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Supplementary Appendix A: formal relationships between the correlations 

We present a simple, general and self-contained formulation of the proportional recovery concept. 

We have derived all of the key results from first principles, while acknowledging previous 

presentations of these results when they can be found in the literature.  

We assume two variables 𝑋′ and 𝑌′ corresponding to performance at initial test (𝑋′) and at second 

test (𝑌′). These will be represented as column vectors, with each entry being the performance of a 

single patient and vector lengths being 𝑁 ∈ ℕ. Performance improves as numbers get bigger, up to a 

maximum, denoted 𝑀𝑎𝑥, which corresponds to no discernible deficit. Severity is measured as 

difference from maximum, i.e. 𝑀𝑎𝑥 − 𝑋′. 

The two variables (𝑋′ and 𝑌′) could be specialised to more detailed formulations: e.g., true score 

theory or with an explicit modelling of measurement or state error. However, this would not impact 

any of the derivations or inferences that follow. Indeed, the results that we present would hold even 

in the complete absence of measurement noise, which has been considered the main concern for 

the validity of quantifications of proportional recovery. 

 

Demeaning 

Without loss of generality, we work with demeaned variables. That is, where over-lining denotes 

mean, we define new variables as, 

𝑋 = 𝑋′ − 𝑋′̅ 

𝑌 = 𝑌′ − 𝑌′̅ 

This also means that recovery, i.e. 𝑌 − 𝑋, will be demeaned, since, using proposition 1, the following 

holds. 

𝑌 − 𝑋 = (𝑌′ − 𝑌 ′̅) − (𝑋′ − 𝑋′̅̅ ̅) = (𝑌′ − 𝑋′) − (𝑌′̅ − 𝑋′̅̅ ̅) = (𝑌′ − 𝑋′) − (𝑌′ − 𝑋′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Proposition 1 

Let 𝑉 and 𝑊 be vectors of the same length, denoted 𝑁. Then, the following holds, 

𝑉̅ + 𝑊̅ = (𝑉 + 𝑊)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

with 𝑉̅ − 𝑊̅ = (𝑉 − 𝑊)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as a trivial consequence. 

Proof 

By distributivity of multiplication through addition and associativity of addition, the following holds. 

𝑉̅ + 𝑊̅ = (
1

𝑁
∑ 𝑉𝑖

𝑁

𝑖=1

) + (
1

𝑁
∑ 𝑊𝑖

𝑁

𝑖=1

) =
1

𝑁
(∑ 𝑉𝑖

𝑁

𝑖=1

+ ∑ 𝑊𝑖

𝑁

𝑖=1

) =
1

𝑁
(∑(𝑉𝑖

𝑁

𝑖=1

+ 𝑊𝑖)) = (𝑉 + 𝑊)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

                                QED 

Correlations 

There are two basic correlations we are interested in, (1) the correlation between initial 

performance and performance at second test, i.e. 𝑟(𝑋, 𝑌), and (2) the correlation between initial 

performance and recovery, i.e. 𝑟(𝑋, 𝑌 − 𝑋) = 𝑟(𝑋, Δ). The latter of these is the key relationship, and 
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we would expect this to be a negative correlation; that is, as initial performance is smaller (i.e. 

further from 𝑀𝑎𝑥), the larger is recovery. (One could also formulate the correlation as 𝑟((𝑀𝑎𝑥 −

𝑋), 𝑌 − 𝑋), which would flip the correlation to positive, but the two approaches are equivalent). 

Our main correlations are defined as follows, 

𝑟(𝑋, 𝑌) =
∑  𝑋𝑖 .  𝑌𝑖

𝑁
𝑖=1

(𝑁 − 1) . 𝜎𝑋 . 𝜎𝑌 
 

𝑟(𝑋, (𝑌 − 𝑋)) =
∑  (𝑋𝑖  . (𝑌𝑖 − 𝑋𝑖))𝑁

𝑖=1

(𝑁 − 1) . 𝜎𝑋 . 𝜎(𝑌−𝑋)
 

Standard Deviation of a Difference 

We need a straightforward result on the standard deviation of a difference. 

