡
(
I− ξξT

N

)
J as introduced in the main text in Eqns (5) and (6).

We observe that the constraint ξT δh = 0 must be satisfied automatically by the residual dynamics (Eqn 5),

and this can be confirmed by verifying that

d
(
ξT δh

)
dt

= −
(
ξT δh

)
(6)

In the regime where J1 � 1 the φj are nearly uncorrelated and therefore ξT

N Jφ ∼ O
(

1√
N

)
and can be ignored.

This yields the approximate coherent dynamics presented in Eqn (4) of the main text.

In the regime with strong structured connectivity we must consider this term in Eqn 4. To that end we write

φ = φ̄ξ + δφ and also write the transformation of the input mode via the random matrix as

Jξ = a‖ξ + ξ⊥ (7)

where a‖ is a realization-dependent scalar and ξ⊥ is a realization-dependent vector orthogonal to ξ. That yields
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coherent mode dynamics
dh̄

dt
= −h̄+

J1√
N

νT δφ + a‖φ̄+
ξT

N
Jδφ (8)

and residual dynamics
dδh

dt
= −δh + Ĵδφ + φ̄ξ⊥ (9)

As J1 increases and the fluctuations in the coherent activity, φ̄ (t), drive feedback in two ways. First of all, J maps

the coherent activity back along the input mode driving direct feedback to the coherent current h̄ via the term a‖φ̄.

Secondly, J maps the coherent activity in a realization-dependent direction, ξ⊥, orthogonal to the input mode.

This drives the residual activity fluctuations δh via the term φ̄ξ⊥, and this biasing of the residual fluctuations may

in turn generate feedback to the coherent current through the output mode via νT δφ.

Both of these feedback terms are realization dependent, and both of them are canceled via the row balance sub-

traction

J̃ ≡ J− J
ξξT

N
(10)

which yields exact coherent mode dynamics

dh̄

dt
= −h̄+

J1√
N

νT δφ +
ξT

N
Jδφ (11)

and residual dynamics
dδh

dt
= −δh + Ĵδφ (12)

And in this case the residual dynamics are again uncorrelated so that ξT

N Jδφ ∼ O
(

1√
N

)
and can again be ignored

in the coherent mode dynamics.

Note that φ̄ no longer drives feedback to either the residual or the coherent dynamics. Nevertheless the dynamics

are still coupled in both directions as δφ depends on h̄.
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2 Perturbative Dynamic Mean-Field Theory in the Limit of Weak Struc-

tured Connectivity

We derive the dynamic mean-field equations in the limit of small J1 using a perturbative approach. We write the

mean-field dynamics of the residuals as
dδhi
dt

= −δhi + ηi (13)

and the coherent component as
dh̄

dt
= −h̄+ J1m (14)

where ηi andm are assumed to be uncorrelated, mean-zero Gaussians. For general J1 the assumption of Gaussianity

fails, therefore we assume J1 � 1.

The autocorrelation of ηi is given by

[〈ηi (t) ηi (t+ τ)〉] =

∑
j,k

JijJik 〈φj (t)φk (t+ τ)〉

 (15)

where we have introduced [] as the notation for averaging over realizations. We assume that φj is independent of

Jij and so the terms j 6= k have average zero over realizations and we get

[〈ηi (t) ηi (t+ τ)〉] = g2C (τ) (16)

where

C (τ) ≡ [〈φj (t)φj (t+ τ)〉] (17)

The autocorrelation of m is given by

[〈m (t)m (t+ τ)〉] =
J2

1

N

∑
j,k

νjνkφj (t)φ (t+ τ)

 (18)

And again the j 6= k terms fall in the realization average so that

[〈m (t)m (t+ τ)〉] = J2
1C (τ) (19)
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Next we define the autocorrelation of the residuals

∆δ (τ) ≡ [〈δhi (t) δhi (t+ τ)〉] (20)

and the autocorrelation of the coherent current

∆̄ (τ) ≡
[〈
h̄ (t) h̄ (t+ τ)

〉]
(21)

and we can follow previous work [3, 2] and write the dynamic mean-field equations for ∆δ (τ) as

(
1− ∂2

∂τ2

)
∆δ (τ) = g2C (τ) (22)

and for ∆̄ (τ) as (
1− ∂2

∂τ2

)
∆̄ (τ) = J2

1C (τ) (23)

Next we note that for J1 � g we assume that
∣∣h̄∣∣ � 1 so we have φi = φ

(
δhi + ξih̄

)
≈ φ (δhi) + ξiφ

′ (δhi) h̄.

