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SUMMARY

Previous studies suggest that the brain operates at a
critical point in which phases of order and disorder
coexist, producing emergent patterned dynamics at
all scales and optimizing several brain functions.
Here, we combined light-sheet microscopy with
GCaMP zebrafish larvae to study whole-brain dy-
namics in vivo at near single-cell resolution. We
show that spontaneous activity propagates in the
brain’s three-dimensional space, generating scale-
invariant neuronal avalanches with time courses
and recurrence times that exhibit statistical self-sim-
ilarity at different magnitude, temporal, and fre-
quency scales. This suggests that the nervous
system operates close to a non-equilibrium phase
transition, where a large repertoire of spatial, tempo-
ral, and interactive modes can be supported. Finally,
we show that gap junctions contribute to the mainte-
nance of criticality and that, during interactions with
the environment (sensory inputs and self-generated
behaviors), the system is transiently displaced to a
more ordered regime, conceivably to limit the poten-
tial sensory representations and motor outcomes.

INTRODUCTION

Recent studies have shown that neuronal populations display

collective activity patterns that are characterized by sequences

of activations called ‘‘neuronal avalanches’’ (Beggs and Plenz,

2003; Mazzoni et al., 2007; Pasquale et al., 2008; Friedman

et al., 2012; Hahn et al., 2010, 2017; Shriki et al., 2013; Tagliazuc-

chi et al., 2012; Priesemann et al., 2014). It has been proposed

that the statistics of neuronal avalanches are signatures of criti-
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cality, a particular operating regime between phases of order

and disorder in which several brain functions could be optimized,

such as input sensitivity and dynamic range (Shew and Plenz,

2013). Indeed, previous reports show that the sizes and dura-

tions of neuronal avalanches are scale invariant (i.e., they follow

power-law statistics with power exponents that depend on each

other, which are typical features of systems at criticality).

Another signature of criticality is the presence of scaling rela-

tions. For instance, Friedman et al. (2012) have shown that the

dynamics of long-duration avalanches are similar to those of

short-duration avalanches when they are properly rescaled.

These previous studies suggest signs of criticality in spiking

activity and local field potentials (LFPs) of neural cultures

in vitro (Beggs and Plenz, 2003; Mazzoni et al., 2007; Pasquale

et al., 2008; Friedman et al., 2012), LFP signals in vivo (Hahn

et al., 2010), field potentials and fMRI blood-oxygen-level-

dependent (BOLD) signals in vivo (Shriki et al., 2013; Tagliazuc-

chi et al., 2012), voltage imaging in vivo (Scott et al., 2014), and

10–100 single-unit or multi-unit spiking and calcium-imaging

activity in vivo (Priesemann et al., 2014; Bellay et al., 2015;

Hahn et al., 2017; Seshadri et al., 2018). Despite these advances,

criticality in the brain remains an open question, since meso-

scopic measurements (from LFPs to BOLD signals) might distort

the dynamics, and spiking data from a limited number of neurons

are prone to subsampling effects (Priesemann et al., 2014) that

are known to strongly bias the characterization of collective

behavior, even in the case of scale-free networks (Levina and

Priesemann, 2017; Stumpf et al., 2005). Therefore, to study

criticality in the nervous system, it is necessary to monitor

whole-brain dynamics with single-cell resolution. Moreover,

how criticality is affected when the organism interacts with the

environment remains elusive, and the functional connectivity

mechanisms that promote a critical state are unknown.

Here, we addressed these open questions by studying the sta-

tistics of the zebrafish whole-brain dynamics and by interpreting

them within the framework of criticality. Specifically, we used

transgenic zebrafish larvae expressing genetically encoded
r(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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calcium indicators (GCaMP5 or GCaMP6f) in combination

with selective-plane illumination microscopy (SPIM) to monitor

whole-brain dynamics with near single-neuron resolution in an

intact, behaving vertebrate (Ahrens et al., 2013; Panier et al.,

2013; Romano et al., 2017). Using this approach, we were able

to study the collective dynamics of neuronal activity and its prop-

agation across the whole brain, in three-dimensional space and

time, in the form of neuronal avalanches, and at a wide range of

scales. Analyzing the spatiotemporal activity patterns in 3D

space is important because scale-invariant behaviors observed

at criticality do not depend on the microscopic details of the

system. Instead, they often depend on the dimension of the sys-

tem and the type of phase transition. Thus, a system at criticality

has universal properties that can be explained by simple mathe-

matical models (Sethna et al., 2001). We were particularly inter-

ested in comparing the statistics of neuronal avalanches with

those of critical three-dimensional systems that operate close

to a non-equilibrium disorder-induced phase transition, for

which the associated dynamics produce avalanches at all

scales, or ‘‘crackling noise’’ (Sethna et al., 2001). Crackling noise

arises in heterogeneous systems under external drive when the

heterogeneity of the system’s elements (quenched disorder) is

strong enough to compete with the interactions between them.

Here, we detected neuronal avalanches propagating in the

brain during periods of both spontaneous and visually induced

activity. We analyzed the spatial statistics of the activity patterns

(their number, sizes, scaling properties, and correlation func-

tions) and the spatiotemporal dynamics of the neuronal ava-

lanches (sizes, durations, scaling properties, and spectral con-

tent) and compared these statistics during spontaneous

activity, during the presentation of visual stimuli, during self-

generated motor behaviors, and in pharmacologically perturbed

conditions. Our results suggest that whole-brain dynamics

fluctuate close to the critical point of a non-equilibrium disor-

der-induced phase transition, from which it can be displaced

by interactions with the environment (sensory inputs and behav-

ioral outputs). In addition, we found that gap junctions might be

involved in maintaining a critical regime in the vertebrate nervous

system.

RESULTS

To study the spatiotemporal activity patterns emerging from

whole-brain dynamics, we analyzed the neuronal activity from

six zebrafish larvae (6–8 days post-fertilization [dpf]) recorded

using SPIM (see STAR Methods and Figures S1A–S1C). In our

study, morphological images were segmented into regions of

interest (ROIs) corresponding to putative single neurons and

neuropil regions, from which fluorescence fluctuations were

extracted. Larvae were head restricted to simultaneously

monitor neuronal activity and spontaneous tail movements.

The six datasets were composed ofN = 41,115–89,349 selected

ROIs recorded during long recordings of 1–2 hr composed of Q

segments that each included a period of spontaneous activity

(20 min) and a shorter period (4 min) of visual stimulation (Q

ranges between 3 and 9, see Table S1 and Figure S1D). Visual

stimulation was composed of gratings moving in different direc-

tions. Whole-brain activity was characterized by the activation of
groups of ROIs that could span large parts of the brain (see Video

S1). We aimed to describe the statistics of these events. For this,

the activity of each putative neuronwas binarized by imposing an

activity threshold. Then, we identified clusters of co-active and

spatially contiguous ROIs and quantified their number, size,

and evolution over time (see STAR Methods).

Percolation Transition of the Spatial Clusters of Co-
active and Contiguous ROIs
First, we characterized the spatial patterns of collective neuronal

activity by calculating the number of clusters and their sizes

(number of activations; see STAR Methods). We studied the

cluster statistics within the framework of percolation theory.

Percolation describes the behavior of clusters in a graph and

how the cluster sizes change with the number of active units,

going from small clusters to the emergence of a large cluster

beyond a critical level of activity. Throughout this study, we

analyzed the spontaneous and the visually evoked activity

together, unless specified otherwise. For each time t, we

computed the proportion of active ROIs ðrÞ, the number of clus-

ters (m), and the size of the i-th cluster (CsðiÞ, 1%i%m). First, we

calculated the relation between r andm and found that the num-

ber of clusters peaked when � 15% of the ROIs were active, a

value that we denoted as rc (Figures 1A, S2A, and S2B; Table

S1). Interestingly, the variability of m was also maximized

at this level of activation. Thus, there exists a fraction of active

ROIs, rc, for which the largest diversity of clusters was observed.

Second, we calculated the relationship between r and the

normalized size of the largest cluster (i.e., Cmax = max(Cs)/Call,

where Call is the size of the largest cluster obtained when all re-

corded ROIs are hypothetically active, i.e., above the activity

threshold), which ranges between 91.40% and 99.74% of the

ROIs for the different datasets. We found that Cmax grows with

r and spans a broad range of scales, from few ROIs to almost

the entire brain, as it can be essentially as large as � 1 (Figures

1B and S2C). Third, we found that the level of network activation

was different during the spontaneous and stimulus-evoked ac-

tivity: the distribution of r, denoted as PðrÞ, showed that most

often, the level of spontaneous activation was below pc, and

10.52%–44.93% of the time, p was larger than rc (Figures 1C

and S2F). The activation level during the stimulus-evoked activity

exceeded the value rc significantly more often than in the spon-

taneous activity in 5 of the 6 datasets (17.82%–60.29% of the

time, p < 0.01, paired t test comparing Pðr> rcÞ during sponta-

neous and visual stimulation periods; see Figure 1G).

The above behaviors are signatures of the existence of a

percolation critical point (rc). Percolation theory shows that,

close to the critical probability, the distribution of cluster sizes

follows a power law with an exponent that depends only on the

dimensions of the system (it does not depend on the details of

the physical system). To test this, we computed the distribution

of cluster sizes Cs, noted PðCsÞ, and approximated it by a power

law, which appears as a straight line in a log-log plot, such that

PðCsÞ � C�s
s (Figures 1D–1F). We used a maximum likelihood

estimation (MLE) method to assess the power law that best fitted

the size distribution of the set of clusters that appeared with r

comprised within small intervals (r – D; r + D), with D = 0.02. In

the interval between rc – D and rc + D, PðCsÞ was well
Neuron 100, 1446–1459, December 19, 2018 1447



Figure 1. Statistics of the Clusters of Co-active and Contiguous ROIs

(A) Number of clusters (m) as a function of the proportion of active ROIs (r). Blue line, mean of m; blue area, its standard deviation.

(B) Normalized size of the largest cluster (Cmax) as a function of r (blue trace: average Cmax).

(C) Distribution of r (black, spontaneous activity; red, stimulus-evoked activity) calculated for each of the Q spontaneous and evoked segments (solid line, mean

distribution; shaded area, SEM). Note that the stimulus-evoked distribution is skewed to the right.

(D) We calculated the cluster size distribution for the set of clusters that appeared with r comprised within small intervals (r – D; r +D). Using the Kullback-Leibler

divergence (KLD), we calculated the goodness of fit of the power law (blue) and, using MLE, we estimated the power exponent (orange) as a function of r. (A)–(D)

show results for dataset 1. Note that, for r = rc, the goodness of fit is close to its maximum and the corresponding power exponent is equal to one predicted in the

case of 3D percolation, equal to 2.19 (dashed horizontal line).

(E) Size distribution P(Cs) of clusters that appeared with r between rc – D and rc + D. Each color represents a dataset. Error bars are smaller than the symbols’

size. Black line, power-law distribution predicted in 3D percolation.

(F) Power exponents s(rc) estimated using MLE.

(G) Difference between the proportion of time that r > rc during the stimulus-evoked activity and the proportion of time that r > rc during the spontaneous activity

(*p < 0.01, paired t test). Error bars, SEM across the Q spontaneous-evoked segments. See also Figure S2.

(H) Correlation function g(r): average correlation between pairs of cells as a function of the Euclidean distance r, for each dataset (calculated for each of the Q

segments and then averaged; colored areas, SEM). The straight lines represent power-law fits using least squares for r falling between 50 mm and 500 mm (gray

area). Note that for distances longer than 500 mm, r approximates the size of the larva in one of its 3 dimensions.

Inset: estimated power-law exponent (estimation errors are smaller than the symbols’ size).
approximated by a power law (Kolmogorov-Smirnov [KS] test,

ks < 0.05) with log-likelihood ratio (LLR) tests supporting the

power law when compared to an alternative heavy-tailed distri-

bution such as the lognormal (see STAR Methods and Table

S1). Moreover, the power law goodness of fit (calculated using

the inverse of the Kullback-Leibler divergence) was close to its

maximum for all datasets in the interval between rc – D and

rc + D (Figures 1D and S2D). The corresponding power law

exponent s(rc) was between 1.97 and 2.22 for the different

datasets, with an average of 2.15 ± 0.04 (Figures 1E, 1F, and

S2E; Table S1). The values of s(rc) were close to the theoretical

exponent of a 3D percolation process close to the critical point,

equal to 2.19 (Jan and Stauffer, 1998).
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TheCorrelation betweenROIsDecays as a Power Lawof
the Distance
The previous results (Figures 1B and 1E) show that ROIs can

form activity clusters of practically all sizes. This suggests the

presence of long-range functional correlations between ROIs.