Proposition 2 

𝜎(𝐴−𝐵) = √𝜎𝐴
2 + 𝜎𝐵

2 − 2 . 𝑐𝑜𝑣(𝐴, 𝐵) 

Proof 

The result is a direct consequence of the following standard result from probability theory, e.g. see 

Ross, S. M. (2014). Introduction to probability and statistics for engineers and scientists. Academic 

Press., 

𝜎(𝐴−𝐵)
2 = 𝜎𝐴

2 + 𝜎𝐵
2 − 2 . 𝑐𝑜𝑣(𝐴, 𝐵) 

 

Key Results 

The following proposition enables us to express the key correlation, 𝑟(𝑋, (𝑌 − 𝑋)), in terms of 

covariance of its constituent variables. 

Proposition 3 

𝑟(𝑋, (𝑌 − 𝑋)) =
𝑐𝑜𝑣(𝑋, 𝑌) − 𝑐𝑜𝑣(𝑋, 𝑋)

𝜎𝑋 . √𝜎𝑌
2 + 𝜎𝑋

2 − 2 . 𝑐𝑜𝑣(𝑋, 𝑌)
 

Proof 

Using distributivity of multiplication through addition, associativity of addition, the definition of 

covariance and proposition 2, we can reason as follows. 

𝑟(𝑋, (𝑌 − 𝑋)) =
∑  (𝑋𝑖 . (𝑌𝑖 − 𝑋𝑖))𝑁

𝑖=1

(𝑁 − 1) . 𝜎𝑋 . 𝜎(𝑌−𝑋)
=

∑  (𝑋𝑖 𝑌𝑖 − 𝑋𝑖 𝑋𝑖)𝑁
𝑖=1

(𝑁 − 1) . 𝜎𝑋 . 𝜎(𝑌−𝑋)
=

∑  (𝑋𝑖 𝑌𝑖)𝑁
𝑖=1 − ∑  (𝑋𝑖  𝑋𝑖)𝑁

𝑖=1

(𝑁 − 1) . 𝜎𝑋 . 𝜎(𝑌−𝑋)
 

=
𝑐𝑜𝑣(𝑋, 𝑌) − 𝑐𝑜𝑣(𝑋, 𝑋)

𝜎𝑋 . 𝜎(𝑌−𝑋)
=

𝑐𝑜𝑣(𝑋, 𝑌) − 𝑐𝑜𝑣(𝑋, 𝑋)

𝜎𝑋 . √𝜎𝑌
2 + 𝜎𝑋

2 − 2 . 𝑐𝑜𝑣(𝑋, 𝑌)
 

QED 

It is straightforward to adapt proposition 3 to be fully in terms of correlations. 
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Proposition 4 

𝑟(𝑋, (𝑌 − 𝑋)) =
𝜎𝑌 . 𝑟(𝑋, 𝑌) − 𝜎𝑋 . 𝑟(𝑋, 𝑋)

√𝜎𝑌
2 + 𝜎𝑋

2 − 2 . 𝜎𝑋 . 𝜎𝑌. 𝑟(𝑋, 𝑌)
 

Proof 

Straightforward from proposition 3 and definition of correlations, which gives the relationship 

𝑐𝑜𝑣(𝐴, 𝐵) = 𝜎𝐴 . 𝜎𝐵 . 𝑟(𝐴, 𝐵).                                                                                                       QED 

Scale Invariance 

The next set of propositions justifies working with a standardised 𝑋 variable. 

Lemma 1 

∀𝑐 ∈ ℝ ∙ |𝑐|. 𝜎𝐴 = 𝜎(𝑐.𝐴) 

Proof 

Using distributivity of a multiplicative constant through averaging, √𝑑2 = |𝑑| and distributivity of 

square root through multiplication, we can reason as follows. 

