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Abstract

This supplementary materials contain the additional details of the paper “A new insight

into underlying disease mechanism through semi-parametric latent differential network model”

authored by Yong He, Jiadong JI, Xinsheng Zhang and Fuzhong Xue. Web Appendix A presents

the technical conditions and theoretical results for the proposed estimators. Web Appendix B

contains the proofs of the theorems in Web Appendix A.

Web Appendix A: Theoretical analysis

In Web Appendix A we will present theoretical analysis of the estimators ∆̂, ∆̂B and ∆̂M

separately. We investigate the properties of the proposed estimators by considering the convergence

rates of ∆̂−∆0, ∆̂B−∆B
0 and ∆̂M−∆M

0 , including estimation error bounds and support recovery.

Before we present the theoretical results, we first present some notations which are useful in the

following sections. In this paper, notations | · | and ‖ · ‖ are used to denote element-wise norms and

matrix norms respectively. For any vector µ = (µ1, . . . , µd) ∈ Rd, let µ−i denote the (d−1)×1 vector

by removing the i-th entry from µ. |µ|0 =
∑d

i=1 I(µi 6= 0), |µ|1 =
∑d

i=1 |µi|, |µ|2 =
√∑d

i=1 µ
2
i

and |µ|∞ = maxi |µi|. Let A = [aij ] ∈ Rd×d. ‖A‖1 = max1≤j≤d
∑d

i=1 |aij |, |A|∞ = max
i,j
|aij |

and |A|1 =
∑d

i=1

∑d
j=1 |aij |. We use λmin(A) and λmax(A) to denote the smallest and largest

eigenvalues of A respectively. Vec(A) denotes the d2 × 1 vector obtained by stacking the columns

of A. For a set H, we use |H| to denote the cardinality of H. For two sequences of real numbers

{an} and {bn}, we write an = O(bn) if there exists a constant C such that |an| ≤ C|bn| holds for all

n, write an = o(bn) if limn→∞ an/bn = 0, and write an � bn if there exist constants c and C such

that c ≤ an/bn ≤ C for all n.

1 Theoretical properties for Gaussian copula model

First we introduce some basic conditions which are required to obtain the theoretical result for ∆̂.

Condition (C1) requires the difference matrix to have essentially constant sparsity. This is reason-

able in gene expression data analysis as it is expected that the underlying genetic networks share
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many common edges and do not differ much between two conditions. Condition (C2) requires that

the covariates can not be too highly correlated, which is closely related to the mutual incoherence

property introduce by Donoho and Huo (2001).

(C1) The true difference matrix ∆0 has s < p nonzero entries in its upper triangular part, and

|∆0|1 ≤M , where M does not depend on p.

(C2) With s defined in Condition (C1), the constants σXmax = maxj 6=k |ΣX
jk| and σYmax =

maxj 6=k |ΣY
jk| satisfy σ = 4 max(σXmax, σ

Y
max) ≤ σPmin(2s)−1, where σPmin = 2 minj,k(1, 1 + ΣY

kjΣ
X
jk).

Under these conditions, an additional thresholding step on the estimator ∆̂ with a careful

chosen threshold leads to more accurate recovery of the differential network. Define the thresholded

estimator

∆̂τn = {δ̂jkI(|δ̂jk| > τn)}.

Let ∆̂τn = [δ̂τnjk ] and define the function

sgn(t) = I(t > 0)− I(t < 0) + 0 · I(t = 0).

Denote by M(∆̂τn) = {sgn(δ̂τnjk ) : j = 1, . . . , p; k = 1, . . . , p} and M(∆0) = {sgn(δ0
jk) : j =

1, . . . , p; k = 1, . . . , p} the vectors of the signs of the entries of the estimated and true difference

matrices, respectively. The following theorem establishes that ∆̂τn can recover not only the support

of ∆0 but also the signs of its nonzero entries as long as those entries are sufficiently large.