We tested this hypothesis by studying the correlations between

pairs of cells as a function of the Euclidean distance r between

them (i.e., the correlation function gðrÞ). Specifically, for each da-

taset, we calculated Pearson’s pairwise correlations and the

Euclidean distance between all possible pairs among 40,000

randomly selected ROIs. We found that gðrÞ decays approxi-

mately as a power law (i.e., gðrÞ � r�h with a least-squares expo-

nent h equal to 0.22 ± 0.02 on average) for r between 50 mm and



Figure 2. Neuronal Avalanches Show Crit-

ical Statistics

(A) Distribution of avalanche durations T (in s).

(B) Distribution of avalanche sizes S (i.e., cumu-

lative sum of the number of activated ROIs).

(C) Relation between S and T, for each dataset. In

(A), (B), and (C), each color corresponds to a

dataset and the black dashed line indicates

the power law expected in the case of critical

behavior. The validity of the power-law fitting was

evaluated using Kolmogorov-Smirnov statistics

and log-likelihood ratio tests; see Table S2 for

more details.

(D) Measured exponents for each dataset (colored

filled symbols) and the corresponding time-shuf-

fled data (open symbols). Triangles, a exponent;

circles, t exponent; squares, snz exponent. Error

bars (estimation errors) are smaller than the size of

the symbols. The gray horizontal lines and the gray

shaded areas indicate the expected critical ex-

ponents and their uncertainty, respectively, in 3D

random field Ising models.

See Table S2 for more details. See also Figures S3

and S4.
500 mm (Figure 1H). These power-law exponents were preserved

during spontaneous and stimulus-evoked activity (p = 0.18,

paired t test; correlation coefficient = 0.65). Long-range power-

law correlations are a hallmark of complex systems at criticality,

which are characterized by non-trivial emergent collective

spatiotemporal dynamics (Expert et al., 2011). Consequently,

we next characterized how patterned activity propagates when

including the time dimension.

The Temporal Dynamics of the Clusters Show Neuronal
Avalanches Suggestive of Critical Behavior
We observed that, once a cluster was initiated, it could grow,

collide with other clusters, or terminate. We tracked the clusters

across time using the following procedure, which is a usual

definition of avalanches in sand-pile models, Ising models, and

analyses of fMRI recordings (Tagliazucchi et al., 2012): a new

avalanche was initiated at time t0 if a cluster i was composed

of ROIs that were not active at time t0 – 1; if at time t0 + 1, at least

one of the ROIs of the cluster i pertained to a cluster, then the

avalanche was continued until this condition no longer held

(see STAR Methods and Figure S3).

The total number of detected avalanches, nav, ranged be-

tween 2.39 3 105 and 7.94 3 105 for the different datasets. An

avalanche was described by its duration T (the time it lasted)

and its size S (the number of neuronal activations during the

avalanche). Using KS statistics and LLR tests to compare candi-

date heavy-tailed distributions, we found that avalanche dura-

tions and sizes were both well approximated by truncated

power-law distributions (i.e., PðTÞ � T�a and PðSÞ � S�t) for all
Neuron
datasets (Figures 2A and 2B, and Table

S2 for details). Thus, avalanches spanned

a broad range of scales. The averaged

MLE power-law exponents, a and t,

were equal to 3.01 ± 0.11 and 2.01 ±
0.03, respectively. In contrast, shuffled data that preserved the

spatial correlations but randomized the temporal structure

(time-shuffled data, see STAR Methods) led to significantly

different exponents (a = 4.22 ± 0.15 and t = 1.80 ± 0.02; p <

0.001, two-sample t test; Figure 2D). Notably, the power laws

observed in the data (but not in the shuffled data) are typical of

critical systems that operate close to a non-equilibrium disor-

der-induced phase transition, producing avalanches at all

scales, a phenomenon known as crackling noise (Sethna et al.,

2001). The universal critical exponents for the avalanche dura-

tions and sizes of such systems are known to be equal to

2.81 ± 0.11 and 2.03 ± 0.03, respectively, as obtained by numer-

ical simulations of the random field Ising model (RFIM) in three

dimensions, which is the paradigmatic theoretical model of dis-

order-induced critical dynamics (Perkovi�c et al., 1995; Sethna

et al., 2001; see also STARMethods). Thus, the observed scaling

exponents of the neuronal avalanches are suggestive of non-

equilibrium critical behavior.

Criticality theory also predicts that the average size hSiðTÞ of
avalanches of duration T is given by the scaling relation

Sh i Tð Þ � T1=snz (Perkovi�c et al., 1995; Sethna et al., 2001; Fried-

man et al., 2012). This relation was confirmed in the data for du-

rations shorter than the power-law cutoffs (Figures 2C; see also

Table S2). Moreover, using least squares to estimate the expo-

nent, we found that for all datasets, the value of the exponent

snz was consistent with that expected for criticality in three di-

mensions, equal to 0.57 ± 0.09 (Perkovi�c et al., 1995) (Figure 2D;

see also Table S2), while time-shuffled datasets displayed signif-

icantly different exponents: on average, snz = 0.54 ± 0.01 for the
100, 1446–1459, December 19, 2018 1449



original data and snz = 0.43 ± 0.02 for the shuffled data

(p < 0.001, two-sample t test). Furthermore, the critical expo-

nents a, t, and snz must obey ðt � 1Þ=ða� 1Þ= snz (Perkovi�c

et al., 1995; Sethna et al., 2001; Friedman et al., 2012). This rela-

tion is consistent with the exponents we measured. Indeed, the

obtained values of q= ðt � 1Þ=½snzða� 1Þ� fluctuate around � 1

(q ranges between 0.79 and 1.13 and q= 0.94 ± 0.05 on

average), and when the analyses were performed using the

avalanche durations and sizes of all datasets, we found expo-

nent values that were strongly consistent with the theory

(a = 2.90 ± 0.01, t = 1.99 ± 0.01, and snz = 0.54 ± 0.02, see

Figures S4A–S4C). In contrast, time-shuffled data largely

deviated from this relationship (q ranges between 0.47 and

0.65, q= 0.58 ± 0.03 on average). Finally, we tested whether

the exponents depend on the size of the clusters composing

the neuronal avalanches and on the temporal resolution of the

data (dt = 0.47 s). For this, active ROIs were assigned to the

same cluster when their distance, in 3D space, was shorter

than a given value (Figures S4D–S4F). We found that avalanche

exponents were close to the theoretically predicted ones, for

all larvae, for clusters defined within spheres of a radius up

to �30 mm; longer radii led to different and inconsistent expo-

nents. The size of the clustering neighborhood used in the

present study lies below this threshold. We also note that the ex-

ponents were consistent for time bins shorter or equal to 1.41 s

(Figures S4G–S4I).

Universal Scaling Functions as Signs of Criticality
Besides scale invariance and power exponent relations, a

further signature of criticality is the existence of universal

scaling functions that capture the systems’ dynamics at

different scales. We studied two aspects of the avalanche dy-

namics: the temporal profile of the avalanches and the time in-

tervals between avalanches. Let Sðt;TÞ be the number of acti-

vations at time t in an avalanche of duration T. Close to

criticality, the average avalanche profile, hSðt; TÞi, is expected

to be similar across temporal scales (Perkovi�c et al., 1995;

Sethna et al., 2001; Friedman et al., 2012). Specifically, the

relation between the normalized time t=T and the scaled

avalanche profile S t;Tð Þh iT�a follows a single form that does

not depend on the temporal scale, S t; Tð Þh iT�a = F t=ð TÞ. This
invariance across scales is known as ‘‘shape collapse.’’ To es-

timate the scaling parameter a, we used the method of Marshall

et al. (2016), which produces the best possible collapse of the

data (see STAR Methods). Note that close to criticality,

the scaling parameter a and the exponent snz are related: a =

snz�1 � 1. This is the consequence of the relationship

Sh i Tð Þ � T1=snz and hSiðTÞ being equal to the integral of

S t;Tð Þh i=TaF t=ð TÞ between t = 0 and t = T. Thus, data

collapse is a different, more precise method both to assess

criticality and to estimate the exponent snz. The empirical

avalanche profiles showed that avalanches built up and termi-

nated in a stereotypical way for a wide range of durations (Fig-

ure 3A) such that the average time-course of short avalanches

resembled that of longer avalanches. We found that empirical

avalanche profiles could indeed be collapsed (scaling reduces

the variance by an amount of Ds2F = 3.78 – 12.52), with a

scaling parameter snz ranging between 0.47 and 0.58 for the
1450 Neuron 100, 1446–1459, December 19, 2018
different datasets with an average of 0.55 ± 0.02 (Figures 3B

and 3C; see also Table S2). Note that the exponent values

were consistent with the values of snz estimated through the

relationship between hSi and T (Figure 3D). In contrast, in

time-shuffled datasets, the temporal profiles of avalanches

did not collapse (Figures 3E–3H).

Criticality theory predicts that the frequency content of the dy-

namics within the avalanches scales as FSðfÞ � f�1=snz, with the

same critical exponent as in the scaling relation Sh i Tð Þ � T1=snz

and as in the shape collapse of avalanche profiles (Kuntz and

Sethna, 2000; Travesset et al., 2002). Therefore, we next inves-

tigated the time courses of neuronal avalanches in the frequency

domain (see STAR Methods). We found that the power spectral

density (PSD) of the time courses of the avalanches, FSðfÞ,
decayed with the frequency f approximately as a power law (Fig-

ures 4A and 4B). Using least squares, we estimated the power-

law decay exponent of FSðfÞ and found that, indeed, the values

of snz were close to those obtained through the relation hSiðTÞ
and the shape collapse analysis, and they were consistent with

the theoretical values (snz ranges between 0.50 and 0.69 for

the different datasets and snz = 0.57 ± 0.04 on average). For

time-shuffled datasets, the PSD became more uniform across

frequencies and largely deviated from the predicted power law

(snz ranges between 3.30 and 4.45 for the different shuffled data-

sets and snz = 3.76 ± 0.23 on average). Hence, the exponent snz

was consistently close to its theoretically predicted critical value

using different approaches (scaling relation between avalanche

size and duration, avalanche shape collapse, and PSD of

avalanche profiles), constituting consistent evidence suggesting

that neuronal avalanche dynamics were critical.

Avalanche dynamics can also be characterized by the time be-

tween the avalanches, called the recurrence time interval. We

studied the conditional distributions PðDt;S>sÞ of time intervals

Dt between consecutive avalanches of size larger than a given

threshold s. As expected, large avalanches were separated by

longer intervals (Figures 5A and 5C), so that the mean interval

hDti increased with threshold s. For each minimum size s, it is

possible to express the time in units of the mean interval, such

that Dt becomes Dt=hDti, which implies that the conditional dis-

tribution is changed to PðDt; S>sÞhDti. Notably, in these re-

scaled axes, the distributions collapsed onto a single curve, or

scaling function, independent of the threshold s (Figures 5B

and 5D). This suggests that the occurrence of avalanches can

be described by a self-similar process (i.e., a process showing

the same statistical properties at different scales or magnitudes).

As in previous studies, the scaling function can be approximated

by a single gamma distribution with one single shape parameter

g ranging between 0.20 and 0.51 (Corral, 2007) (see STAR

Methods; see also Table S2). In the gamma distribution assump-

tion, the scaling function decays approximately as a power law

with exponent 1� g forDt < hDti; forDt > hDti the decay is expo-
nential. A gamma point process with g= 1 is equivalent to a

Poisson process, while if g < 1, as in the present data, the

process ismore irregular andmore burst-like than a Poisson pro-

cess. Consistent with previous findings, these scaling features

are similar to those reported for the recurrence time distributions

of critical phenomena such as earthquakes and rock fractures

(Corral, 2007; Davidsen et al., 2007). In contrast, shuffled



Figure 3. Universal Scaling Functions: Avalanche Profiles

(A) Averaged temporal profile, hSðt;TÞi, of avalanches of durations T , where T = 2.82 – 7.99 s (data from dataset 3).

(B) Scaled avalanche profiles as a function of the scaled time t/T. Red line, averaged scaled avalanche profile; snz, best scaling parameter (data from dataset 3).

(C) Same as (B) but for dataset 6.

(D) Estimated snz exponents using scaling collapse (circles) and the relation hSiðTÞ (squares). Each color represents a different dataset. Estimation errors are

smaller than the size of the symbols. Note the similarity between the exponents calculatedwith the two different methods. The gray area indicates the theoretically

expected critical exponent and its uncertainty. See Table S2 for more details.

(E–G) Same as (A)–(C), respectively, but for the corresponding time-shuffled datasets, for which collapse was substantially reduced.

(H) Amount of collapse ðDs2FÞ for the original datasets (filled symbols) and the shuffled datasets (open symbols).
datasets in which we randomly permuted the avalanche

sizes, while keeping the sequence of avalanches onsets, did

not collapse (Figures 5E–5H). Hence, correlations between

avalanche times and sizes are necessary for the process to be

self-similar.

