

Supplementary Materials for

Vasopressin stimulates the proliferation and differentiation of red blood cell precursors and improves recovery from anemia

Balázs Mayer, Krisztián Németh, Miklós Krepuska, Vamsee D. Myneni, Dragan Maric,
John F. Tisdale, Matthew M. Hsieh, Naoya Uchida, Heon-Jin Lee, Michael J. Nemeth,
Kenn Holmbeck, Constance Tom Noguchi, Heather Rogers, Soumyadeep Dey,
Arne Hansen, Jeffrey Hong, Ian Chow, Sharon Key, Ildikó Szalayova, Jerome Pagani,
Károly Markó, Ian McClain-Caldwell, Lynn Vitale-Cross, W. Scott Young,
Michael J. Brownstein, Éva Mezey*

*Corresponding author. Email: mezeye@mail.nih.gov

Published 29 November 2017, *Sci. Transl. Med.* **9**, eaao1632 (2017) DOI: 10.1126/scitranslmed.aao1632

The PDF file includes:

Fig. S1. AVP agonists affect intracellular calcium, and AVP increases cAMP in human progenitors.

Fig. S2. Norepinephrine and AVP induce an increase in the number of BFU-E colonies.

Fig. S3. AVP and AVPR1B agonist [d(Cha⁴)-AVP] increase BFU-E formation.

Fig. S4. Band intensities from Western blots were analyzed by ImageJ.

Fig. S5. Response to anemia is coordinated by AVP and EPO.

Table S2. Human RT-PCR primers.

Table S3. Mouse RT-PCR primers.

Table S4. Mouse real-time PCR primers.

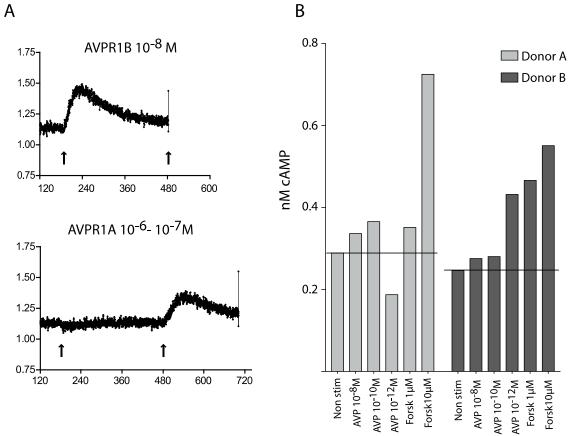
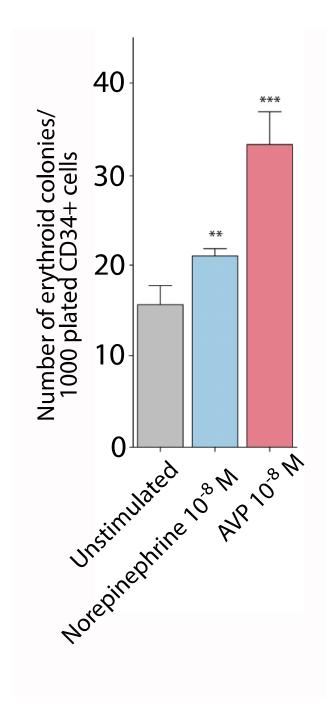
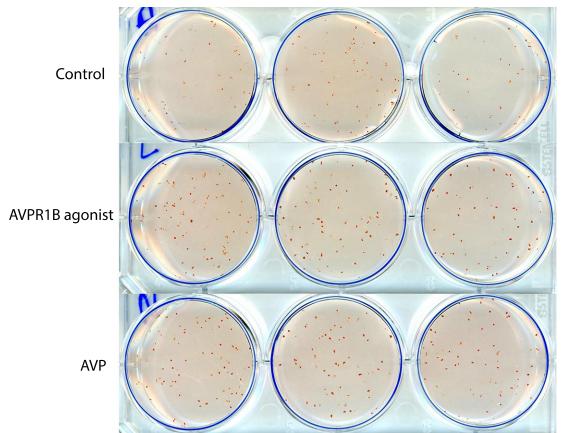
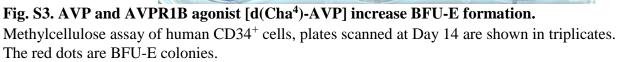
Table S5. Antibodies used for flow cytometry.

Other Supplementary Material for this manuscript includes the following:

(available at

www.sciencetranslationalmedicine.org/cgi/content/full/9/418/eaao1632/DC1)

Table S1. RBC indices for patients (provided as an Excel file).