Theorem 1.1. Assume that conditions (C1) and (C2) hold. If min(nX , nY ) > log p,

τn ≥
2

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
C

√
log p

min(nX , nY )
,

and minj,k:δ0jk 6=0 |δ0
jk| > 2τn, then M(∆̂τn) =M(∆̂0) with probability at least 1− p−1, where C is

a sufficiently large constant independent of (p, nX , nY ) and σPmin, σ are defined in condition (C2).

In the context of genetic networks, Theorem 1.1 guarantees that ∆̂τn can identify genes whose

conditional dependencies change in magnitude as well as the directions of those changes between

two conditions under certain regularity conditions. The τn is tuning parameter which is set to be

10−4 in the simulation and data analysis.

The following theorem establishes the convergence rate of ∆̂−∆0 in the Frobenius norm.

Theorem 1.2. Suppose that conditions (C1) and (C2) hold. If min(nX , nY ) > log p,

λn = C

√
log p

min(nX , nY )
,

then

‖∆̂−∆0‖F ≤
2
√

5s

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
λn

with probability at least 1−2p−2, where C is a sufficiently large constant independent of (p, nX , nY )

and σPmin, σ are defined in condition (C2).
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The following theorem establishes the elementwise `∞ norm bound of the estimation error,

which is critical in the proof of Theorem 1.1 and 1.2.

Theorem 1.3. Suppose that conditions (C1) and (C2) hold. If min(nX , nY ) > log p,

λn = C

√
log p

min(nX , nY )
,

then

|∆̂−∆0|∞ ≤
2

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
λn

with probability at least 1−2p−2, where C is a sufficiently large constant independent of (p, nX , nY )

and σPmin, σ are defined in condition (C2).

The same parametric convergence rate for differential network under Gaussian assumption was

established by Zhao et al. (2014). This shows that the estimator ∆̂ for Gaussian copula model

achieves the optimal parametric rate
√

log p/min(nX , nY ) in terms of difference matrix estimation.

The extra modeling flexibility and robustness come at almost no cost of statistical efficiency. Thus

this new estimator can be used as a safe replacement of Gaussian estimators even when the data

are truly Gaussian. This is one main contribution of the current paper.

2 Theoretical properties for latent Gaussian copula model for bi-

nary data

First we introduce some basic conditions which is required to obtain the theoretical results for

binary data. Conditions (B1) and (B2) are similar conditions to conditions (C1) and (C2) in

the last section. Conditions (B3) and (B4) are mainly adopted for technical considerations and

impose little restriction in practice. Specifically, Condition (B3) rules out the singular case that

there exist variables which are perfectly collinear. Condition (B4) is used to control the variation

of F−1(τ ; Λj ,Λk) with respect to (τ ; Λj ,Λk).

(B1) The true difference matrix ∆B
0 has s < p nonzero entries in its upper triangular part, and

|∆B
0 |1 ≤M , where M does not depend on p.

(B2) With s defined in Condition (B1), the constants σ1
max = maxj 6=k |Σ1

jk| and σ2
max =

maxj 6=k |Σ2
jk| satisfy σ = 4 max(σ1

max, σ
2
max) ≤ σPmin(2s)−1, where σPmin = 2 minj,k(1, 1 + Σ2

kjΣ
1
jk).

(B3) There exist a constant δ such that max{Σ1
jk,Σ

2
jk} ≤ 1− δ for any 1 ≤ j 6= k ≤ p.

(B4) There exists a constant M > 0 such that max{|Λ1
j |, |Λ2

j |} ≤M for any 1 ≤ j ≤ p.

Under these conditions, an additional thresholding step on the estimator ∆̂B with a careful

chosen threshold leads to more accurate recovery of the differential network. Define the thresholded

estimator

∆̂B
τn = {δ̂B

jkI(|δ̂B
jk| > τn)}.
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Denote by M(∆̂B
τn) = {sgn(δ̂τnB

jk ) : j = 1, . . . , p; k = 1, . . . , p} and M(∆B
0 ) = {sgn(δ0B

jk ) : j =

1, . . . , p; k = 1, . . . , p} the vectors of the signs of the entries of the estimated and true difference

matrices, respectively. The following theorem establishes that ∆̂B
τn can recover not only the support

of ∆B
0 but also the signs of its nonzero entries as long as those entries are sufficiently large.