Propagation of Neuronal Avalanches in the Brain
Our data allowed us to analyze the spatial and temporal statistics

of neuronal avalanches and to provide insights into which mech-

anisms contribute to their initiation. For this, we examined how

avalanches propagated throughout the brain. We tracked the

averaged location of an avalanche by calculating its center of

mass (CM) and followed its temporal evolution by computing

the averaged velocity of the CM, noted V
!

(see STAR Methods).

We next examined the distribution of Vxy
�!

(i.e., the projection of V
!

into the coronal section [x-y plane] of the brain) (Figures 6A and

6B). We found that the direction of propagation ðqÞ of avalanches
was constrained by the brain’s anatomy: avalanches preferen-

tially traveled parallel to the caudo-rostral axis, as shown by

the anisotropy of the direction of propagation (Figure 6C).

When pooling all datasets, the average propagation velocity of

the CMs in 3D space (i.e., hkV!ki, was 389 ± 23 mm/s) and the

average distance traveled by the avalanches’ CMs was hDi =

261 ± 23 mm (Figures 6D and 6E).

Interestingly, propagating avalanches during periods of visual

stimulation were significantly faster than those during the spon-
taneous activity period (p < 0.001, two-sidedWilcoxon rank-sum

test) for all datasets, with differences in median velocity DV

ranging between 3 and 19 mm/s (Figure 6D, right). In contrast,

themedian distances traveled by the avalanches were not signif-

icantly different between spontaneous and visually induced

activity (p > 0.05, two-sided Wilcoxon rank-sum test, Figure 6E,

right).

Furthermore, our analysis allowed us to study the correlation

between neuronal avalanches that occurred quite evenly in

different locations of the brain (Figure 6F). We were interested

in the interaction between parallel avalanches that occurred

simultaneously at different spatial locations. Indeed, the distribu-

tion of the number of concomitant avalanches Ns largely devi-

ated from a Poisson distribution (i.e., the expected distribution

if simultaneous avalanches occurred by chance), indicating

the presence of correlations (Figure 6G).We calculated the prob-

ability distribution of observing two avalanches that initiated

simultaneously with CMs separated by a distance d and

compared it to the expected distribution when the times of

avalanche initiation were randomized (see STAR Methods).

Overall, pairs of avalanches with CMs less than 150 mm apart

tended to occur in the same time frame with a probability that

was �8% greater than expected by chance (Figure 6H). These

results suggest that neuronal avalanches are initiated through

a local mechanism with weak short-range spatial correlations

due to local connectivity.
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Figure 4. Universal Scaling Functions: Power Spectrum of

Avalanche Time Courses

(A) Temporal profile S(t) of an example avalanche of duration 9.4 s.

(B) We calculated the power spectral density (PSD) of the time courses of

neuronal avalanches. Each color represents a different dataset. Error bars

indicate SEM. The PSD of avalanche time courses, FSðfÞ, decays approxi-

mately as a power law of the frequency f with an exponent equal to 1=snz

(black line). In contrast, the PSD of time-shuffled data was uniform across

frequencies and largely deviated from the predicted power law (the gray solid

line is the mean PSD across shuffled datasets, and the thin gray lines de-

pict SEM).

Inset: exponent snz estimated using least-squares for each dataset. Error bars

indicate the exponent estimation error. The values of snz estimated using this

analysis are close to the expected critical exponent (0.57) indicated by the

solid black line; the gray shaded area indicates the uncertainty of the critical

exponent.
Our results suggest that criticality is an emergent phenomenon

of whole-brain dynamics. To examine whether criticality

also emerges at the level of local networks, we analyzed

neuronal avalanches in two distinct anatomical brain regions

with different functions (the optic tectum involved in sensory

processing and integration and the rhombomere 7 region con-

taining the reticulospinal circuit implicated in the generation of

motor patterns; see Figure S5). Both regions displayed ava-

lanches with durations and sizes distributions showing power-

law statistics with power exponents close to the corresponding

critical values. Nevertheless, while durations and average sizes

of the avalanches in the optic tectum showed the expected

scaling relation ( Sh i Tð Þ � T1=snz, with snzz 0.57), reticulospinal

avalanches deviated from it. This means that for a given duration

T, the average size of the avalanches was larger than that pre-

dicted by criticality theory. Thus, in contrast to the optic tectum,

avalanches in the reticulospinal circuit were faster than expected

in a critical system.
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Sensory Stimulation and Self-Generated Behaviors
Deviate Brain Dynamics to an Ordered Regime
Our previous results (Figures 1G and 6D) show that sensory drive

affects the propagation of neuronal activity in the larva’s brain.

To further test whether sensory stimulation affects criticality in

the brain, we studied how visual stimuli affect the statistics

of the neuronal avalanches. For this, we compared several

avalanche properties during periods of spontaneous activity

with those during periods in which visual stimulation was pre-

sented to the larvae. Using sliding windows of 120.32 s, shifted

in steps of 60.16 s, we calculated the rate of avalanche initiation,

the average avalanche size and duration, and the exponents a

and t. Notably, during periods of spontaneous activity, the sta-

tistical properties of neuronal avalanches remained constant

(p values ranged between 0.33 and 0.85; one-way repeated-

measures [RM] ANOVA tests comparing the values of each sta-

tistical property in the different time windows during periods of

spontaneous activity), with size and duration exponents close

to those predicted by theory in critical systems (Figures 7A–

7D). However, during the visual stimulation periods, the

avalanche characteristics significantly changed (p < 0.05, two-

sided Wilcoxon rank-sum tests) and we observed: a decrease

in the avalanche initiation rate (64.77 ± 0.72 versus 55.78 ±

1.16 avalanches per second, Figure 7A), an increase in the

average size of the avalanches (hS=Ni = 0.307% ± 0.007%

versus hS=Ni = 0.454% ± 0.016%, Figure 7B), an increase in

the average duration of the avalanches (hTi = 1.37 ± 0.005 s

versus hTi = 1.445 ± 0.012 s), and a decrease in the duration

and size power exponents (t = 2.02 ± 0.01 versus t = 2.00 ±

0.01, a = 2.94 ± 0.02 versus a = 2.71 ± 0.03, Figures 7C and

7D). Recently, it has been proposed that stimulus-induced

changes in neuronal avalanches can be fully explained by

changes in the rate of activity events (Yu et al., 2017). Here, we

showed that the differences between spontaneous and stim-

ulus-induced activity patterns cannot be explained by differ-

ences in the rate of calcium events alone but rather by changes

in their correlation structure (Figures S6A–S6E). Together, our re-

sults suggest that, at rest, the nervous system of the larva

constantly functions in a critical regime rather than fluctuating

between phases of order and disorder. In contrast, visual stimu-

lation affects the characteristics of the avalanches, slightly

shifting the dynamics of the nervous system away from criticality,

toward a regime where neuronal avalanches are more ordered

(i.e., faster, larger, and longer).

These results show that sensory inputs affect the dynamical

regime of neuronal avalanches. We further asked how the statis-

tics of spontaneous avalanches are influenced by the generation

of spontaneous (self-generated) behavioral outputs. The head-

restrained configuration of our recordings allowed us to monitor

both spontaneous neuronal activity and self-generated tail

movements (see STAR Methods). During spontaneous activity,

larvae produced isolated and sporadic tail movements, called

swimming bouts (with occurrence frequency equal to 0.051 ±

0.033 Hz), which occurred irregularly in time (coefficient of vari-

ation equal to 1.72 ± 0.26) and had short-term serial correlations

in terms of movement laterality (consecutive bouts within less

than 10 s had a significantly higher probability to be toward

similar directions than for longer intervals; 0.74 ± 0.09 versus



Figure 5. Universal Scaling Functions: Recurrence Time Intervals

(A) Recurrence time distributions PðDt;S> sÞ. The distributions of time intervals Dt between consecutive avalanches of sizes larger than a given threshold swere

calculated for different values of s (gray color code; data from dataset 2).

(B) Rescaled recurrence time distributions as a function of the rescaled time Dt=hDti. The black curve indicates the gamma distribution onto which the scaled

recurrence time distributions collapsed (g: shape parameter of the gamma distribution; data from dataset 2).

(C and D) Same as (A) and (B), respectively, but for dataset 3. See Table S2 for more details.

(E–G) Same as (A), (B), and (D), respectively, but for the corresponding shuffled datasets. Note the absence of collapse for the shuffled data.

(H) Amount of collapse ðDs2GÞ for the original datasets (filled symbols) and the shuffled datasets (open symbols).
0.61 ± 0.13, p < 0.001, Mann-Whitney test). We observed that,

with respect to periods of spontaneous activity, neuronal ava-

lanches during tail movements had larger sizes, and their distri-

bution across different brain regions was biased toward

hindbrain motor areas (Figure S7). We calculated the avalanche

statistics around the onsets of detected tail movement events,

ton, and compared them to those in the absence of movements

(Figures 7E and 7F). Specifically, we collected the durations

and sizes of neuronal avalanches initiated at each time frame

within ton ± 100 s. We observed a significant (p < 0.001, two-

sample t test) decrease in the exponent values describing the

distribution of the sizes and the durations of avalanches around

ton, with respect to the values in the absence of movements

(from –100 to –10 s and from +10 to +100 s, with respect to

movement onsets). The decreases in exponent values were

accompanied by deviations from power-law statistics (Figures

7G and 7H). These differences were not fully explained by differ-

ences in the rate of calcium events but rather by changes in their

correlation structure (Figures S6F–S6J). Hence, these results

suggest that, during the emergence of self-generated behaviors,

brain dynamics transiently deviate from criticality.

Disrupting Electrical Coupling Deviates the Brain
Activity from Criticality
To get insights into the physiological mechanisms contributing to

stabilization of the brain’s activity on the critical regime, we char-
acterized the statistical properties of neuronal avalanches when

zebrafish larvae were exposed to a low concentration of hepta-

nol, a gap junction blocker (see STAR Methods) (Saint-Amant

and Drapeau, 2000; Muto and Kawakami, 2011; Warp et al.,

2012). We first quantified the freely swimming behavior of a

cohort of larvae with and without exposure to 90 mM heptanol.

At this concentration of heptanol, the locomotor activity of the

larvae could not be distinguished from that of the controls (see

STAR Methods and Figures S8A–S8D). However, when

analyzing the spontaneous avalanches, we found that larvae

exposed to heptanol displayed substantially fewer avalanches

than the original datasets (�1 versus�30 avalanches per frame),

with (a, t, snz) exponents that significantly deviated from the crit-

ical values observed in normal conditions (Figure 8A; Table S2).

Moreover, larvae exposed to heptanol displayed neuronal ava-

lanches for which neither the temporal profiles nor the recur-

rence-time distributions collapsed, showing no evidence of

self-similarity (Figures 8B and 8C).

Furthermore, to investigate the role of the brain critical dy-

namics in the processing of sensory information, we performed

experiments in which visual stimuli were projected on a screen

at different locations in the field of view of the larva (see STAR

Methods). The visual stimuli consisted of single light spot

randomly presented at four possible closely spaced azimuth lo-

cations in the visual field (75�, 85�, 90�, 110�, with 0� defined as

the head-tail longitudinal axis of the larva, facing the larva’s
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Figure 6. Propagation of Neuronal Avalanches

(A and B) Probability distribution of the projection of the velocity vector into the coronal (x-y) plane of the brain, V
!

xy , for two representative datasets (A, dataset 1;

B, dataset 2). The probability density is shown in color scale.

(C) Probability distribution of the direction of propagation in the coronal (x-y) plane, q, for each dataset.

(D) Left: distribution of velocity magnitude. Right: differences in median velocities DV of the avalanches during periods of spontaneous and the stimulus-driven

activity. *p < 0.001, two-sided Wilcoxon rank-sum test.

(E) Left: probability distribution of the distance traveled by the neuronal avalanches. Right: differences inmedian distancesDD of the avalanches during periods of

spontaneous and the stimulus-driven activity (p > 0.05, two-sided Wilcoxon rank-sum test).

(F) Locations of the initial centers of mass (i.e., CM
��!ðt = 1Þ), of neuronal avalanches projected on the coronal (x-y) plane of the brain (for dataset 1). Each green dot

corresponds to an avalanche. Note that the vast majority of the initiation sites occurred in the neuronal somata rather than in the neuropil (dense white regions).

(G) Probability distribution of the number of simultaneous avalanches,Ns, normalized by its mean hNsi, for each dataset (solid lines). The narrow distributions are

the expected Poisson distributions given hNsi.
(H) Probability distribution of detecting two simultaneous avalanches with CMs separated by a distance d, for each dataset. Points indicate distance bins for

which the probability of simultaneous avalanches is significantly (p < 0.01) higher than chance (i.e., randomized data; see STAR Methods).