𝜎(𝑐.𝐴) = √
∑  (𝑐. 𝐴𝑖 − 𝑐. 𝐴̅̅ ̅̅̅)2𝑁

𝑖=1

𝑁 − 1
= √

∑  (𝑐. 𝐴𝑖 − 𝑐. 𝐴̅)2𝑁
𝑖=1

𝑁 − 1
 =  |𝑐| . √

∑  (𝐴𝑖 − 𝐴̅)2𝑁
𝑖=1

𝑁 − 1
= |𝑐|. 𝜎𝐴 

QED 

Proposition 5 (Invariance to scaling) 

The absolute magnitude of a correlation is not changed by scaling either variable by a constant, i.e. 

∀𝑐 ∈ ℝ ∙ 𝑟(𝐴, 𝐵) =  𝑠𝑖𝑔𝑛(𝑐). 𝑟(𝑐. 𝐴, 𝐵) =  𝑠𝑖𝑔𝑛(𝑐). 𝑟(𝐴, 𝑐. 𝐵) 

where  𝑠𝑖𝑔𝑛(𝑑)  =  𝑖𝑓  (𝑑 < 0)  𝑡ℎ𝑒𝑛 − 1  𝑒𝑙𝑠𝑒 + 1. 

Proof 

For any 𝑐 ∈ ℝ, using distributivity of multiplication through mean and addition, and lemma 1, the 

following holds, 

𝑟(𝑐. 𝐴, 𝐵) =
∑  (𝑐. 𝐴𝑖 − 𝑐. 𝐴̅̅ ̅̅̅)(𝐵𝑖 − 𝐵̅)𝑁

𝑖=1

(𝑁 − 1) . 𝜎(𝑐.𝐴) 𝜎𝐵
=

∑  (𝑐. 𝐴𝑖 − 𝑐. 𝐴̅)(𝐵𝑖 − 𝐵̅)𝑁
𝑖=1

(𝑁 − 1) . 𝜎(𝑐.𝐴) 𝜎𝐵
 

=
𝑐 . ∑  (𝐴𝑖 − 𝐴̅)(𝐵𝑖 − 𝐵̅)𝑁

𝑖=1

(𝑁 − 1) . |𝑐| . 𝜎𝐴 . 𝜎𝐵
=

𝑠𝑖𝑔𝑛(𝑐). ∑  (𝐴𝑖 − 𝐴̅)(𝐵𝑖 − 𝐵̅)𝑁
𝑖=1

(𝑁 − 1) . 𝜎𝐴 . 𝜎𝐵
= 𝑠𝑖𝑔𝑛(𝑐). 𝑟(𝐴, 𝐵) 

Then, one can multiply both sides by 𝑠𝑖𝑔𝑛(𝑐) to obtain 𝑟(𝐴, 𝐵) =  𝑠𝑖𝑔𝑛(𝑐). 𝑟(𝑐. 𝐴, 𝐵). Additionally, 

as correlations are symmetric, 𝑠𝑖𝑔𝑛(𝑐). 𝑟(𝑐. 𝐵, 𝐴) =  𝑠𝑖𝑔𝑛(𝑐). 𝑟(𝐴, 𝑐. 𝐵), and the full result follows. 

QED 

Corollary 1 

∀𝑐 ∈ ℝ ∙ 𝑟(𝐴, 𝐵) =  𝑟(𝑐. 𝐴, 𝑐. 𝐵) 

Proof 
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Follows from twice applying proposition 5, and that 𝑠𝑖𝑔𝑛(𝑐)2 = +1.            QED 

Proposition 6 

∀𝑐 ∈ ℝ ∙  𝑟(𝑋, (𝑌 − 𝑋)) = 𝑟(𝑐. 𝑋, (𝑐. 𝑌 − 𝑐. 𝑋)) 

Proof 

We can use distributivity of multiplication through subtraction and corollary 1 to give us the 

following. 