Theorem 2.1. Assume that conditions (B1) (B4) hold. If min(n1, n2) > log p,

τn ≥
2

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
C

√
log p

min(n1, n2)
,

and minj,k:δ0Bjk 6=0 |δ0B
jk | > 2τn, then M(∆̂B

τn) = M(∆B
0 ) with probability at least 1 − p−1, where C

is a sufficiently large constant independent of (p, n1, n2) and σPmin, σ are defined in condition (B2).

In the context of genetic networks, Theorem 2.1 guarantees that ∆̂B
τn can identify genes whose

conditional dependencies change in magnitude as well as the directions of those changes between

two conditions under certain regularity conditions even if we only see the binary data 0/1. The τn
is a tuning parameter which is set to be 10−4 in the simulation and data analysis.

The following theorem establishes the convergence rate of ∆̂B −∆B
0 in the Frobenius norm.

Theorem 2.2. Suppose that conditions (B1) (B4) hold. If min(n1, n2) > log p,

λn = C

√
log p

min(n1, n2)
,

then

‖∆̂B −∆B
0 ‖F ≤

2
√

5s

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
λn

with probability at least 1− p−1, where C is a sufficiently large constant independent of (p, n1, n2)

and σPmin, σ are defined in condition (B2).

The following theorem establishes the elementwise `∞ norm bound of the estimation error,

which is critical in the proof of Theorem 2.2 and 2.3.

Theorem 2.3. Suppose that conditions (B1) (B4) hold. If min(n1, n2) > log p,

λn = C

√
log p

min(n1, n2)
,

then

|∆̂B −∆B
0 |∞ ≤

2

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
λn

with probability at least 1− p−1, where C is a sufficiently large constant independent of (p, n1, n2)

and σPmin, σ are defined in condition (C2).

Theorem 2.1 Theorem 2.3 establish that the proposed differential network estimator ∆̂B

achieves the same rate of convergence for both matrix estimation and graph recovery, as if the

latent Gaussian copula random variable X were observed.
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3 Theoretical properties for latent Gaussian copula model for

mixed data

First we introduce some basic conditions which is required to obtain the theoretical results for

mixed data. Conditions (M1) and (M2) are similar to conditions (C1) and (C2) in Section 1.

Conditions (M3) and (M4) are similar to conditions (B1) and (B2) in Section 2.

(M1) The true difference matrix ∆M
0 has s < p nonzero entries in its upper triangular part,

and |∆M
0 |1 ≤M , where M does not depend on p.

(M2) With s defined in Condition (M1), the constants σ1
max = maxj 6=k |Σ1

jk| and σ2
max =

maxj 6=k |Σ2
jk| satisfy σ = 4 max(σ1

max, σ
2
max) ≤ σPmin(2s)−1, where σPmin = 2 minj,k(1, 1 + Σ2

kjΣ
1
jk).

(M3) There exist a constant δ such that max{Σ1
jk,Σ

2
jk} ≤ 1− δ for any 1 ≤ j 6= k ≤ p1.

(M4) There exists a constant M > 0 such that max{|Λ1
j |, |Λ2

j |} ≤M for any 1 ≤ j ≤ p1.

Under these conditions, an additional thresholding step on the estimator ∆̂M with a careful

chosen threshold leads to more accurate recovery of the differential network. Define the thresholded

estimator

∆̂M
τn = {δ̂M

jkI(|δ̂M
jk| > τn)}.

Denote by M(∆̂M
τn) = {sgn(δ̂τnB

jk ) : j = 1, . . . , p; k = 1, . . . , p} and M(∆M
0 ) = {sgn(δ0M

jk ) : j =

1, . . . , p; k = 1, . . . , p} the vectors of the signs of the entries of the estimated and true difference

matrices, respectively. The following theorem establishes that ∆̂M
τn can recover not only the support

of ∆M
0 but also the signs of its nonzero entries as long as those entries are sufficiently large.