See also Figure S5.
head). The visually induced calcium responses, recorded at one

optical plane of the optic tectum,were used to classify the spatial

location of the stimuli, by means of a maximum likelihood

decoder (MLD; see STAR Methods and Figures S8E–S8G). We

found that exposure to heptanol led to a significant decrease in

the decoder’s average classification performance with respect

to larvae in normal conditions (for a population of 1,000 ROIs,

the average classification performance was: 54.3% ± 4.5%

versus 44.7% ± 2.8%, p < 0.001, two-sample t test; the chance

level was 25%; see Figures 8D and 8E). Altogether, these results
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suggest that pharmacological perturbation of electrical synap-

ses deviates the brain’s dynamical state from criticality, stress-

ing the role of gap junctions in maintaining the dynamics of the

brain at criticality, and that criticality may enhance sensory

processing.

DISCUSSION

Criticality is a regime at the border between phases of order

and disorder, producing the maximal diversity of possible



Figure 7. Sensory Stimulation and Self-

Generated Behavior Transiently Deviate

the Brain’s Dynamical State from Criticality

(A–D) The average rate of avalanche initiation (A),

the average avalanche size (B), and the average

power exponents of the distribution of avalanche

sizes (C) and durations (D) were calculated for

avalanches included within sliding time windows,

for all spontaneous and evoked segments and

all datasets. Shaded areas indicate SEM. We

compared the values during periods of sponta-

neous activity (black horizontal line) and during

periods of visual stimulation (gray horizontal line)

using a two-sided Wilcoxon rank-sum test

(p, p value). We also compared the values

measured in all windows during spontaneous ac-

tivity using a RM-ANOVA; pA indicates the result-

ing p value (high p values suggest that avalanche

properties were constant during periods of spon-

taneous activity).

(E and F) Averaged exponents describing the

distributions of durations (E) and sizes (F) of

spontaneous neuronal avalanches around self-

generated tail movement onsets. Exponents were

normalized by the corresponding averaged values

during the reference periods (from –100 to –10 s

and from +10 to +100 s, shaded areas; with

respect to movement onsets, white areas).

(G and H) Averaged changes of the Kullback-Lei-

bler divergence (KLD) between the distributions of

durations (G) and sizes (H) of spontaneous ava-

lanches and theoretical power laws (relative to

reference periods).

In (E)–(H), *p < 0.001, two-sample t test comparing

values at movement onset and values in the

absence of movements.

See also Figures S6 and S7.
emergent patterned dynamics. It has been suggested that

neuronal circuits and many other biological networks, such as

gene regulatory networks, operate at criticality to optimize

information processing and to accomplish tradeoffs between

stability and responsiveness and between robustness and

evolvability (Torres-Sosa et al., 2012). Here, we monitored

whole-brain dynamics with near single-neuron resolution in

the intact, behaving zebrafish larvae and interpreted the

observed collective statistics in the framework of criticality.

Our results are consistent with critical phenomena associated

with phase transitions. As in models of disorder-induced phase

transitions in three dimensions (Sepp€al€a et al., 2002), our re-

sults show that the spatial statistics of clusters of co-active

contiguous ROIs, as measured by their size distribution,

reached the theoretical values close to the percolation point

rc, at which maximal diversity of spatial patterns was observed.

Spatial patterns were organized as emergent scale-invariant

spatial correlations, producing a large repertoire of modes

of interactions, allowing for short-range and long-range func-

tional connectivity. Moreover, the temporal evolution of the

spatial clusters (neuronal avalanches) presented scale-invariant

distributions, with power-law exponent values and exponent
relations predicted in critical phenomena that exhibit crackling

dynamics, as observed in earthquakes, Barkhausen noise in

ferromagnets, paper crumpling, rock fractures, and many

others (Perkovi�c et al., 1995; Sethna et al., 2001). Furthermore,

neuronal avalanche evolution and recurrence in time can be

described by single universal scaling functions across many

size and timescales, as predicted in critical phenomena

(Perkovi�c et al., 1995; Sethna et al., 2001; Corral, 2007), and

as observed in cortical cultures (Friedman et al., 2012; Lom-

bardi et al., 2014). Here, we also found that power spectra of

avalanche time courses decayed with a 1=f1=snz power law

with an exponent close to the scaling exponent relating the

avalanche size to its duration, as expected in crackling dy-

namics (Kuntz and Sethna, 2000; Travesset et al., 2002). These

findings are all signatures of self-similarity and scale invariance

of brain activity, with functional consequences in terms of an

enhanced repertoire of spatial, temporal, and interactive

modes, which are essential to adapt, process, and represent

complex environments (Chialvo, 2010; Hidalgo et al., 2015). In

other words, a critical nervous system could encode complex

and ever-changing environmental conditions into a large diver-

sity of distinct collective neuronal patterns that span multiple
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Figure 8. Gap Junctions Play a Role in Maintaining Criticality in the Nervous System

(A) Average distribution exponents (a, t, snz) of spontaneous neuronal avalanches displayed by larvae in normal experimental conditions (datasets 1–6; black

bars) and by larvae exposed to heptanol (90 mM) (datasets 7 and 8; white bars). For comparison, the gray bars indicate the critical exponents of 3D random field

Ising theoretical models.

(B and C) Profile (B) and recurrence-time (C) collapse indices of neuronal avalanches calculated in normal conditions (black bars) and under heptanol exposure

(white bars). In (A)–(C), p indicates the p value of two-sample t tests; *p < 0.05, **p < 0.01. Error bars, SEM.

(D) Decoding of visual stimuli at one optical plane of the optic tectum (n = 14 larvae, 8 in normal conditions and 6 after expsure to heptanol at 90 mM). Stimuli

consisted of single light spots randomly presented at 4 possible closely spaced azimuth locations in the visual field (75�, 85�, 90�, and 110�). A maximum

likelihood decoder was used to classify the stimuli location based on the activity of n ROIs. For n > 100, the classification performance was significantly higher

than chance (i.e., 25%) for larvae in normal conditions. However, the decoding efficiency was significantly lower for larvae exposed to heptanol. *p < 0.001, two-

sample t test.

(E) Decoding confusion matrices averaged across larvae in normal conditions (left) and across larvae exposed to heptanol (right), for n = 1,000. The off-diagonal

matrix elements represent the probability of erroneously classifying one stimulus as a different one. The diagonal corresponds to correct classifications. Notice

that, as expected, the decoder confused nearby stimuli.

See also Figure S8.
temporal and spatial scales, both locally (segregation) and

across specialized brain regions (integration) (Sporns, 2013).

Close to phase transitions, complex systems show properties

that are independent of the system’s details and can thus be

captured by simple models. The RFIM is the archetypal model

of interconnected binary units presenting a non-equilibrium

disorder-induced phase transition and producing avalanche

dynamics at all scales (Perkovi�c et al., 1995; Sethna et al.,

2001, 2005). When this system interacts with the environment

through an external force H, avalanches arise as a competition

between an ordering force, due to interactions, and a disordering

force, due to heterogeneity. In models of neural networks, het-

erogeneity and interactions can be described by the variance

of excitabilities of the neurons (D) and synaptic couplings

of strength J, respectively (Hernández-Navarro et al., 2017).

When D � J, the balance between order and disorder is

achieved and avalanches of all scales are observed. In this

case, if H is fixed and equal to a critical value Hc, avalanche

distributions have exponents equal to ða; t;snzÞz (3/2, 2, 1/2).

However, if H(t) varies over time, the predicted exponents

become ða; t;snzÞz (2.03, 2.81, 0.57), as observed in our study.

The avalanche statistics observed here can thus be interpreted

as produced by a critical system exposed to time-varying inputs,
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as expected for the nervous system of an intact, non-anesthe-

tized, non-paralyzed organism.

Systems at criticality are assumed to reach optimal computa-

tion capabilities (under specific definitions of optimality), in terms

of stimulus discriminability, information transmission, and state

repertoire (Shew and Plenz, 2013). Moreover, it is suggested

that brain diseases shift the nervous system away from criti-

cality—as during epileptic seizures (Meisel et al., 2012; Hobbs

et al., 2010). For these reasons, it has been argued that healthy

neural systems are poised at a critical point, especially during

rest (Massobrio et al., 2015). It is believed that this dynamical

regime stabilizes without fine-tuning through self-organization,

implemented by synaptic plasticity and by excitation/inhibition

(E/I) balance (Levina et al., 2007; Magnasco et al., 2009; Bellay

et al., 2015), and evolutionarily selected to adapt to complex

environments (Hidalgo et al., 2015). Consistent with these views,

we found that larvae exposed to a low concentration of heptanol,

a gap junction blocker (Saint-Amant and Drapeau, 2000;

Muto and Kawakami, 2011; Warp et al., 2012), displayed

neuronal avalanches with altered exponents and showed no

evidence of self-similarity, presumably deviating the brain from

a critical point. This suggests the involvement of gap junctions

in maintaining criticality in the zebrafish brain, either due to



gap-junction-specific synaptic properties or by affecting

neuronal excitability and the E/I balance (Lewis and Rinzel,

2000; Traub et al., 2001; Memelli et al., 2012). Most probably,

gap junctions are only a part of a functioning system that could

settle at criticality due to a combination of multiple factors (syn-

aptic plasticity, homeostasis, etc.) that tend to balance the

amount of order and disorder in the system. Moreover, when de-

coding the tectal responses to visual stimuli, we found that the

neuronal activity of larvae exposed to heptanol led to a decrease

in classification performance. This suggests that deviation from

critical dynamics is accompanied by a degradation of informa-

tion processing, thus suggesting a functional and computational

relevant role of criticality in the nervous system.

Furthermore, our results suggest that sensory stimulation and

self-generated behaviors transiently change the critical dy-

namics, which are otherwise constantly observed during periods

of spontaneous activity. Collective activity during stimulus-eli-

cited activity was more ordered, with faster, larger, and longer

avalanches. This is consistent with recent findings using LFPs

in an ex vivo preparation (Shew et al., 2015) and previous func-

tional imaging studies in humans (He, 2011), and it has functional

relevance in terms of enhanced stimulus detection (Clawson

et al., 2017). Furthermore, we observed that spontaneous self-

generated behaviors were accompanied by transient deflections

of the avalanche exponents, slightly displacing the system away

from the critical behavior. Overall, our study suggests that crack-

ling noise dynamicsmight be the default mode of the healthy ner-

vous system, a suitable regime for internal representations and

exploration of the spontaneous state repertoire, which can be

seen as the prior expectations of potential sensory inputs and

behavioral outputs (Berkes et al., 2011). However, when the

animal interacts with the environment, the nervous system tran-

siently imbalances the amounts of order and disorder to limit the

potential sensory responses to comply with the expectations

about the detected stimulus and to restrict motor outcomes to

select coherent behaviors (e.g., efficient foraging strategies).

The latter is supported by the observation that consecutive

movements are more likely to have a similar laterality if they

were chained within less than 10 s than for longer inter-bout

intervals.

Our analysis allowed the study of the spatiotemporal distribu-

tion of simultaneous neuronal avalanches at different locations of

the brain. We showed that the locations at which avalanches

began, or ‘‘epicenters,’’ were evenly distributed across the

neuronal somata regions of the brain. We found that pairs of av-

alanches were slightly correlated for short and moderate dis-

tances (�150 mm), suggesting that avalanche initiation is a locally

driven process with moderate correlations due to local connec-

tivity. Ignition of avalanchesmight occur due to a local imbalance

of the E/I ratio, where activity nucleates and spreads (Orlandi

et al., 2013). Furthermore, by studying the statistics of neuronal

avalanches in different brain regions, we found that, while criti-

cality was observed at the whole-brain level, the dynamics of

single anatomical brain regions can be suggestive of critical

behavior (e.g., optic tectum) or slightly deviate from it (e.g., retic-

ulospinal circuit). Interestingly, the avalanches in the reticulospi-

nal circuit were faster than those predicted by crackling noise

dynamics and those observed in the optic tectum. We speculate
that this difference may reflect the discrepancy in the connectiv-

ity architectures of the local circuits adapted for their functional

role, with a recurrent network in the optic tectum to serve inte-

gration and processing of the sensory information, and a feedfor-

ward architecture in the reticulospinal network producing large

volleys of activity to rapidly trigger motor movements.

In conclusion, whole-brain spontaneous neuronal activity

displays cascading events, exhibiting scale-invariant and or-

der-disorder balance properties that can be interpreted within

the framework of criticality. These events initiate locally and

spread to large portions of the brain, as needed for integrated

communication among segregated specialized brain regions.