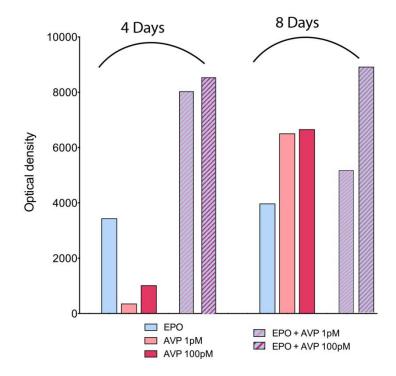

Fig. S1. AVP agonists affect intracellular calcium, and AVP increases cAMP in human progenitors. (A) AVPR1B at 10⁻⁸ M concentration induces intracellular calcium in HSPCs (CD34⁺ cells), whereas an AVPR1A agonist has effect at a 100-fold higher dose. (B) AVP stimulation also increases cAMP concentrations. In two consecutive experiments, CD34⁺ cells from two different donors were plated. AVP increased cAMP concentrations in stimulated vs. non-stimulated cells. Forskolin was used as positive control in both experiments in (B).

Fig. S2. Norepinephrine and AVP induce an increase in the number of BFU-E colonies. BFU-E colony-forming assay done with norepinephrine as positive control, along with AVP. Error bars represent mean+SD; **p<0.01; ***p<0.001.

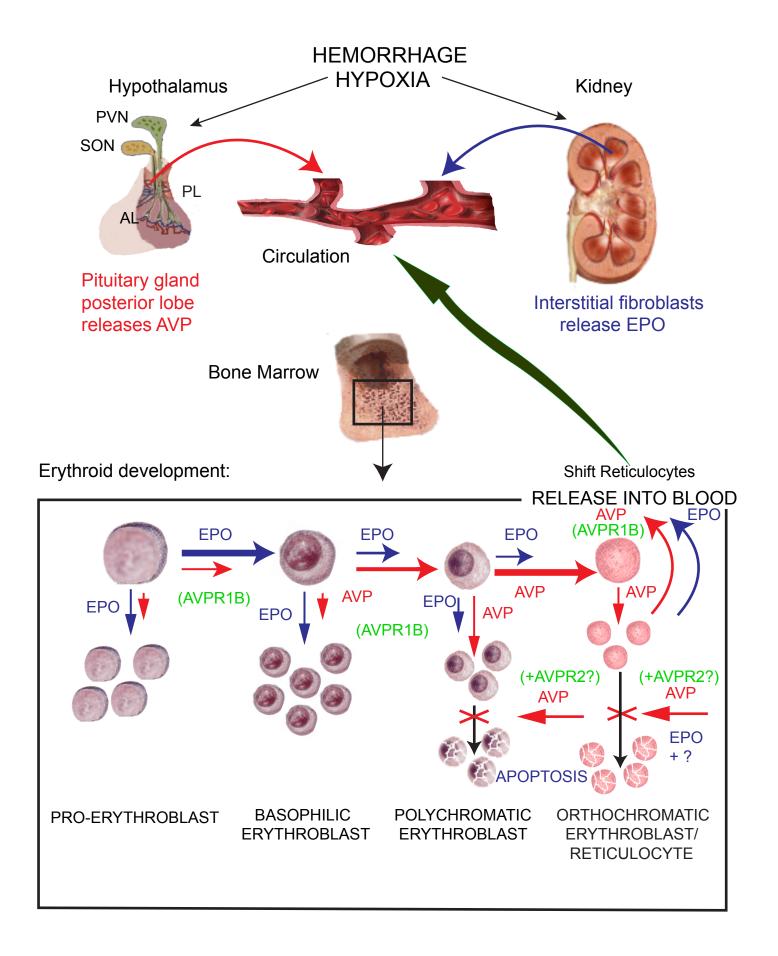


Fig. S4. Band intensities from Western blots were analyzed by ImageJ.

Quantitative evaluation of STAT5 phosphorylation after EPO and/or AVP treatment of developing erythroid progenitors in vitro. Western blots are shown in Fig. 2F. The optical densities of the bands were measured using Image J software.

Fig. S5. Response to anemia is coordinated by AVP and EPO.

In response to blood loss or hypoxia, AVP is released into the blood from the hypothalamo-hypophyseal system, and EPO is released from the specialized interstitial fibroblasts of the kidney. EPO induces proliferation of proerythroblasts and basophilic erythroblasts, as well as their further differentiation. AVP induces proliferation of polychromatic and orthochromatic erythroblasts, and might speed up the differentiation/maturation of young reticulocytes into mature reticulocytes. AVPR1B receptors appear to mediate the effects of AVP on cellular proliferation and differentiation. In addition, AVP might also decrease apoptosis in the most mature population of reticulocytes. Both EPO and AVP participate in releasing cells into the circulation, but AVP may speed the maturation of immature red cells (shift-reticulocytes) and cause their quick release from the bone marrow. This could contribute to a rapid increase in hematocrit. The red arrows suggest roles for AVP, whereas the blue arrows demonstrate well-known roles of EPO.