Theorem 3.1. Assume that conditions (M1) (M4) hold. If min(n1, n2) > log p,

τn ≥
2

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
C

√
log p

min(n1, n2)
,

and minj,k:δ0Mjk 6=0 |δ0M
jk | > 2τn, then M(∆̂M

τn) =M(∆M
0 ) with probability at least 1− p−1, where C

is a sufficiently large constant independent of (p, n1, n2) and σPmin, σ are defined in condition (M2).

The following theorem establishes the convergence rate of ∆̂M −∆M
0 in the Frobenius norm.

Theorem 3.2. Suppose that conditions (M1) (M4) hold. If min(n1, n2) > log p,

λn = C

√
log p

min(n1, n2)
,

then

‖∆̂M −∆M
0 ‖F ≤

2
√

5s

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
λn
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with probability at least 1− p−1, where C is a sufficiently large constant independent of (p, n1, n2)

and σPmin, σ are defined in condition (M2).

The following theorem establishes the elementwise `∞ norm bound of the estimation error,

which is critical in the proof of Theorem 3.1 and 3.2.

Theorem 3.3. Suppose that conditions (M1) (M4) hold. If min(n1, n2) > log p,

λn = C

√
log p

min(n1, n2)
,

then

|∆̂M −∆M
0 |∞ ≤

2

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
λn

with probability at least 1− p−1, where C is a sufficiently large constant independent of (p, n1, n2)

and σPmin, σ are defined in condition (M2).

Theorem 3.1 Theorem 3.3 establish that the proposed differential network estimator ∆̂M

achieves the same parametric rate of convergence for both matrix estimation and graph recovery.

Remark 3.4. Compared to the separate and joint approaches to estimating differential networks

Cai et al. (2011); Guo et al. (2011) which require sparsity on each Σ−1, the proposed direction

estimation methods for different types of data only require the sparsity of the difference matrix

∆0. Thus the theoretical results in Theorem 1.1-3.3 can still hold in the presence of hub nodes.

Web Appendix B: Proofs of Main Theorems

Before we give the detailed proofs of main theorems in Web Appendix A, we first present some

useful lemmas. Lemma 3.5 is established in Zhao et al. (2014).

Lemma 3.5. Let Σ = ΣY ⊗ ΣX . Label the entries of Γ>ΣΓ as ΣΓ
j′k′,jk (1 ≤ j′ ≤ k′ ≤ p;

1 ≤ j ≤ k ≤ p ). Then we have

ΣΓ
j′k′,jk = ΣY

k′kΣ
X
j′j + ΣY

k′jΣ
X
j′k + ΣY

j′kΣ
X
k′j + ΣY

j′jΣ
X
k′k, j′ 6= k′, j 6= k;

ΣΓ
j′k′,jj = ΣY

k′jΣ
X
j′j + ΣY

j′jΣ
X
k′j , j′ 6= k′, j = k;

ΣΓ
j′j′,jk = ΣY

j′kΣ
X
j′j + ΣY

j′jΣ
X
j′k, j′ = k′, j 6= k;

ΣΓ
j′j′,jj = ΣY

j′jΣ
X
j′j , j′ = k′, j = k;

Lemma 3.6. With probability at least 1− 2/p2, we have

sup
j,k

∣∣∣ŜXjk − ΣX
jk

∣∣∣ ≤ C√ log p

nX
, sup

j,k

∣∣∣ŜYjk − ΣY
jk

∣∣∣ ≤ C√ log p

nY
(3.1)

where ŜXjk, Ŝ
Y
jk are defined in Equation (2.1) in the main paper and C is a constant independent of

(nX , nY , p).
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Proof. We prove the result for ŜXjk. The result for ŜYjk can be obtained in a similar way. By

definition,

ŜXjk =

{
sin(π2 τ̂

X
jk) j 6= k

1 j = k
.