Moreover, our results support the view that the vertebrate ner-

vous system can rebalance the amounts of order and disorder

depending on the interactions with the environment (e.g., strong

oncoming sensory inputs and emergent spontaneous behavioral

outputs) to rapidly return to a preferred state where levels of

order and disorder are balanced enabling the largest possible

dynamical repertoire.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Tg(elavl3:GCaMP5G) Boulanger-Weill et al., 2017 RRID: ZFIN_DB-ALT-161209-7

Tg(elavl3:GCaMP6f) Wolf et al., 2017 RRID: ZFIN_ZDB-ALT-180201-1

Software and Algorithms

HCImageLive 4.3 (Image acquisition) This paper https://hcimage.com/hcimage-overview/hcimage-live/

MATLAB scripts (Data Analysis, stimulus

control, scanner and piezo control)

This paper https://www.mathworks.com/products/matlab.html

NCC MATLAB Toolbox Marshall et al., 2016 http://www.nicholastimme.com/software.html

Python package Powerlaw Alstott et al., 2014 https://github.com/jeffalstott/powerlaw
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Germán

Sumbre (sumbre@biologie.ens.fr)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish larvae were raised in 0.5x E3 embryo medium and kept under a 14/10 hr on/off light cycle. After 5 days-post-fertilization

(dpf), larvae were fed with paramecia. Calcium imaging experiments were performed using 6-8 dpf Tg(huC:GCaMP5)ens102Tg (Bou-

langer-Weill et al., 2017) or Tg(huC:GCaMP6f) zebrafish larvae (datasets 1–6, see Table S1). Tg(huC:GCaMP6f)a12200Tg was provided

by DGC. Hildebrand (Harvard, USA) (Wolf et al., 2017). Both transgenic lines are in Nacre background (mitfa�/�). Note that zebrafish

sex differentiation begins only between 21 and 23 dpf (Uchida et al., 2002). For imaging purposes, the larvae were placed dorsal-side

up on a coverslip platform (5mmhigh, 5mmwide) and head-fixed in 2% low-melting agarose (Invitrogen, USA) in E3 embryomedium.

Once jellified, the agarose around the tail was removed, letting it free to move. No paralyzer agents or anesthetics were used. All pro-

tocols used in this study were approved by Le Comité d’Éthique pour l’Expérimentation Animale Charles Darwin (038393.03).

METHOD DETAILS

Selective-plane illumination microscopy
We used selective-plane illumination microscopy (SPIM) to record the neuronal activity at near cellular resolution across the brain

(Figure S1). Optical sectioning was achieved by the generation of a micrometer-thick light sheet to excite GCaMP from the side

of the larva. The GCaMP emission was collected by a camera whose optical axis was orthogonal to the excitation plane (a

488 nm laser, Phoxx 480-200, Omicron). The laser beam was first filtered by a 488 cleanup filter (XX.F488 Omicron) and coupled

to a single-mode fiber optic. The beamwas expanded using a telescope (f = 50mm, LA1131-A, and f = 150mm, LA1433-A, Thorlabs)

and projected onto two orthogonal galvanometric mirrors (HP 6215H Cambridge technology) to scan the laser beam, whose angular

displacement were converted into position displacement by a scan lens (f = 75mmAC508-075-A-ML, Thorlabs). The laser beamwas

then refocused by a tube lens (f = 180 mm, U-TLUIR, Olympus) and focused on the pupil of a low-NA (0.16) 5x objective lens (UPlan

SAPO 4x, NA = 0.16, Olympus) facing the specimen chamber. The arrangement yielded a 1mm-wide illumination sheet and a beam

waist of 3.2 mm (1/e2). The emitted fluorescence light was collected by a high-NA water-dipping objective (N16XLWD-PF, 16x, NA =

0.8, Nikon) mounted vertically on a piezo translation stage (PI PZ222E). A tube lens (f = 180mm U-TR30IR, Olympus), a notch filter

(NF03-488, to filter the laser’s excitation light), a band-pass filter (FF01 525/50 Semrock) and a low-pass filter (FF01 680 SP25 Sem-

rock, to filter the IR light) were used to create an image of the GCaMP emitted fluorescence on a sCMOS sensor (Orca Flash 4.0,

Hamamatsu). The volumetric brain recordings were obtained by sequentially recording the fluorescence in 40 coronal sections

spaced by 5 mm. For this purpose, the light sheet was scanned vertically in the dorso-ventral direction in synchrony with the objective

of the emission path. The camera was triggered to acquire an image every Texposure = 10 ms. Once the 40 coronal sections were re-

corded, the position of the light sheet and the objective of the emission path was reset to their initial dorsal position (Treset = 70 ms).

This resulted in a volumetric acquisition time of 0.47 s (i.e., 40 3 Texposure + Treset) or a rate of 2.1 Hz.
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Spontaneous and visual stimulation periods

The experiment was composed of Q consecutive segments of 20 min of spontaneous activity and 4 min of visual stimulation (Fig-

ure S1D). Q was different for different datasets and ranges between 3–9 (see Table S1). Each visual stimulation period contained

8 sub-episodes during which a moving grating was presented below the larva for 10 s. The inter-stimulus interval was equal to

20 s. The stimuli were projected on a screen (#216 White Diffusion, Rosco Cinegel) placed 5 mm below the larva and covering a field

of view of 353 25 mm (148�, 136�), using a pico-projector (PK320, Optoma). To avoid interference with the GCaMP5 and GCaMP6f

emission signal (peaking at 547 nmand filtered using a band-pass filter, FF01-520/70 Semrock), only the projector’s red (620 nm) LED

was used, and a band-pass filter (629/56, FF01629/56, Semrock) was placed in the projector’s lens. To focus the stimulus on the

screen we used a Plano-Convex lens (f = 125 mm, LA1986-B Thorlabs). Gratings had a spatial period of 10 mm, with maximal

contrast, and they moved orthogonally to the stripes with velocity equal to 1 cm/s. During each visual stimulation period, the orien-

tations of the 8 consecutive gratings were equal to 0�,60�,180�,�60�,0�,60�,180�, and�60�, respectively, relative to the larva. In the

cases in which larvae were exposed to heptanol, the experiment did not include visual stimulation periods and was composed of

70.5 min of spontaneous activity.

Monitoring motor behavior

A small hole in the stimulus projecting screen allowed imaging of the locomotor behavior of the larva (e.g., tail movements), using a

small microscope (DZ 1/L.75-5, The Imaging Source) connected to a fast infrared camera (Hxg20nir, Baumer). The larva was illumi-

nated using an IR LED (NG50L 810nm, BDlaser). To separate between the IR light and the projected visual stimuli, we used a dichroic

mirror (FM201, Thorlabs). From the binarized image of the larva, we extracted the tail curvature using themethod described in (Jouary

and Sumbre, 2016).

In order to compute the similarity between successive tail movements, we additionally recorded the behavior of 25 head-restrained

Nacre larvae during 3 h while a homogeneous non-patterned illumination was projected below the larvae. The directionality of a tail

movement was computed as the sign of the average of the cubed value of the tail curvature for movement classified as Asymmetrical

Scoots, Routine Turn or C Bends (Jouary and Sumbre, 2016).

Heptanol experiments

To study the role of gap junctions on spontaneous activity patterns, the neuronal activity from two 7-dpf zebrafish GCaMP5 larvae

were exposed to 90 mM heptanol. The heptanol was added to the bath for a duration of 3 hours and washed out just before the ex-

periments (datasets 7 and 8). The concentration of heptanol used here was � 10 times lower than previously used in zebrafish to

block gap junctions (Saint-Amant andDrapeau, 2000;Muto andKawakami, 2011;Warp et al., 2012), and did not significantly affected

the larva’s behavior under free-swimming conditions. This was tested by comparing the trajectory of 15 freely swimming GCaMP5

larvae at 7 dpf with 15 other larvae exposed to 90 mM of heptanol for 3 hours prior to the recordings. The larvae were placed in a

custom-made Plexiglas 30 well plate (15 mm diameter x 5 mm height) filled with embryo medium at room temperature and let habit-

uate for 10 min before the experiment. Homogeneous illumination from below was provided by an electroluminescent panel

(MiniNeon, France). Spontaneous behavior was monitored with an Imaging Source DMK 21BF04 camera at 30 Hz for 20 min. We

located the position of each larva as the centroid of the background-subtracted images (custom-made code, MATLAB). Figure S8A

displays the swimming trajectories and averaged speeds of the control and the heptanol groups.

We additionally tested whether heptanol affects the information processing of sensory stimuli, we ran experiments using 14 larvae

at 6 dpf, among them 6 larvae were exposed to 90 mMof heptanol for 3 hours prior to the recordings. The heptanol was then washed

out and the larva was introduced in the SPIM recording chamber filled with embryomedium. The chamber was 3D-printed using resin

(FormLabs FLGPBK04), andmeasures 45mm (l) x 35mm (w) x 35mm (h). The larvawas restrained in low-melting agarose and placed

dorsal-side up at 8 mm from the side of the excitation objective. For experiments in which the tail movement was monitored, we

removed the agarose around the tail. Stimuli consisted of single light spot of 4 deg. displayed at four possible closely spaced loca-

tions in the visual field (75�, 85�, 90�, 110�, with 0� defined as the longitudinal head-tail axis of the larva, facing the larva’s head), which

were randomly presented for a duration of 1 s each, at an inter-stimulus interval of 10 s, on a screen (#216 White Diffusion, Rosco

Cinegel) placed on the side of the camber opposite to the excitation objective. The stimuli were generated using MATLAB and Psy-

chtoolbox (Pelli, 1997; Brainard, 1997), and projected using a pico-projector (PK320, Optoma). To avoid interferencewith theGCaMP

emission signal, only the projector’s red (620 nm) LEDwas used, and a BLP01-561 Semrock long-pass filter was placed in the front of

the projector.

Random Field Ising Model
We interpreted our data in the framework of crackling noise dynamics. The Random Field Ising Model (RFIM) is a canonical model to

study non-equilibrium disorder-induced phase transitions that produce crackling dynamics (Perkovi�c et al., 1995; Sethna et al., 2001,

2005). The RFIM was introduced to describe a simplified three-dimensional ferromagnetic system. The model is defined on a cubic

lattice of magnetic spins si with si = ± 1 (pointing up or down). Neighboring spins interact through ferromagnetic couplings J.

Quenched disorder (representing impurity, defects, inhomogeneities, etc.) is modeled by imposing a random field hi at each spin,

taken from a normal distribution with standard deviation D, i.e.,

PðhÞ= 1

D
ffiffiffiffiffiffi
2p

p e
� h2

2D2
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The parameterD controls the amount of (quenched) disorder of the system. An external driving magnetic fieldHðtÞ is applied to the

system. The Hamiltonian of the system is given by:

H= �
X
i;j

Jijsisj �
X
i

ðH+ hiÞsi:

The force Fi =
�
H+ si +

P
jJijsj

�
exerted on the spin i makes the spin flip either because of the external field (initiation of a new

avalanche), or due to the influence of the neighboring spins (propagating an existing avalanche).

Here, we briefly review the scaling properties of the RFIM. If the disorder D is large (i.e., D[ J) then the spins flip independently,

producing small avalanches. If the disorder is small (i.e., D � J) large avalanches are observed that can span the entire system.

WhenD � J the balance between order and disorder is achieved and avalanches of all scales are observed. This last case represents

a disorder-induced phase transition, achieved at a critical value Dc of the disorder.

At the critical point the expected behavior of the system would yield the following scaling relations. The distribution of avalanche

sizes measured at a field H, or in a small range of fields centered around H at the critical quenched disorder Dc scales as:

PðS;HÞ � S�t;

with t = 3/2 forH=Hc (inmean-field; for simulations one gets: tz 1.6). However, the avalanche-size distribution integrated over the

field H, scales as:

PðSÞ � S�ðt + sbdÞ;

with t + sbdz 2.03 at the critical quenched disorderDc. Note that when analyzing empirical data, it is not possible to know a priori if

the distribution is integrated or not. Thus, the observed exponent t can be ‘‘t’’ or ’’ t + sbd ‘‘. Therefore, we simply write PðSÞ � S�t.

Similarly, the distribution of avalanche durations T at the critical quenched disorder Dc scales as:

PðTÞ � T�a;

with a= 2 forH=Hc and az 2.81 for the avalanche-duration distribution integrated over the fieldH. The avalanche duration scales

with average avalanche size as: Sh i Tð Þ � T1=snz. The exponent snz satisfies the following relation: snz = ðt� 1Þ=ða� 1Þ. Thus, in the

integrated case, we obtain snzz 0.57.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image segmentation and GCaMP signal extraction
The first step consisted in compensating for possible drifts in the horizontal plane. For this purpose, each frame was registered ac-

cording to themaximal cross-correlation with a reference frame. The reference framewas the average of a 10 s. The registered stacks

were thenmanually inspected to evaluate the drift in the ventro-dorsal plane, a drift that could not be compensated. Experiments with

such drifts were discarded. Movement artifacts were detected according to large deviations in the maximum of the cross-correlation

between successive frames. All frames with large deviations were discarded, they mostly occurred during large tail movements. In-

dividual regions of interest (ROIs) were defined, in each plane, as hexagons of side lengths equal to 6.3 mm, corresponding to an area

roughly equal to a neuron’s soma of the zebrafish larva. The advantage of using a hexagonal grid was to maximize the area of the

brain covered by the ROIs. The neuropil and neuronal somata were not dissociated in the analysis. We selected the hexagonal

ROIs that showed coherent activity among the pixels composing them. For this, we calculated the average correlation ðcpixÞ between

the fluctuations of fluorescence intensity DF=F of the pixels composing a ROI and the average fluorescence of the ROI. We selected

ROIs with cpix > 0.25, for datasets 1–5, and cpix > 0.20, for datasets 6–8. To avoid taking into account ROIs with baselines difficult to

estimate, we excluded ROIs with extreme fluorescence intensity variance (> 90th percentile of the distribution of signal variances).