Abbreviations: AL-anterior lobe of the pituitary gland; PL-posterior (neural) lobe of the pituitary gland; PVN-paraventricular hypothalamic nucleus; SON-supraoptic hypothalamic nucleus

Table S2. Human RT-PCR primers.

Target	Primer sequence	PCR product size	Annealing temp	Cycles
Human AVPR1A	huAVPR1A for 1:	234 bp	65°C	45
NM_000706	CCGCCTGGGTGCTGAGCTTC			
	hu AVPR1A rev 1:			
	TCTTCCCGCGGACGTTGCAC			
	1 step RT-PCR			
Human AVPR1B	huAVPR1Bfor1:	283 bp	55°C	45
NM_000707	GGCTGCCATCTCGGGTCAGC			
	huA <i>VPR1B</i> rev1:			
	CAGGCAAGGTGACGCAGGGG			
Human AVPR2	Hu AVPR2 for:	423 bp	58°C	45
NM_000054	ATTCATGCCAGTCTGGTGC			
	Hu <i>AVPR2</i> rev:			
	TCACGATGAAGTGTCCTTGG ¹			

Table S3. Mouse	RT-PCR	primers.
-----------------	--------	----------

Target	Primer sequence	PCR	Annealing	Cycles
		product	temp	
		size		
Mouse	ms Avpr1a F:	215 bp	60°C	45
Avpr1a	CAGATGTGGTCAGTCTGGGATA			
NM_016847	m <i>Avpr1a</i> R:			
	CTCATGCTATCCGAGTCATCCT			
Mouse	ms Avpr1b F:	323 bp	60°C	45
Avpr1b	GCTGGCCCAAGTCCTCATCTTCTG			
NM_011924	Avpr1b R: GCGGTGACTCAGGGAACGT			
Mouse	ms Avpr2 for 1:	302 bp	62°C	45
Avpr2	CACGTCTGCAGTGCCTGGGG			
NM_019404	ms <i>Avpr2</i> 1:			
	CATGGAAGCGGTCGGTGGCA			

Table S4.	Mouse	real-time	PCR	primers.

Target	Primer sequence
Mouse	F: TAGGCCTGGTTCGTAAGCAT
Avprla	R: TTCAATCACGGACCAGTTCA
NM_016847	
Mouse	F: ATCCGAACCGTGAAGATGAC
Avpr1b	R: TCATTAGGGGCATTCTCGTC
NM_011924	
Mouse	F: CAAGGGACACCCTGGTTCTA
Avpr2	R: CTACGCAACTCCGAGGAGAC
NM_019404	
Tbp	Ms_Tbp_1_SG QuantiTect Primer

Table S5. Antibodies used for flow cytometry

Antibodies	Clones	Fluorochromes	Source
anti-mouse			
Gr-1 (Ly-6G)	RB6-8C5	APC-eFluor 780	Ebiosciences
B220 (CD45R)	RA3-6B2	PE-Cy7	Ebiosciences
TER-119	TER-119	APC	Ebiosciences/
			BD Biosciences
CD3e	145-2C11	PE	Ebiosciences
CD11b (Mac-1)	M1/70	PerCp-eFluor710	Ebiosciences
CD71	C2	PE	BD Biosciences
CD41	MWReg30	FITC	BD Biosciences
CD61		PE	BD Biosciences
sca1 (Ly-6A/E)	D7	FITC or PE-Cy7	BD Biosciences/
			Ebiosciences
c-kit (CD117)	2B8	APC	BD Biosciences
CD34	RAM34	AlexaFluor700	Ebiosciences
CD150	mShad150	PE	Ebiosciences
CD48	HM48-1	PerCp Cy5.5	Ebiosciences
IL-7R (CD127)	A7R34	PerCpCy5.5	Ebiosciences
CD44		APC	BD Biosciences
TER119		FITC	BD Biosciences
CD45		APC-Cy7	BD Biosciences
CD11b		АРС-Су7	BD Biosciences
GR1		APC-Cy7	BD Biosciences
CD16/CD32		Purified Rat anti-mouse	BD Biosciences
CD4		Biotin	Ebiosciences
CD8		Biotin	Ebiosciences
TER119		Biotin	Ebiosciences
Gr-1		Biotin	Ebiosciences
CD11b		Biotin	Ebiosciences
B220		Biotin	Ebiosciences
anti-human			
CD34		PE	BD Biosciences
CD38		FITC	BD Biosciences