𝑟(𝑐. 𝑋, (𝑐. 𝑌 − 𝑐. 𝑋)) = 𝑟(𝑐. 𝑋, 𝑐. (𝑌 − 𝑋)) = 𝑟(𝑋, (𝑌 − 𝑋)) 

QED 

It follows from proposition 6 that we can work with a standardised 𝑋 variable, since, 

𝑟(𝑋/𝜎𝑋, (𝑌/𝜎𝑋 − 𝑋/𝜎𝑋)) = 𝑟(𝑋, (𝑌 − 𝑋)) 

Proposition 7 (Sufficiency of variability ratio) 

Assume two pairs of variables: 𝑋1, 𝑌1 and 𝑋2, 𝑌2, such that, 𝑟(𝑋1, 𝑌1) = 𝑟(𝑋2, 𝑌2), then, 

𝜎𝑌1

𝜎𝑋1

=
𝜎𝑌2

𝜎𝑋2

  ⟹   𝑟(𝑋1, ( 𝑌1 − 𝑋1)) = 𝑟(𝑋2, ( 𝑌2 − 𝑋2)) 

Proof 

The proof has two parts. 

1) We consider the implications of equality of ratio of standard deviations. Firstly, we note that, 

𝜎𝑌1

𝜎𝑋1

=
𝜎𝑌2

𝜎𝑋2

  ⟺   
𝜎𝑋2

𝜎𝑋1

=
𝜎𝑌2

𝜎𝑌1

       (𝑒𝑞𝑛 𝑟𝑎𝑡𝑖𝑜𝑠) 

Secondly, using eqn ratios, we can argue as follows, 

𝜎𝑌1

𝜎𝑋1

=
𝜎𝑌2

𝜎𝑋2

  ⟺  (𝜎𝑌2
=

𝜎𝑋2

𝜎𝑋1

 𝜎𝑌1
 ∧   𝜎𝑋2

=
𝜎𝑌2

𝜎𝑌1

 𝜎𝑋1
) ⟺ (𝜎𝑌2

=
𝜎𝑋2

𝜎𝑋1

 𝜎𝑌1
 ∧   𝜎𝑋2

=
𝜎𝑋2

𝜎𝑋1

 𝜎𝑋1
)  

⟹ (∃𝑑 ∈ ℝ ∙ 𝜎𝑌2
= 𝑑. 𝜎𝑌1

 ∧  𝜎𝑋2
= 𝑑. 𝜎𝑋1

) 

2) Using 4, the fact that 𝑟(𝑋1, 𝑌1) = 𝑟(𝑋2, 𝑌2), the property just derived in part 1), with 𝑑 =
𝜎𝑋2

𝜎𝑋1

 and 

rules of square roots, we can reason as follows, 

𝑟(𝑋2, ( 𝑌2 − 𝑋2)) =
𝜎𝑌2

 . 𝑟(𝑋2, 𝑌2) − 𝜎𝑋2
 . 𝑟(𝑋2, 𝑋2)

√𝜎𝑌2

2 + 𝜎𝑋2

2 − 2 . 𝜎𝑋2
 . 𝜎𝑌2

. 𝑟(𝑋2, 𝑌2)

=
𝜎𝑌2

 . 𝑟(𝑋1, 𝑌1) − 𝜎𝑋2
 . 𝑟(𝑋1, 𝑋1)

√𝜎𝑌2

2 + 𝜎𝑋2

2 − 2 . 𝜎𝑋2
 . 𝜎𝑌2

. 𝑟(𝑋1, 𝑌1)

 

=
𝑑. 𝜎𝑌1

 . 𝑟(𝑋1, 𝑌1) − 𝑑. 𝜎𝑋1
. 𝑟(𝑋1, 𝑋1)

√𝑑2. 𝜎𝑌1

2 + 𝑑2. 𝜎𝑋1

2 − 2 . 𝑑. 𝜎𝑋1
 . 𝑑. 𝜎𝑌1

. 𝑟(𝑋1, 𝑌1)

=
𝑑. (𝜎𝑌1

 . 𝑟(𝑋1, 𝑌1) − 𝜎𝑋1
 . 𝑟(𝑋1, 𝑋1))

𝑑. √𝜎𝑌1

2 + 𝜎𝑋1

2 − 2 . 𝜎𝑋1
 . 𝜎𝑌1

. 𝑟(𝑋1, 𝑌1)

 

= 𝑟(𝑋1, ( 𝑌1 − 𝑋1)). 