The hexagonal ROIs that passed these selection criteria were associated to putative single neurons. The number of selected ROIs for

further analyses ranged between N = 41,115–89,349 (see Table S1).

Activity clusters and neuronal avalanches

We were interested on the clusters of co-active and contiguous ROIs. For this, we first binarized the activity of each of the cells by

thresholding the fluctuations of fluorescence intensityDF=F with a threshold equal to 3snoise, where snoise is the standard deviation of

the baseline fluctuations of the cell (Romano et al., 2017). Above this threshold the activity was set to 1, otherwise it was set to 0. Next,

at each time step t, we detected the connected components, i.e., clusters formed by contiguous co-activated ROIs, on the three-

dimensional spatial distribution of the active cells. This was done using the MATLAB function bwconncomp. The algorithm finds

the connected components in a co-activated nearest neighbors graph: two ROIs i and j of the 3D matrix are connected if they are

both active and j is in the neighborhood of i. The neighborhood of a ROI i is composed of the 20 ROIs that surround it (6 within

the same plane and 7 in each of the two planes above and below it). A cluster is composed of at least 3 co-active, contiguous

ROIs. At each time frame t, we obtained m clusters that we noted Ci;t, where i˛f1;.;mg, with associated sizes (number of ROIs)

noted CsðiÞ.
Neuronal avalanches describe the spatiotemporal evolution of the activity clusters. A new avalanche was initiated at time t0 by the

activation of a cluster ðCi;t0Þ of ROIs that were not active at the preceding time frame, i.e., Ci;t0XCj;t0�1 = B. If at least one ROI of the
e3 Neuron 100, 1446–1459.e1–e6, December 19, 2018



clusterCi;t0 continued to be part of a cluster at time t0 + 1, i.e.,Ci;t0XCj;t0 + 1sB, then the avalanchewas continued, and so on, until this

condition no longer held (Figure S3). The size of the avalanche was given by the number of activations during the avalanche.

The definition of avalanches used here is that used in studies of sand-pile, Ising models, and in a recent fMRI study (Tagliazucchi

et al., 2012), but it is different from that used in most of previous studies on neuronal avalanches (Beggs and Plenz, 2003; Mazzoni

et al., 2007; Pasquale et al., 2008; Friedman et al., 2012; Hahn et al., 2010, 2017; Shriki et al., 2013; Priesemann et al., 2014). In those

studies, avalanches were defined as consecutive time bins with at least one active site (among tens to hundreds of signals). In the

present study, this standard definition is not practical since at each time frame the probability that at least one among theN recorded

ROIs (N> 40,000) is active is extremely high, leading to one single avalanche that never terminates. Thus, a spatial constraint needs

to be included. Ideally, one would like to concentrate on cascade patterns produced by synaptically coupled neurons, but unfortu-

nately, we do not have this connectivity information. Thus, we focused on nearby ROIs which we assumed are putative neurons that

are likely to be connected. The size of the clusters used to analyze the avalanches was chosen within a range in which the statistics of

the neuronal avalancheswere consistent. We observed that for clusters of a radius below�30 mm, the avalanches showed consistent

exponents for the power-law distributions for the size, the duration and their relationship, that matched those from theory. Above

30 mm, the exponents were inconsistent and deviated from the theoretical ones (Figures S4D–S4F). The definition of the size of

the clustering neighborhood used in the present study lies below this threshold. We also note that the exponents were consistent

for time bins shorter or equal to 1.41 s (Figures S4G–S4I). Notice that since nearby neurons share common tuning properties, spatially

compact avalanches are likely to transmit functionally relevant information (Romano et al., 2015), making the avalanche definition

biologically meaningful. Zebrafish larvae connectome will allow us in the future, to exactly define avalanches and test dynamic

models that produce the observed statistics (Hildebrand et al., 2017).

Power-law fitting

We used maximum likelihood estimation (MLE) to fit truncated power laws to the data as described in Marshall et al. (2016). The cut-

offs used to truncate the data are indicated in Tables S1 andS2. Thismethod estimates the power-law exponent. The estimation error

of the exponent was calculated using bootstrap re-sampling (1,000 re-samplings). To evaluate the fit between the empirical data and

the MLE fit we used Kolmogorov-Smirnov (KS) statistics.

Clauset et al. (2009) proposed to evaluate the significance of power-law fits using synthetic power-law surrogates to derive a dis-

tribution of KS values. These are then compared to the KS statistic of the empirical distribution: the p value of rejecting the power-law

fit is given by the proportion of sample distributions with KS-statistics larger than the KS statistic between the original distribution and

the model distribution. In our data, we found that this method systematically rejects the power-law hypothesis (p < 0.05). However, it

is known that, due to its dependence on sample size, this method is not informative in the large sample size regime (Clauset et al.,

2009; Klaus et al., 2011; Alstott et al., 2014;Marshall et al., 2016), as in our case where the number of observed avalanches per exper-

iment is > 100,000. Indeed, because any empirical data rarely follows an idealized mathematical relationship in the large sample

regime, even small deviations from a perfect power law (due to noise) would lead to the rejection of the power-law hypothesis.

For this reason, we tested the power-law hypothesis by asking whether the power law is the best descriptor of the data compared

to an alternative heavy-tailed distribution, i.e., the lognormal distribution. For this, we calculated the log-likelihood ratio (LLR) between

the two candidate distributions, as follows:

The lognormal distribution follows the density function: P xð Þ= 1=ðxs ffiffiffiffiffiffi
2p

p Þexp �1=½ 2 log x � mð Þ=ð sÞ2�, with dispersion

parameter s> 0 and location parameter m> 0. For a given data x = ðx1; .; xnÞ, the LLR between the power-law and the

lognormal was given by LLRðxÞ = LLPLðxÞ� LLLNðxÞ, where LLPL and LLLN are the log-likelihoods of the power law and the

lognormal, respectively. LLR is positive if the likelihood of the power law model for a given empirical dataset is larger than

the likelihood of the exponential model, and it is negative otherwise. To test whether the LLR is significantly different from zero,

the p value for the LLR test is given by: p = erfc
����LLR= ffiffiffiffiffiffiffiffiffiffi

2nk2
p ��� �, where erfc is the complementary error function, k2 =

1=n
Pn

i =1½ðLLPLðxiÞ � LLPLðxÞ=nÞ � ðLLLNðxiÞ � LLLNðxÞ=nÞ�2, and jLLR j =
ffiffiffiffiffiffiffiffiffiffi
2nk2

p
is the normalized log-likelihood ratio (Klaus et al.,

2011; Alstott et al., 2014). See Tables S1 and S2.

Scaling shape collapse

We evaluated the similarity of average avalanche profiles, hSðt;TÞi, across different temporal scales. For this, we used the method of

Marshall et al. (2016) to automatically find the scaling parameter a that produces the best possible collapse given by:

S t;Tð Þh iT�a =F t=ð TÞ. The method estimates the scaling parameter a that minimizes the variance s2F across the avalanche profiles

in the normalized time ðt=TÞ. The amount of collapse, Ds2F , was quantified by comparing the variance across avalanche profiles in

the normalized time with and without scaling, i.e., Ds2F = s2Fð0Þ=s2FðaÞ, where a is the estimated scaling parameter.

Weestimated the curveontowhich the scaled inter-avalanche time intervals conditional distributionsP Dt;S>sð Þ Dth i collapse using
a gamma distribution, as in previous studies on earthquake temporal occurrence (Corral, 2007). The gamma distribution is given by:

GgðqÞ= g

GðgÞðgqÞ
g�1

e�gq;

where g is the shape parameter, q represents the normalized time interval q=Dt=ð Dth iÞ, and G is the Euler gamma function. The

shape parameter was estimated using least-squares. As for avalanche profiles, we quantified the amount of collapse Ds2G by
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comparing the variance across recurrence time log-distributions in the normalized time with and without scaling (Ds2G is equal to the

variance of log P Dt=ð Dth i;S> s½ Þ� divided by the variance of log P Dt=ð Dth i;S>s½ Þ Dth i�) (see Table S2).

Kullback-Leibler divergence

We quantified how well a given empirical distribution can be described by a power law, PLðxÞ = Kxa, where the constant K is chosen

so that the integral of PL equals 1, and where the power-law exponent awas estimated from the empirical distribution usingMLE.We

calculated the Kullback-Leibler divergence (KLD) between the empirical distribution and PL. The KLD is a measure of dissimilarity

between the empirical distribution and the theoretical power law; thus, the inverse of KLD can be used as a measure of good-

ness-of-fit of the power-law model. Let PempðxÞ be the empirical distribution constructed using a histogram of B bins that partition

the data into fx1;x2;.;xBg. The KLD between PempðxÞ and PLðxÞ is given by:

KLD=
XB
k = 1

PempðxkÞlogPempðxkÞ
PLðxkÞ :

Power spectrum of avalanche time courses

We calculated the power spectral density (PSD) of the neuronal avalanche time-course SðtÞ using the fast Fourier transform. The PSD

of an avalanche of duration T is given as 2
��� ~SðfÞ ��� 2=T ; where ~SðfÞ is the Fourier transform of SðtÞ and f is the frequency. We restricted

the analysis to avalanches of duration T comprised between 3.76 s (8 time points) and 18.8 s (40 time points). The choice of the upper

limit of T is determined by the upper cutoff used in the other avalanche analyses, and the lower limit of T was chosen to get enough

time points. To estimate the PSD from avalanche time courses of different durations, we interpolated the PSD to the same spectral

resolution. Specifically, we calculated the average PSD across all avalanches of duration T, denoted by FSðf ;TÞ. We then linearly

interpolated it to a fixed spectral resolution given by f˛ 1=½ Tmax; 2=Tmax;.; 1= 2dtð Þ � 1=Tmax�, where Tmax = 18.8 s and dt is the tem-

poral resolution of the data (dt = 0.47 s). Finally, we averaged the interpolated PSDs across all durations.

Surrogate datasets

For each dataset, the data could be represented as anN3 L binary matrix, whereN is the number of cells and L is the number of time

frames. Our neuronal avalanche analysis describes the spatiotemporal statistics of the data. We compared these statistics to several

types of surrogate/shuffled data. The first type of surrogate, called time-shuffled data, was designed to probe the sensitivity to the

temporal organization of the ensemble activity. It was obtained by randomizing the time indices of theN-dimensional activity vectors,

thus destroying the temporal organization of the data while preserving the spatial correlations. This control is important since Ca2+

transients last significantly longer than the voltage fluctuations that produced them, thus, fundamentally limiting the temporal reso-

lution of neural activity as measured through Ca2+ signals. The second type of re-sampling was specifically designed to assess

whether the collapse of the conditional recurrence time interval distributions PðDt;S> sÞ artifactually arises due to thresholding. Spe-

cifically, this surrogate dataset randomizes the neuronal avalanche sizes while keeping the sequence of starting/ending times fixed,

thus destroying the correlation between avalanche sizes and recurrence times. Due to the large amount of data and the computa-

tional cost of our analyses, the data was re-sampled once for the two first types of surrogates. A third surrogate was used to compare

the distribution of observing two avalanches that initiated simultaneously with centers of mass separated by a distance d to the ex-

pected distribution when the times of avalanche initiation were randomized. In this case, randomization was repeated 20 times for

each of the Q data segments composing each dataset.

Center of mass of a neuronal avalanche

The center of mass (CM) of a given neuronal avalanche of duration T was given by the average location of the distribution of active

ROIs composing the avalanche at each time t. Let n be the number of ROIs participating in the avalanche at time t and x!i the 3D

spatial coordinates of the i-th ROI. The CM is given as: CM
��!ðtÞ = 1=n

Pn
i = 1 x

!
i, for 1%t%T. We followed the temporal evolution of

the avalanche by calculating its averaged velocity of the CM, V
!
, given by the averaged time derivative of the CM:

V
!

=
PT�1

t = 1 CM
��!

t + 1ð Þ � CM
��!

tð Þ
h i

= T � 1ð Þ. To get reliable estimates of V
!
, only avalanches of duration TR 2.35 s were used. It is impor-

tant to note that the velocity of the center of mass should not be confounded with transmission velocity, nor with front propagation

(V = 0 for an avalanche that grows in a perfect isotropic way). We instead used it here to describe global tendencies of propagation

and to compare spontaneous versus stimulus-driven activity (see Figure 6).