Denote by TX = [τXjk ] and T̂X = [τ̂Xjk ]. By Taylor expansion, we have

ŜXjk − ΣX
jk =

π

2
cos(

π

2
ξjk)(τ̂

X
jk − τXjk),

where ξjk ∈
[
min{τ̂Xjk , τXjk},max{τ̂Xjk , τXjk}

]
. Denote by T̃X = [ξjk], then we have

ŜX −ΣX =
π

2
cos(

π

2
T̃X) ◦ (T̂X − TX),

where ◦ denotes the matrix element-wise multiplication, which implies that

|ŜX −ΣX |∞ ≤
π

2
|T̂X − TX |∞.

By Hoeffding inequality, we have that

P
(
|τ̂Xjk − τXjk | > t

)
≤ 2 exp(−nXt2/4).

Therefore,

P
(
|T̂X − TX |∞ > t

)
≤ 2p2 exp(−nXt2/4).

By letting t = 4
√

log p/nX , the above inequality implies that with probability 1− 2p−2,

|T̂X − TX |∞ ≤ C
√

log p

nX
.

Thus with probability at least 1− 2p−2,

|ŜX −ΣX |∞ ≤
π

2
|T̂X − TX |∞ ≤ C1

√
log p

nX
,

where C1 = π/2C. This concludes Lemma 3.6.

Lemma 3.7. Suppose that conditions (B3) and (B4) hold. With probability at least 1− 1/p, we

have

sup
j,k

∣∣∣R̂1

jk − Σ1
jk

∣∣∣ ≤ C√ log p

n1
, sup

j,k

∣∣∣R̂1

jk − Σ2
jk

∣∣∣ ≤ C√ log p

n2
, (3.2)

where R̂1
jk, R̂

2
jk are defined in Equation (2.5) and (2.6) in the main paper and C is a constant

independent of (n1, n2, p).

Proof. We prove the result for R̂
1

jk. The result for R̂
2

jk can be obtained in a similar way. By the

argument in Fan et al. (2017), we have that for any t > 0,

P
(
|R̂1 −Σ1|∞ > t

)
≤2p2 exp

(
−n1t

2

8L2
2

)
+ 4p2 exp

(
− n1t

2π

162L2
1L

2
2

)
+ 4p2 exp

(
−M

2n1

2L2
1

)
,
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where L1, L2 are two positive constants independent of (n1, p). Thus let t = C
√

log p
n1

with a

sufficiently large constant C, we have

sup
j,k

∣∣∣R̂1

jk − Σ1
jk

∣∣∣ ≤ C√ log p

n1
.

Lemma 3.8. Fan et al. (2017) Suppose that conditions (M3) and (M4) hold. With probability

greater than 1− 1/p, we have that

sup
j,k

∣∣∣T̂1

jk − Σ1
jk

∣∣∣ ≤ C√ log p

n1
, sup

j,k

∣∣∣T̂1

jk − Σ2
jk

∣∣∣ ≤ C√ log p

n2
, (3.3)

where T̂ 1
jk, T̂

2
jk are defined in Equation (2.8), (2.9) and (2.10) in the main paper and C is a constant

independent of (n1, n2, p).

Proof of Theorem 1.3

Let the entries of ∆0 be denoted by δ0
jk and define the p(p + 1)/2 × 1 vector θ0 = (δ0

jk)1≤j≤k≤p.

Define Σ = ΣY ⊗ ΣX . Label the entries of Γ>ΣΓ as ΣΓ
j′k′,jk(1 ≤ j′ ≤ k′ ≤ p; 1 ≤ j ≤ k ≤ p

). Let Ŝ = ŜX ⊗ ŜY , ŝ = Vec(ŜX − ŜY ), s = Vec(ΣX − ΣY ) and w = θ̂ − θ0. The bound on

|∆̂−∆0|∞ = |w|∞ is obtained by following the similar argument as in Zhao et al. (2014).