QED 

Proposition 8 
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If Δ = 𝑌 − 𝑋 and 𝑝Δ = 𝑋. 𝛽, where 𝛽 ∈ ℝ, then, 

1) 𝑟(𝑝Δ, Δ) = 𝑠𝑖𝑔𝑛(𝛽). 𝑟(𝑋, Δ); and 

2) 𝑟(𝑋 + 𝑝Δ, Y) = 𝑠𝑖𝑔𝑛(1 + 𝛽). 𝑟(𝑋, Y). 

Proof 

Both results are easy consequences of proposition 5. 

1)   𝑟(𝑝Δ, Δ) = 𝑟(𝑋. 𝛽, Δ) = 𝑠𝑖𝑔𝑛(𝛽). 𝑟(𝑋, Δ). 

2)   𝑟(𝑋 + 𝑝Δ, Y) = 𝑟((𝑋 + (𝑋. 𝛽)), Y) = 𝑟((𝑋. (1 + 𝛽)), Y) = 𝑠𝑖𝑔𝑛(1 + 𝛽). 𝑟(𝑋, Y) = 𝑟(𝑋, Y). 

QED 

Main Findings 

Theorem 1: 

Since 𝑋 will be standardised, we can adapt the finding in proposition 4, to give us the key 

relationship we need, 

𝑟(𝑋, (𝑌 − 𝑋)) =
𝜎𝑌 . 𝑟(𝑋, 𝑌) − 𝜎𝑋

√𝜎𝑌
2 + 1 − 2 . 𝜎𝑌. 𝑟(𝑋, 𝑌)

       (eqn 𝐼𝑚𝑝𝑟𝑖𝑛𝑡) 

Note, this equation can be found in (Oldham, 1962), and also in (Tu et al., 2005). 

Proof 

Immediate from proposition 4.    QED 

Theorem 1 shows clearly that 𝑟(𝑋, (𝑌 − 𝑋)) is fully defined by the correlations 𝑟(𝑋, 𝑌) and 𝑟(𝑋, 𝑋), 

along with the variability of 𝑌. The correlation of 𝑋 with itself, i.e. 𝑟(𝑋, 𝑋), is a prominent aspect of 

this equation, which drives its oddities.  𝑟(𝑋, 𝑋) reflects the coupling in the equation that arises 

because 𝑋 appears in both the terms being correlated in 𝑟(𝑋, (𝑌 − 𝑋)). 𝑟(𝑋, 𝑋) is of course a 

constant, i.e. 1 for any 𝑋, so in fact, 𝜎𝑌 and 𝑟(𝑋, 𝑌), are the only variables; accordingly, their size 

determines the extent to which the imprint of 𝑋 in 𝑌 − 𝑋 drives 𝑟(𝑋, (𝑌 − 𝑋)). 

This leads to the key observation that, as 𝜎𝑌 gets smaller, 𝑟(𝑋, (𝑌 − 𝑋)) tends towards −𝑟(𝑋, 𝑋), 

which equals −1. In other words, as the variability of Y decreases, the imprint of 𝑋 becomes 

increasingly prominent. This is shown in the next theorem. 

Theorem 2 

𝑟(𝑋, (𝑌 − 𝑋)) ⟶ −𝑟(𝑋, 𝑋) = −1, as  𝜎𝑌 ⟶ 0 

Proof 

The right hand side of equation Imprint, has five constituent terms, two in the numerator and three 

in the denominator. Of these five, three are products with the standard deviation of 𝑌, i.e. 𝜎𝑌. 