Therefore we have that to leading order

C (τ) ≈ [〈φ (δhi (t))φ (δhi (t+ τ))〉] (24)

and then following previous results [3, 2] we can write this to leading order as an integral over Gaussians:

C (τ) ≈
∞̂

−∞

Dz

 ∞̂

−∞

Dxφ
(√

∆δ (0)−∆δ (τ)x+
√

∆δ (τ)z
)2

(25)

Note that it is possible to compute the sub-leading correction term as well, but for our purposes this is unnecessary.

We suffice it to observe that to leading order, the self-consistency equation for ∆δ (τ) (Eqn 22) reduces to the iden-

tical equation for that of a random network without structured component (J1 = 0)[3], and that ∆̄ (τ) contributes

only to the sub-leading correction. Following [3, 2] then Eqn 22 can be solved yielding ∆δ (τ) ≈ ∆0 (τ), where

∆0 (τ) is the autocorrelation when J1 = 0.

The dynamic equation for ∆̄ (τ) is identical to that for ∆δ (τ) except with J1 in place of g, so we conclude (as

presented in Eqn (9) of the main text) that the resulting leading order autocorrelation of the coherent mode is

∆̄ (τ) ≈ J2
1

g2
∆0 (τ) (26)
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Thus for J1 � g fluctuations in the coherent input are driven passively by the random source which is generated

self-consistently by the residual fluctuations, and the resulting autocorrelation of the coherent mode is simply a

scaled version of the autocorrelation of the residuals.

It is worth noting that for J1 ∼ g the assumption of Gaussianity is broken due to the cross-correlations between

the φj .

3 Analysis of the Limit of Strong Structured Connectivity with Row

Balance

In the limit of large J1 we assume δhi � 1, and approximate φj ≈ φ
(
ξj h̄
)

+ φ′
(
h̄
)
δhj , where we have made use

of the symmetry of the transfer function and the binary restriction on ξj . Note that this linearization clearly holds

without symmetric transfer function for the case of uniform ξj = 1 as well.

Using the random connectivity with row balance constraint, J̃, and following the exact decomposition above (Eqns

5 and 4) this yields dynamical equations:

dδh

dt
= −δh + φ′

(
h̄
)
Ĵδh (27)

dh̄

dt
= −h̄+

J1√
N
φ′
(
h̄
)
νT δh + φ′

(
h̄
) ξT
N

Jδh (28)

In this regime h̄ acts as a dynamic gain on the local synaptic currents through φ′
(
h̄
)
. Given h̄ the equation for the

residual currents is linear and therefore their dynamics can be decomposed in the eigenbasis of the matrix

Ĵ ≡ PξJ (29)

where Pξ = I− ξξT

N is the projection matrix onto the the subspace orthogonal to ξ.

We observe a fine-point not noted in [1]: It may seem intuitive that the eigenvalues of J̃ determine the dynamics. In

fact, as we show these eigenvalues are identical to those of Ĵ. However, had we ignored the constraint ξT δh = 0 then

the residual dynamics would have been determined by J and its eigenvalues, and these are not the same as those of Ĵ.
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We claim that Ĵ = PξJ and J̃ = JPξ have the same eigenvalues. Suppose λ is an eigenvalue of Ĵ with asso-

ciated eigenvector u, then u must be orthogonal to ξ. If Ju is orthogonal to ξ as well, then J̃u = Ĵu = λu, and

we are done. Otherwise we can write Ju = λu + aξ, and thus J̃ (λu + aξ) = Jλu = λ (λu + aξ) so that λ is also

an eigenvalue of J̃. Suppose now that λ is an eigenvalue of J̃. Again if the associated eigenvector is orthogonal to

ξ then it is also an eigenvector of Ĵ with eigenvalue λ and we are done. Otherwise we write the eigenvector of J̃ as

u + aξ and then we have J̃ (u + aξ) = Ju = λ (u + aξ). Therefore Ĵu = λu.