Denote the ath component of Γ>ΣΓw by (Γ>ΣΓw)a, the (a, b)th entry of Γ>ΣΓ by ΣΓ
ab, and

the bth component of w by wb. Denote by ΣΓ
max = maxa6=b |ΣΓ

ab|. Then we have that

(Γ>ΣΓw)a =
∑
b

ΣΓ
abwb = ΣΓ

aawa +
∑
b 6=a

ΣΓ
abwb,

which further implies that

|ΣΓ
aawa| ≤ |Γ>ΣΓw|∞ + ΣΓ

max

∑
b 6=a
|wb|. (3.4)

The diagonal terms ΣΓ
aa can be labeled as ΣΓ

jk,jk, where j may equal to k. By Lemma 3.5, we

have that ΣΓ
jk,jk ≥ σPmin, with σPmin define in condition (C2). The off-diagonal terms ΣΓ

ab, a 6= b,

can be relabelled as ΣΓ
j′k′,jk with j′ 6= j or k′ 6= k. By Lemma 3.5, we have that ΣΓ

j′k′,jk ≤
4 max(σXmax, σ

Y
max) = σ, with σXmax, σ

Y
max defined as in condition condition (C2). By these facts and

together with condition (C2), Equation (3.4) becomes

|w|∞ ≤
1

σPmin

(
|Γ>ΣΓw|+ σPmin

2s
|w|1

)
. (3.5)

Let θ0 = (θ01, . . . , θ0d)
> and Q0 = {1 ≤ i ≤ d : θ0i 6= 0}, where d = p(p + 1)/2. For any d × 1

vector a = (a1, . . . , ad)
>, let aQ0 be the vector with component aQ0j = 0 for j 6= Q0 and aQ0j = aj

for j ∈ Q0.
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First we will show that θ0 is the in the feasible set in Equation (2.12) in the main paper with

high probability. By Lemma 3.6, we have that both |ŜX −ΣX |∞ and |ŜY −ΣY |∞ are less than

C (log p/min(nX , nY ))1/2 with probability at least 1− 2p−2. Thus

|Γ>ŜΓθ0 − Γ>ŝ|∞ ≤ |Γ>(Ŝ −Σ)Γθ0|∞ + |Γ>(ŝ− s)|∞
≤ ‖Γ>‖∞|Ŝ −Σ|∞‖Γ‖1|θ0|1

+ ‖Γ>‖∞
(
|ŜX −ΣX |∞ + |ŜY −ΣY |∞

)
≤ 4M |Ŝ −Σ|∞ + 4C (log p/min(nX , nY ))1/2

where ‖Γ‖1 = 2 by the definition of Γ and |θ0|1 ≤M . By the definition of the Kronecker product,

each entry of Σ can be written as ΣX
l′lΣ

Y
m′m, so

|ŜXl′lŜYm′m − ΣX
l′lΣ

Y
m′m|

= |ΣX
l′l(Ŝ

Y
m′m − ΣY

m′m) + (ŜXl′l − ΣX
l′l)Σ

Y
m′m + (ŜXl′l − ΣX

l′l)(Ŝ
Y
m′m − ΣY

m′m)|

≤
[
|ΣX
l′l|+ |ΣY

m′m|+ C (log p/min(nX , nY ))1/2
]
C (log p/min(nX , nY ))1/2

≤ [2 + C]C (log p/min(nX , nY ))1/2

≤ C1 (log p/min(nX , nY ))1/2 ,

since min(nX , nY ) > log p. Then θ0 is feasible with probability at least 1−2p−2 if λn = C (log p/min(nX , nY ))1/2

with a sufficiently large constant C.

Next we will give an bound on |w|1. By the definition of θ̂ in Equation (2.12) in the main paper,

we have |θ0|1 ≥ |θ̂|1, which implies that |θ0Q0 |1 − (|θ̂Q0 |1 + |θ̂Qc
0
|1) ≥ 0. By triangle inequality,