Assuming all else is constant, as 𝜎𝑌 reduces, the absolute value of each of these three terms reduces 

towards zero. The rate of reduction is different amongst the three, but they will all decrease. 

Accordingly, as 𝜎𝑌 decreases, 𝑟(𝑋, (𝑌 − 𝑋)) becomes increasingly determined by the two terms not 
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involving 𝜎𝑌, and thus, it tends towards −
𝑟(𝑋,𝑋)

√+1
= −𝑟(𝑋, 𝑋) = −1.                                                                    

QED 

 

Equality of Residuals 

An important finding of section 5 of the main text, is that the residuals resulting from regressing Y 

onto X are the same as regressing Y-X onto X. We show in this section, that this equality of residuals 

is necessarily the case. 

We focus on the following two equations, 

Eqn 1) 𝑌 = 𝑋̃. 𝛽1 + 𝜀1 

Eqn 2) 𝑌 − 𝑋 = 𝑋̃. 𝛽2 + 𝜀2 

where 𝑋̃ is the 𝑁 × 2 matrix, with first column being 𝑋 and second being the 𝑁 × 1 vector of ones 

(which provides the intercept term); 𝛽1 and 𝛽2 are 2 × 1 vectors of parameters and 𝑌, 𝑋, 𝜀1 and 𝜀2 

are 𝑁 × 1 vectors. As in the rest of this document, 𝑌 and 𝑋 are our (demeaned) initial and outcome 

variables, while 𝜀1 and 𝜀2 are our residual error terms. 

Proposition 9 

If we assume that 𝛽1 and 𝛽2 are fit with ordinary least squares, with 𝜀1 and 𝜀2 the associated 

residuals, then, 𝜀1 = 𝜀2. 

Proof 

Under ordinary least squares, the parameters are set as follows. 

𝛽1 = (𝑋̃𝑇𝑋̃ )−1 𝑋̃𝑇 𝑌     (Eqn 3) 

𝛽2 = (𝑋̃𝑇𝑋̃ )−1 𝑋̃𝑇 (𝑌 − 𝑋)      (Eqn 4) 

We start with the second of these, and using left distributivity of matrices, and then substituting Eqn 

3, we obtain the following. 

𝛽2 = (𝑋̃𝑇𝑋̃ )−1 𝑋̃𝑇  (𝑌 − 𝑋) = (𝑋̃𝑇𝑋̃ )−1 𝑋̃𝑇𝑌 − (𝑋̃𝑇𝑋̃ )−1 𝑋̃𝑇𝑋 = 𝛽1 − (𝑋̃𝑇𝑋̃ )−1 𝑋̃𝑇𝑋 

Using the fact that the variable 𝑋 is demeaned, we can now evaluate the main term here as follows, 

𝛽2 = 𝛽1 − (𝑋̃𝑇𝑋̃ )−1 𝑋̃𝑇𝑋 = 𝛽1 − (𝑋2 Σ𝑋
Σ𝑋 𝑁

)
−1

(𝑋2

Σ𝑋
) = 𝛽1 −

1

𝐴
(

𝑁 −Σ𝑋
−Σ𝑋 𝑋2 ) (𝑋2

Σ𝑋
) 

where 𝑋2 is the dot product of 𝑋 with itself, Σ𝑋 is the sum of the vector 𝑋, and 𝐴 = 𝑁𝑋2 −  Σ𝑋Σ𝑋 is 

the determinant of the matrix being inverted. From here we can derive the following, 

𝛽2 = 𝛽1 −
1

𝐴
( 𝑁𝑋2 −  Σ𝑋Σ𝑋

−Σ𝑋. 𝑋2 +  𝑋2. Σ𝑋
) = 𝛽1 −

1

𝐴
(

𝐴
0

) = 𝛽1 − (
1
0

) 