Maximum likelihood decoder

Weused amaximum likelihood decoder (MLD, see Figures S8E–S8G) to classify the location of visual stimuli presented to larvae from

the fluorescence signals DF=F in the optic tectum (Avitan et al., 2016). For this purpose, we compared the decoding efficiency be-

tween larvae in normal conditions (n = 8) with respect to larvae exposed to 90 mM heptanol (n = 6, see STAR Methods). Specifically,

we presented to the larvae a set of four light spots projected at different spatial locations (75�, 85�, 90�, 110�). Each stimulus lasted 1 s

and was presented for nstim = 40 repetitions. The inter-stimulus interval was equal to 10 s. As a measure of neuronal response, we

used the mean fluorescence signal during the stimulus presentation for each ROI. The number of ROIs ranged between 1766–2490

for the different larvae. The MLD chooses the stimulus that is statistically most likely to have elicited an observed response of n sig-

nals, i.e., r
! = ½r1;r2;.;rn�. It uses a leave-one and cross-validation procedure. For this, the probability distribution of the response of

each ROI to each stimulus type j was computed, i.e., PðrijjÞ, using nstim � 1 observations of the stimulus. The remaining observation,
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ri;test, was used for testing. To obtain continuous conditional probability estimates, the histograms PðrijjÞ were smoothed using a

normal kernel function. With the simplifying assumption that the responses of the ROIs were statistically independent from each

other, the learned conditional probability of the population response is given by the product over all individual conditional

probabilities:

Pð r!jjÞ=
Yn
i =1

PðrijjÞ:

Decoding the population response consisted of searching for the stimulus ðsMLÞ which maximized the probability of the testing

response: sML = argmax
j˛f1; 2; 3;4g

Pð r!testjjÞ: This procedurewas repeated, each time leaving one response vector out and using the remaining

population response vectors to learn the conditional probabilities. The performance was defined as the proportion of population

response vectors that were correctly classified. To assess statistical significance of the classification performance we calculated

the probability of getting correct classifications by chance, which is given by the binomial distribution: PðkÞ =
	
m
k



pkð1� pÞm�k ,

where p is the probability of getting a correct classification by chance (p = 1/4) and m is the number of tests. Significant decoding

was reached when the decoding performance exceeded the 95th percentile of PðkÞ. The classification performance was computed

using the fluorescence signals of 10 randomly chosen ensembles of n ROIs and then averaged over ensembles and larvae.

Statistical tests and software

The significance of power-law fits was evaluated using Kolmogorov-Smirnov (KS) statistics between the empirical data and the MLE

fit and by log-likelihood ratio (LLR) tests between the power-law distribution and the log-normal distribution. When using one-way

repeated-measures (rm) ANOVA, where the ANOVA’s sphericity assumption was not met (using the Mauchly test), p values were

corrected using the Huynh-Feldt estimates of sphericity. No statistical methods were used to determine sample sizes in advance,

but sample sizes are similar to those reported in other studies in the field.

Data was analyzed with custom routines written in MATLAB. Power-law and scaling shape collapse analyses were performed us-

ing the NCCMATLAB Toolbox described inMarshall et al. (2016) and available at: www.nicholastimme.com/software.html. LLR tests

were performed using the Python package Powerlaw, described in Alstott et al. (2014), and available at: https://github.com/

jeffalstott/powerlaw. The Orca Flash 4.0 sCMOS camera (Hamamatsu) was controlled using HCImageLive 4.3 (Hamamatsu). The

scanner and the piezo were controlled using custom-made routines in MATLAB.

DATA AND SOFTWARE AVAILABILITY

Custom written MATLAB code will be made available by the authors upon request.
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Supplemental Information 
 

Inventory 

• Table S1. Summary of the statistics of the spatial clusters for each dataset. Related to Figure 1. 

• Table S2. Summary of the statistics of the neuronal avalanches for each dataset. Related to Figure 
2; Figure 3; Figure 5. 

• Supplemental figure S1. Selective-plane illumination microscopy (SPIM). Related to Methods: 
Selective-plane illumination microscopy. 

• Supplemental figure S2. Statistics of spatial clusters. Related to Figure 1. 

• Supplemental figure S3. Illustration of avalanche definition. Related to Figure 2. 

• Supplemental figure S4. Avalanches at the population level and the effect of coarse graining on 
avalanche exponents. Related to Figure 2. 

• Supplemental figure S5. Single anatomical brain regions also show critical dynamics. Related to 
Figure 6. 

• Supplemental figure S6. Activity during sensory stimulation and self-generated behavior presents 
changes not only in the rate of calcium events but also in their correlation structure. Related to 
Figure 7. 

• Supplemental figure S7. Neuronal avalanches during self-generated behavior had larger sizes and 
their distribution across different brain regions was biased towards hind-brain motor areas. Related 
to Figure 7. 

• Supplemental figure S8. Effect of heptanol on free-swimming behavior and visual stimulus 
decoding scheme. Related to Figure 8. 

• Supplemental video S1. Whole-brain neuronal activity. Related to Figure 1; Figure 2. 
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Supplementary tables, figures, and videos 

 

Supplementary tables 

 

Dataset 

# 

 

Ca2+ 

indicator 

 

Nb. of 

ROIs 
Q 𝜌𝑐 

𝑃(𝐶𝑠)~𝐶𝑠
−𝜎 𝑔(𝑟)~𝑟−𝜂 

 

KS stat. 

 

𝜎(𝜌𝑐) 

 

cutoffs 
 

LLR (norm.) 

 

𝜂 

 

cutoffs 

1 GCAMP5 41,115 9 0.24 0.036 2.17 ± 0.01 [6, 103] +55.2* 0.16 ± 0.01 [10, 500] 

2 GCAMP6f 84,177 6 0.16 0.031 2.16 ± 0.01 [6, 103] +72.1* 0.24 ± 0.01 [10, 500] 

3 GCAMP6f 86,110 6 0.11 0.021 2.22 ± 0.01 [6, 103] +113.5* 0.22 ± 0.01 [10, 500] 

4 GCAMP6f 89,349 3 0.08 0.041 2.20 ± 0.01 [6, 103] +75.88* 0.14 ± 0.01 [10, 500] 

5 GCAMP5 51,466 8 0.15 0.043 1.97 ± 0.01 [6, 103] +112.6* 0.27 ± 0.01 [10, 500] 

6 GCAMP5 50,731 5 0.14 0.046 2.15 ± 0.01 [6, 103] +70.5* 0.23 ± 0.01 [10, 500] 

Table S1. Summary of the statistics of the spatial clusters for each dataset. Related to Figure 1. Q: number of 

spontaneous and stimulus segments (20 min of spontaneous activity and 4 min of visual stimulation). 𝜌𝑐: fraction of 

activated ROIs that maximizes the average number of connected components (〈𝑚〉). The probability of cluster sizes 

𝐶𝑠 was evaluated for the set of clusters with 𝜌 comprised between 𝜌𝑐 − Δ and 𝜌𝑐 + Δ, where Δ=0.02, and for 

𝐶𝑠,min ≤ 𝐶𝑠 ≤ 𝐶𝑠,max (cutoffs). The probability density was fitted to a truncated power law using MLE (Marshall et al., 

2016).  In the table, we reported the MLE power exponent 𝜎(𝜌𝑐) (± the estimation error), the KS-statistics between 

the data distribution and the fitted MLE power law, and the cutoffs [𝐶𝑠,min, 𝐶𝑠,max]. We also reported the normalized 

log-likelihood ratio (LLR) for the comparison between the power-law and the log-normal distributions. Significantly 

positive values of LLR indicate that the power-law distribution was a better predictor of the data than the log-normal 

distribution; asterisks indicate that LLR were statistically different from zero (p < 0.001). Finally, we calculated the 

correlation function 𝑔(𝑟), i.e., the average correlation between pairs of ROIs as a function of the Euclidean distance 

between them (𝑟). We fitted the relation 𝑔(𝑟)~𝑟−𝜂 using least squares for 𝑟min ≤ 𝑟 ≤ 𝑟max (cutoffs, in 𝜇m) and 

obtained the exponent 𝜂 and its estimation error. 
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Data
-set  

𝑃(𝑇)~𝑇−𝛼 𝑃(𝑆)~𝑆−𝜏 〈𝑆〉(𝑇)~𝑇1 𝜎𝜈𝑧⁄  
Profile 

collapse 

Recurrence-

time collapse 

KS stat. 𝛼 cutoffs LLR KS stat. 𝜏 cutoffs LLR 𝜎𝜈𝑧 𝜎𝜈𝑧 Δ𝜎𝐹
2 𝛾 Δ𝜎𝐺

2 

1 
0.015 2.86 

± 0.01 

[1.88, 

18.8] 

+192.3* 0.022 2.10 

± 0.01 

[6; 104] +99.9* 0.52 ± 0.02 0.55 3.8 0.17 4.6 

2 
0.007 2.92 

± 0.02 

[2.35, 

18.8] 

+23.1* 0.035 2.01 

± 0.01 

[6; 

2×104] 

+35.5* 0.59 ± 0.02 0.60 10.1 0.45 5.7 

3 
0.008 3.44 

± 0.01 

[0.94, 

18.8] 

+172.5* 0.046 1.98 

± 0.01 

[6; 

2×104] 

+27.2* 0.51 ± 0.02 0.51 10.5 0.43 4.5 

4 
0.013 3.22 

± 0.03 

[2.82, 

18.8] 

+5.9* 0.039 2.06 

± 0.01 

[6; 

2×104] 

+41.8* 0.55 ± 0.03 0.56 3.9 0.37 1.9 

5 
0.018 2.72 

± 0.01 

[1.41, 

18.8] 

+69.0* 0.024 1.96 

± 0.01 

[6; 104] +30.7* 0.52 ± 0.01 0.54 12.5 0.23 4.2 

6 
0.013 2.90 

± 0.02 

[2.35, 

18.8] 

+46.4* 0.026 1.91 

± 0.01 

[6; 104] +77.83* 0.53 ± 0.02 0.53 8.8 0.33 5.6 

7 
0.017 2.25 

± 0.02 

[1.41, 

18.8] 

+36.9* 0.018 1.64 

± 0.01 

[6; 104] +32.6* 0.57 ± 0.03 0.65 2.8 0.30 2.6 

8 0.028 2.07 

± 0.02 

[1.41, 

18.8] 

+5.2* 0.041 1.73 

± 0.002 

[6; 104] -1.5n.s. 0.68 ± 0.02 0.67 2.6 0.86 0.7 

 

Table S2. Summary of the statistics of the neuronal avalanches for each dataset. Related to Figure 2; Figure 3; Figure 5. 

We evaluated the probability distribution of avalanche durations 𝑇 and sizes 𝑆. For each distribution, we fitted truncated 

power laws using MLE (𝑃(𝑇)~𝑇−𝛼 and 𝑃(𝑆)~𝑆−𝜏) and further evaluated the fitting using KS-statistics. The estimation 

error of the MLE power exponent was calculated using bootstrap re-sampling. The cutoffs (𝑇 ∈ [𝑇min, 𝑇max] and 𝑆 ∈

[𝑆min, 𝑆max]) of the truncated power laws are also indicated. We also reported the normalized log-likelihood ratio (LLR) for 

the comparison between the power-law and the log-normal distributions. Significantly positive values of LLR indicate that 

the power-law distribution was a better predictor of the data than the log-normal distribution; asterisks indicate that LLR 

were statistically different from zero (p < 0.001). We also calculated the average size 〈𝑆〉(𝑇) of avalanches of duration 𝑇 

and fit the relation 〈𝑆〉(𝑇)~𝑇−1 𝜎𝜈𝑧⁄  using least squares (within the corresponding duration and size cutoffs) to obtain the 

exponent 𝜎𝜈𝑧 and its estimation error. We estimated the best possible collapse of the avalanche profiles given by: 

〈𝑆(𝑡, 𝑇)〉𝑇1−1 𝜎𝜈𝑧⁄ = 𝐹(𝑡 𝑇⁄ ). The exponent 𝜎𝜈𝑧 was estimated using the method of Marshall et al. (2016). Δσ𝐹
2 : amount 

of collapse. The curve onto which the scaled recurrence time distributions collapse was approximated by a gamma 

distribution with the shape parameter given by 𝛾. The amount of collapse was evaluated by Δσ𝐺
2 . Datasets 7 and 8 

correspond to larvae exposed to heptanol before the experiments. 
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Supplementary figures 