|θ0Q0 − θ̂Q0 |1 ≥ |θ̂Qc
0
|1, or in other words, |wQc

0
|1 ≤ |wQ0 |1. Therefore, we have |w|1 ≤ 2|wQ0 |1 ≤

2s1/2|wQ0 |2. To bound |wQ0 |2, we have that for any s-sparse vector c,

|c>Γ>ΣΓc| ≥
∑
a

ΣΓ
aac

2
a −

∣∣∣∣∣∣
∑
a6=b

ΣΓ
abcacb

∣∣∣∣∣∣
≥ σPmin|c|22 − σ

∑
a6=b
|cacb|

≥ σPmin|c|22 − σ(s− 1)|c|22,

which implies that

|w>Q0
Γ>ΣΓw| ≥ |w>Q0

Γ>ΣΓwQ0 | − |w>Q0
Γ>ΣΓwQc

0
|

≥
(
σPmin − (s− 1)σ

)
|wQ0 |22 −

∣∣∣∣∣∣
∑
a,b

ΣΓ
abwQ0awQc

0b

∣∣∣∣∣∣
≥
(
σPmin − (s− 1)σ

)
|wQ0 |22 − σ|wQ0 |1|wQc

0
|1

≥
(
σPmin − (s− 1)σ

)
|wQ0 |22 − σ|wQ0 |21

≥
(
σPmin − (2s− 1)σ

)
|wQ0 |22.
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Together with |w>Q0
Γ>ΣΓw| ≤ |wQ0 |1|Γ>ΣΓw|∞ ≤ s1/2|wQ0 |2|Γ>ΣΓw|∞, this implies that

|w|1 ≤ 2s1/2|wQ0 |2 ≤
2s|Γ>ΣΓw|∞
σPmin − (2s− 1)σ

,

so Equation (3.5) becomes

|w|∞ ≤
1

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
|Γ>ΣΓw|∞.

By the feasibility of θ0, we have

|Γ>ΣΓw|∞ = |Γ>ΣΓθ̂ − Γ>s|∞
≤ |Γ>ŜΓθ̂ − Γ>ŝ|∞ + |Γ>(Ŝ −Σ)Γθ̂|∞ + |Γ>(ŝ− s)|∞
≤ λn + ‖Γ>‖∞|Ŝ −Σ|∞‖Γ‖1|θ0|1

+ ‖Γ>‖∞
(
|ŜX −ΣX |∞ + |ŜY −ΣY |∞

)
≤ λn + C (log p/min(nX , nY ))1/2 = 2λn.

Thus

|∆̂−∆0|∞ = |w|∞ ≤
2

σPmin

{
1 +

σPmin

σPmin − (2s− 1)σ

}
λn,

and this concludes Theorem 1.3.

Proof of Theorem 1.1

Let δ̂τnjk be the (j, k)th entry of ∆̂τn . Then we have

P
(
M(∆̂τn) =M(∆0)

)
= P (A ∩B ∩ C) ,

where events A,B,C are respectively

A =

{
max

j,k:δ0jk=0
|δ̂τnjk | = 0

}
, B =

{
min

j,k:δ0jk>0
δ̂τnjk > 0

}
, C =

{
max

j,k:δ0jk<0
δ̂τnjk < 0

}
.

Suppose δ0
jk > 0, By Theorem 1.3, we have

δ̂jk = δ0
jk − (δ0

jk − δ̂jk) > 2τn − τn,

with probability tending to 1. Thus δ̂τnjk = δ̂jk > 0. Next suppose δ0
jk < 0, then

δ̂jk = δ0
jk − (δ0

jk − δ̂jk) < −2τn + τn,

with probability tending to 1. Thus δ̂τnjk = δ̂jk < 0. Finally, for δ0
jk = 0, |δ̂jk| = |δ̂jk− δ0

jk| ≤ τn with

probability tending to 1, thus δ̂τnjk = 0.
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3.1 Proof of Theorem 1.2

In the proof of Theorem 1.3, we obtain a result that |wQc
0
|1 ≤ |wQ0 |1. Cai et al. (2010) showed that

|w|2 ≤ 2|wQ0∪Q∗ |2, where Q∗ is the set of indices corresponding to the s/4 largest components of

wQc
0
. Then |w|2 ≤ 2(1.25s)1/2|w|∞, and combing this with Theorem 1.3 concludes the the result.

Proof of other Theorems

For the binary data and mixed data, theoretical analysis can be conducted by the similar way as

for the continuous data case due to the critical results established in Lemma 3.7 and Lemma 3.8.

For saving space, we omit the proofs here.
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