We can then substitute this equality for 𝛽2 in eqn 2 and re-arrange to obtain, 

𝑌 − 𝑋 = 𝑋̃𝛽2 + 𝜀2 = 𝑋̃ (𝛽1 − (
1
0

)) + 𝜀2 = 𝑋̃𝛽1 − 𝑋 + 𝜀2 

It follows straightforwardly from here that, 
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𝑌 − 𝑋̃𝛽1 = 𝜀2 

i.e. 𝜀1 = 𝜀2, as required.                                                                                                    QED 

Proposition 9 shows that the residuals resulting from fitting equations 1 and 2 will be the same. A 

consequence of this is that the error variability will be the same. As a result of this, the factor that 

determines whether more variance is explained when regressing 𝑌 onto 𝑋 or when regressing 𝑌 − 𝑋 

onto 𝑋, is the variance available to explain. That is, the relative variance of 𝑌 and 𝑌 − 𝑋 drive the 𝑅2 

values of these two regressions. This then implicates the variance of 𝑌 and 𝑋 and in fact their 

covariance (which impacts the variance of 𝑌 − 𝑋). 

More precisely, we can state the following. 

1) If 𝜎(𝑌−𝑋)
2  is big relative to 𝜎𝑌

2, then regressing 𝑌 − 𝑋 onto 𝑋 will explain more variability than 

regressing 𝑌 onto 𝑋. 

2) If 𝜎(𝑌−𝑋)
2  is small relative to 𝜎𝑌

2, then regressing 𝑌 − 𝑋 onto 𝑋 will explain less variability than 

regressing 𝑌 onto 𝑋. 
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Supplementary Appendix B: illustrating the relationship between the correlations 

 

% This function illustrates the relationship 
function [r_XY,std_Y,r2,r3] = CheckEqn1() 

  
noise = [0.01:0.01:1,2:100]; % controls r(X,Y) 
scale = [0.01:0.01:1,2:100]; % controls sigma_Y/sigma_X 
X = single(randn(1000,1)); 
for j=1:length(noise) 
    Y = X + single(randn(1000,1).*noise(j)); %Y is X plus noise 
    Y = zscore(Y); % then scale to X so the actual scaling is consistent 
    for k=1:length(scale) 
        Yl = Y.*scale(k); % rescale to control the variability ratio 
        r_XY(j,k) = corr(X,Y); % calculate the correlation with outcomes 

         
        r2(j,k) = corr(X,Yl-X); % calculate the correlation with change 
        std_Y(j,k) = std(Yl)./std(X); % record the variability ratio 
        r3(j,k) = eqn_r_X_XminusY(r_XY(j),std_Y(j,k)); % check Equation 1 
    end 
end 
 

% display the resulting surface (Figure 1) 
figure,surf(log(std_Y),r_XY,r3,'edgecolor','none') 
lighting flat 
l = light('Position',[50 100 100]); 
l = light('Position',[50 100 -50]); 
l = light('Position',[50 -100 -50]); 
l = light('Position',[-50 -15 29]); 
l = light('Position',[-50 -15 -29]); 
l = light('Position',[-50 15 -29]); 
l = light('Position',[50 15 -29]); 
l = light('Position',[50 15 -50]); 
shading interp 
xlabel('log ( sigmaY / sigmaX )') 
ylabel('r(X,Y)') 
zlabel('r(X,Y-X)') 
 

% confirm that equation 1 does actually match 'empirical' r(X,Y-X) 
figure,scatter(r2(:),r3(:)) 
xlabel('Empirical coefficients') 
ylabel('Derived coefficients') 

  
end 

  
% This function implements Equation 1 
function res = eqn_r_X_XminusY(r_XY,std_Y) 

  
res = (((r_XY.*std_Y) - 1) ./ sqrt(1 + (std_Y).^2 - (2*(r_XY.*std_Y)))); 

  
end 

  

 

 