 
Supplemental figure S1. Selective-plane illumination microscopy (SPIM). Related to Methods: Selective-plane 
illumination microscopy. A: Scheme of the optical path of the light-sheet microscope. B: Subset of coronal sections 
obtained with the SPIM. The full stack corresponds to 40 coronal sections recorded every 5 μm. In each coronal section, a 
hexagonal grid was applied to obtain the ROIs from which the average fluorescence signal was extracted. C. The relative 
increase in fluorescence intensity (∆𝐹/𝐹) of five example ROIs. Left: location of the ROIs. Right: fluorescence intensity for 
the example ROIs; Ca+2 transients that exceed the binarization threshold are shown in red. D: Experimental paradigm. The 
experiment was composed of Q consecutive segments of 20 min of spontaneous activity and 4 min of visual stimulation. 
Q was different for different datasets and ranges between 3–9 (see Table S1). Inset: Each visual stimulation period 
contained 8 sub-episodes during which a moving grating was presented below the larva for 10 sec (represented in gray). 
The motion directions of the 8 gratings were equal to 0°, 60°, 180°, -60°, 0°, 60°, 180°, and -60°, respectively, relative to 
the larva’s caudo-rostral axis. The inter-stimulus interval was equal to 20 sec. 
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Supplemental figure S2. Spatial clusters. Related to Figure 1. A-B: Number of activity clusters (m) as a 
function of the proportion of active ROIs (ρ) for each dataset (color traces). In panel (A) the shaded areas 
represent standard deviation of m, which is represented in (B) as a function of ρ. C: Normalized size of the 
largest cluster (Cmax) as a function of ρ. D-E: The cluster size distribution for the set of clusters that 
appeared with p comprised within small intervals [ρ – Δ; ρ + Δ] with Δ=0.02 was fitted to a power law. The 
goodness-of-fit (1/KLD) of the power law (D) and the estimated power exponent (E) were calculated as a 
function of ρ – ρc, for each dataset (color traces). The black traces represent the average goodness-of-fit 
and the average power exponent. The gray areas represent SEM. F: Distribution of ρ – ρc (black: 
spontaneous activity, red: for stimulus-evoked activity) averaged over all datasets (the mean and the SEM 
of the distributions are indicated by the solid line and the shaded area, respectively). 
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Supplemental figure S3. Avalanche definition. Related to Figure 2. The illustration of an avalanche is 
shown here in 2D for simplicity but note that the analysis was done in 3D. An avalanche was initiated with 
the detection of a cluster of active ROIs at time t0, the avalanche continued at time t0+1 with a cluster 
composed of ROIs that were active at the preceding time t0 (represented in black) plus ROIs that activated 
at t0+1 (represented in purple), and so on, until this condition no longer held. The avalanche terminated at 
time t0+4. The ROI represented in gray that was activated at time t0+1 did not participate in an avalanche, 
since it did not belong to any activity cluster. For this schematic example the size and duration of the 
avalanche were equal to S = 72 (the cumulative sum of the number of activated ROIs during the avalanche) 
and T = 5 × 𝑑𝑡 (number of frames multiply by the temporal resolution, 𝑑𝑡, of the data), respectively. The 
time-course of the avalanche size, S(t), is shown in the left bottom panel. 
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Supplemental figure S4. Avalanches at the population level and the effect of coarse graining on avalanche exponents. 
Related to Figure 2. A-C: We analyzed the neuronal avalanches’ statistics after pooling the avalanche sizes and durations 
of all datasets. For each dataset, sizes were normalized by the total number of cells (N). A: Distribution of avalanche 
durations T (in sec). B: Distribution of avalanche normalized sizes S/N. C: Relation between <S/N> and T. In (A), (B), and 
(C) open symbols correspond to time-shuffled datasets and the black dashed lines indicate the expected power-law 
distributions in the case of a critical behavior. The measured exponents are indicated in each panel. D-F: Spatial coarse 
graining. Co-active ROIs were grouped to form 3D clusters if their Euclidean distance was shorter than a given value R, 
representing the level of coarse graining. For simplicity, only a 2D scheme is shown. The exponents of the neuronal 
avalanche obtained for different levels of coarse graining. Note that for clusters larger than a sphere of radius R~30 μm 
the values of the avalanche exponents deviate from the theoretical values and the exponent relation did not hold 
anymore (for R<30 μm the variable 𝑞 = (𝜏 − 1) [𝜎𝜈𝑧(𝛼 − 1)]⁄  is close to 1 on average but becomes ≤0.71 for larger 
radii). The size of the clustering neighborhood used in the present study lies below this threshold. G-I: Temporal coarse 
graining. Avalanche exponents were calculating after down-sampling the data, using time bins equal to 2×dt (E) 3×dt (G), 
and 4×dt (I), where dt is the original temporal resolution of the data (dt = 0.47 sec). The average variable 𝑞 is also 
presented. For time bins longer than 4×dt the values of the avalanche exponents deviate from the theoretical values and 
the exponent relation did not hold anymore. 
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Supplemental figure S5. Single anatomical brain regions also show critical dynamics. Related to Figure 6. 
Neuronal avalanches observed within two brain regions with different functional roles, i.e, the optic 
tectum (sensory processing) and the rhombomere 7 (reticulospinal circuit for movement generation). A-C: 
Avalanche durations and sizes displayed power-law statistics with power exponents close to the 
corresponding critical values. Nevertheless, while durations and average sizes of neuronal avalanches in 

the optic tectum matched the expected scaling relation (〈𝑆〉(𝑇)~𝑇1 𝜎𝜈𝑧⁄ , with 𝜎𝜈𝑧 ≈ 0.57), reticulospinal 
avalanches deviated from it: for a given duration 𝑇, the average size of the avalanches were larger than 
predicted by criticality theory. D: Locations of the optic tectum (blue) and the rhombomere 7 containing 
the reticulospinal circuit (red) in one optical coronal plane. E: Average power-law exponents describing the 
distribution of durations (α), sizes (τ), and the relation between sizes and durations (1/σνz) of spontaneous 
neuronal avalanches displayed in the optic tectum (blue) and the reticulospinal region (red). For 
comparison, the gray and the black bars indicate the critical exponents of 3D random field Ising theoretical 
models and the exponents observed in the whole-brain activity, respectively. Differences between whole-
brain, optic tectum, and reticulospinal activities were evaluated using ANOVA followed by Tukey-Kramer 
multiple comparisons tests.  
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Supplemental figure S6. Activity during sensory stimulation and self-generated behavior presents 
changes not only in the rate of calcium events but also in their correlation structure. Related to Figure 7. 
We compared the rate and Pearson correlations of binary data during spontaneous activity, during sensory 
stimulation, and around spontaneous movements. We also analyzed the data using adaptive binning, i.e., 
by choosing a time bin 𝑑𝑡 according to the inverse of the average rate of the calcium point processes (Yu 
et al., 2017). Data with high rate led to a short 𝑑𝑡, data with low rate led to a long 𝑑𝑡. A: Average 
correlations during spontaneous activity and during sensory stimulation, for fixed 𝑑𝑡 (equal to a recording 
frame) and for an adaptive binning. Each dot represents the average correlation in one of the Q data 
segments, for a given larva. Correlations were calculated for all pairs among 40,000 ROIs. B: Adaptive 
binning for spontaneous and stimulus-induced activities. C: Average correlations during spontaneous and 
stimulus-induced activities, for both types of temporal binning. D: Standard deviation of the distribution of 
correlations during spontaneous and stimulus-induced activities, for both types of temporal binning. E: To 
characterize the topology of the correlation matrices during spontaneous and stimulus-induced activities, 
we calculated the integration measure, Φ, that quantifies the connectiveness of the matrix (Deco et al., 
2015). Briefly, Φ is calculated by, first, thresholding the correlation matrix, making it a binary graph, using 
a threshold 𝜃. Second, we calculated the largest connected component 𝐿𝐶𝐶(𝜃) of the binary graph. 
Finally, Φ is given by the integral of 𝐿𝐶𝐶(𝜃)/𝑁 over all tested thresholds 𝜃, where 𝑁 is the number of 
ROIs. p: p-value, two-sample t-test comparing values for spontaneous and stimulus-induced activities. F-J: 
same as panels (A-E) but for data around the onsets of detected tail movements, denoted ton, and 
compared them to those in the absence of movements. p: p-value, two-sample t-test comparing values 
around movement onsets and the values in the absence of movements. These results show that sensory 
stimulation and self-generated behavior change not only the rate of calcium vents but also their 
correlation level and topology, even in the case of adaptive binning. This shows that the 
stimulus/movement-induced changes in neuronal avalanche exponents that we observed (Figure 7) were 
not simply explained by a change in the rate of the point process. 
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Supplemental figure S7. Neuronal avalanches during self-generated behavior had larger sizes and their 
distribution across different brain regions was biased towards hind-brain motor areas. Related to Figure 
7. A: The average size of neuronal avalanches around self-generated tail movements (0 sec represents the 
onset of the movement). The values were normalized by the average across time, i.e., ∆𝑆 = 〈𝑆(𝑡)〉𝑡𝑎𝑖𝑙𝑠𝑇/
∑ 〈𝑆(𝑡)〉𝑡𝑎𝑖𝑙𝑠

𝑡=+200
𝑡=−200 , where 〈 . 〉𝑡𝑎𝑖𝑙𝑠  represents the average over tail movements and 𝑇 is the length of the 

observation window. B: Locations of the initial centers of mass of neuronal avalanches projected on the 
coronal (x–y) plane of the brain during periods of spontaneous activity (blue dots, corresponding to the 
blue epoch in panel A, 1) and during the onset of tail movements (red dots; corresponding to the red 
epoch in panel A, 2). Each dot represents a neuronal avalanche. C: Probability density function of 
avalanche origins along the rostro-caudal axis during periods of spontaneous activity (blue) and during the 
onset of tail movements (red). We observed that with respect to periods of spontaneous activity, during 
tail movements, the neuronal avalanches had larger sizes and their distribution across different brain 
regions was biased towards hind-brain motor areas (caudal). 
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Supplemental figure S8. Effect of heptanol on free-swimming behavior and visual stimulus decoding scheme. Related 
to Figure 8. We compared the trajectory of 15 freely swimming GCaMP5 larvae at 7 dpf with 15 other GCaMP5 larvae 
exposed to 90 µM of heptanol for 3 h prior to the experiments. A: Paths of the image centroids of each of the 30 larvae in 
a multi-well plate during 30 min of spontaneous behavior. The paths are colored in black for the control larvae (left) and 
in red for the heptanol exposed larvae (right). Note that for visualization purposes only 5 min. of the larvae behavior are 
shown. B: Average speed of the larvae in the control and heptanol-treated conditions. Each dot represents one larva, a 
horizontal jitter was added for visualization. The horizontal lines represent the mean of the two distributions (Ctrl.: 2.43 ± 
0.04 mm/sec vs. Hept.: 2.96 ± 0.06 mm/sec; p=0.054, two-sample t-test). C: The time the larvae spent near the border of 
the recording chamber (< 2mm from the border). The horizontal lines represent the mean of the two distributions (Ctrl.: 
81.5 ± 13.6 % vs. Hept.: 86.08 ± 22.77 %; p=0.51, two-sample t-test). D: Distribution of the turning behavior quantified by 
the proportion of forward swimming bouts (a change in direction < 10 deg.). The horizontal lines represent the mean of 
the two distributions (Ctrl.: 66.85 ± 7.22 % vs. Hept.: 70.03 ± 3.5 %; p=0.14, two-sample t-test). E-G: A maximum 
likelihood decoder (MLD) was used to classify the location of visual stimuli presented to larvae from the fluorescence 
signals ∆𝐹 𝐹⁄  in the optic tectum. E: The stimulus set was composed of light spots of 4 deg. presented at four possible 
spatial locations (75º, 85º, 90º, 110º). F: The neuronal responses of 𝑛 ROIs, 𝑟 = [𝑟1, 𝑟2, … , 𝑟𝑛], were used to learn the 
probability distributions of the response of each ROI to each stimulus of category j, i.e., 𝑃(𝑟|𝑗). G: The MLD chooses the 
stimulus that is statistically most likely to have elicited a newly observed response of the 𝑛 signals, i.e., 𝑟𝑡𝑒𝑠𝑡 =
[𝑟1, 𝑟2, … , 𝑟𝑛], given the learned probability distributions. With the simplifying assumption that the responses of the ROIs 
were assumed to be statistically independent from each other, the decoding of the population response consisted of 
searching for the stimulus (𝑠𝑀𝐿) which maximized the probability of the testing response: 𝑠𝑀𝐿 =

𝑎𝑟𝑔𝑚𝑎𝑥 ∏ 𝑃(𝑟𝑖,𝑡𝑒𝑠𝑡|𝑗)𝑛
𝑖=1 . The performance was defined as the proportion of population response vectors that were 

correctly classified. 
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Supplementary Videos 

Supplemental video S1. Whole-brain neuronal activity. Related to Figure 1; Figure 2. The first row displays 
the relative increase in fluorescence (∆𝐹/𝐹) in the hexagonal regions of interest (ROIs) in five different 
coronal sections. The second row shows the corresponding binarized activity used to compute the clusters. 
The last row depicts the time-course of the percentage of active ROIs in the entire volumetric recording. 
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