We write the eigenvectors as u(i) with Ĵu(i) = λiu
(i). We write the vector of residual current as δh =

∑
i ciu

(i)

and note that as mentioned above u(i) ⊥ ξ, so that the constraint ξT δh = 0 is satisfied. This yields dynamics

dci
dt

=
(
−1 + φ′

(
h̄
)
λi
)
ci (30)

The only (marginally) stable, non-zero fixed point is achieved with c1 6= 0 and ci = 0 for all i > 1. And the

fixed-point equation is

c∗1
(
1− φ′

(
h̄
)
λ1

)
= 0 (31)

This fixed point only exists if λ1 is real, and yields a fixed-point requirement for h̄∗:

h̄∗ = φ′−1

(
1

λ1

)
≈ φ′−1

(
1

g

)
(32)

In order to close the loop we turn to the fixed point equation for the coherent dynamics. Ignoring the term

φ′
(
h̄
)

ξT

N Jδh, which yields an O
(

1√
N

)
correction we find:

h̄∗ =
J1√
N
φ′
(
h̄
)
νT δh∗ (33)

which in turn, using δh∗ = c1u
(1), yields a solution to leading order for c1: c∗1 =

√
Nh̄∗λ1

J1νTu(1) , as reported in [1].

If λ1 is complex there is no fixed point but rather a limit-cycle solution to the dynamics of the complex-valued c1

exists with δh (t) = Re
[
c1 (t)u(1)

]
, and ci = 0 for all other eigenmodes. Assuming h̄ (t) is periodic with period T ,

we can separate variables and integrate Eqn 30 in order to find c1 (t) is given by

c1 (t) = c1 (0) exp (−t+ λ1Φ (t)) (34)
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for t ≤ T , where Φ (t) =
´ t

0
ds φ′

(
h̄ (s)

)
. Writing c1 (0) =

∣∣c01∣∣ exp (iθ0) and using Reλ1 ≈ g, this gives

c1 (t) =
∣∣c01∣∣ exp (−t+ gΦ (t)) exp (i (θ0 + Imλ1Φ (t))) (35)

A limit cycle in phase with h̄ (t) means c1 (T ) = c1 (0) and this requires that both gΦ (T ) = T and also Im [λ1] Φ (T ) =

2π. From the first requirement we find that the average value of φ′ over a period must be the critical value:

〈
φ′
(
h̄
)〉

=
Φ (T )

T
=

1

g
. (36)

And combining the second requirement yields an expression for the period (Eqn ??, as reported in [1] as well):

T = 2π
Reλ1

Imλ1
(37)

We can further write a self-consistency expression for h̄ (t) by taking c1 (t) as given by Eqn 35 and integrate over

the coherent mode dynamics:

dh̄

dt
= −h̄+ Re

[
J1√
N

νTu(1)c1 (0)φ′
(
h̄ (t)

)
exp (−t+ λ1Φ (t))

]
(38)

which yields

h̄ (t) = h̄ (0) exp (−t) + Re

[
J1√
N

νTu(1)

λ1
c1 (0) exp (−t+ λ1Φ (t))

]
(39)

Without loss of generality we assume that h̄ (0) = h̄c = φ′−1
(

1
g

)
, then

h̄c ≈ c01
J1

∣∣νTu(1)
∣∣

√
Ng

cos
(
θ0 + Im

(
νTu(1)

))
(40)

This is analogous to the fixed point equation for h̄∗ and c∗1. In both cases the requirement that δhi = c1u
(1)
i � 1

requires that c1 be maximally O (1) and motivates our conjectures about the realization-dependence and system-size

scaling of the transition out of chaos. In particular, we expect and confirm numerically that the critical value of J1

for transition to either fixed point or limit cycle is inversely proportional to
∣∣νTu(1)

∣∣ and grows with network size

(see main text and Fig 7).

In the case of complex leading eigenvalue, simulations confirm that a projection of the full synaptic current dynamics

into the coherent mode and the leading eigenvector plane (consisting of real and imaginary parts of u(1)) accounts

for well over 0.99 of the total variance. Even restricting ourselves to the variance of the residuals, δhi, we find that

0.98 of the variance is restricted to the leading eigenvector plane (Fig S3).
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For N = 4000 we simulate 219 realizations of random connectivity with complex leading eigenvalue and find that

for sufficiently large J1 all but one of these realizations yield highly oscillatory dynamics with period predicted

nearly perfectly by theory (Fig S3).

We note that in the limit of large N we expect that the typical size of the imaginary component of the leading eigen-

value, λ1, shrinks such that the typical period grows. These longer period oscillations are characterized by square-

wave-like shape in which the dynamics of the coherent component slows around the critical value h̄c = φ−1
(

1
Reλ1

)
,

which is identical to the fixed-point value of h̄ when λ1 is real. (Fig S3)

The fraction of realizations with real leading eigenvalue in the large N limit has not been calculated analyti-

cally to our knowledge. We find numerically that this fraction appears to saturate roughly around 3
10 for N & 8000.
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