
Supplemental Methods 1 

Autofluorescence microscopy for histology-directed workflows 2 

AF microscopy parameters are determined by the experimental workflow. In registration-driven 3 

experiments, it suffices to have a single channel AF image for the serial sections to drive registration. 4 

The registration software in this workflow only uses a single image channel, affording time saving by a 5 

shorter microscopy scan. Generally this single channel is composed from multiple AF channels using the 6 

pixel-wise maximum image. For scanning with only one channel for registration, the channel should be 7 

selected to be maximally informative of the tissue morphology for registration to work in all areas. An 8 

AF signal that is highly localized in the tissue section would not be ideal for global section registration. In 9 

our experience, a standard FITC filter has proved most useful for this task as it provides high intensity AF 10 

from several endogenous fluorophores but this can be quickly evaluated on a case-by-case scenario. The 11 

FITC filter described has a wide band for both excitation (465-495 nm) and emission (515-555 nm). For 12 

direct AF annotation workflows, generally a longer microscopy acquisition is required, but again, this 13 

depends on the annotator and the target ROIs, and the microscope. 14 

Supplemental Methods Figure 1. Comparison of different AF channels for annotation of glomeruli. White arrows indicate most 

of the glomeruli in the window. 



For human kidney glomeruli, DAPI, FITC and TRITC channels were used (bottom right panel in 1 

Supplemental Methods Figure 1), but examination of different color combinations in Sup. Met. Figure 1 2 

allows us to see DAPI/FITC may suffice alone and that the TRITC channel adds limited detail.  3 

Intensity based computational image registration for AF images 4 

The basics of image registration along with the software and parameters used to achieve image 5 

registration in throughout this work are described in this section.  6 

The elastix registration toolbox (http://elastix.isi.uu.nl/) was used for all registration. elastix is a general 7 

purpose medical image registration toolbox built on top of the Insight Segmentation and Registration 8 

Toolkit (ITK) that registers images using image intensity patterns. Recently, the elastix team has 9 

developed SimpleElastix (https://simpleelastix.github.io/), a complete wrapping of the elastix and ITK 10 

components in many popular scripting languages such as Python and R. Within the software built for 11 

this work, python was used to manage registration inputs and outputs for SimpleElastix.  12 

Fundamentals of Image registration 13 

Image registration consists of finding a transformation of the coordinates of one image to closely match 14 

the coordinates of a second based on shared information (image intensity in the work, although other 15 

models can use shape or other information). The image to be deformed is called the source image 16 

𝐼𝑆 (sometimes also moving image)  while the image to which 𝐼𝑆 is being deformed is called the target 17 

image 𝐼𝑇 (sometimes also called fixed or template image). Thus in computational registration one 18 

searches for a coordinate transform 𝑻 which we can apply to 𝐼𝑇 such that 𝐼𝑆(𝑻) is spatially aligned with 19 

𝐼𝑇. Within elastix, the registration task is achieved through iterative optimization of the transformation 20 

parameters based on a cost function 𝐶 which measures image similarity at each iteration. In this way, 21 

the registration progressively moves towards improved alignment at each iteration. In this work, 22 

microscopy image registration is also performed over multiple image resolutions. Details for the key 23 

registration components follows. 24 

The cost function 𝐶 which drives the iterative optimization of registration parameters consists of a 25 

similarity measure between images. In this work mutual information34 was primarily used. Mutual 26 

information is a statistical measure of intensity similarity between the 𝐼𝑆(𝑻) and 𝐼𝑇. This measure is 27 

general and has had a large impact in multimodal image registration, although we found it to work 28 

equally well in mono-modal registration. We also found more mono-modal metrics like mean squares 29 

and correlation coefficient worked in most cases, but often did not always converge in the critical early 30 

low resolution image registration. 31 

Linear transformations were done with either a rigid body or an affine model. Rigid body 32 

transformations allow for rotation and translation but no scaling or shearing. Rigid transformations are 33 

useful to obtain a ‘safe’ transformation without shearing or scaling when image resolution is precisely 34 

known, aspect ratio does not change, and gross morphology is not substantially changed, as expected in 35 

serial tissue sections. Affine transformations allow deformations with more degrees of freedom: scaling, 36 

shearing, rotation and translation. Affine transformations are used when images were taken with two 37 

different sensors with different image resolutions but this is not strictly necessary as registration in 38 

http://elastix.isi.uu.nl/


elastix occurs in physical space (microns) rather than pixel space. Linear transformation models are 1 

practically required in serial section registration to initialize non-linear transformations. Here, these 2 

transformations ‘roughly’ align the tissue sections prior to local warping. As the localized warping is a 3 

much more complex model, it can be more error prone, especially when tasked with the major warps 4 

that an initial linear transformation would find. To put simply, accurate registration is not likely to be 5 

achieved if large warps are necessary to account things like gross morphological alignment. 6 

The non-linear transformations described in this work used exclusively a B-spline transformation model. 7 

This model uses an evenly spaced control point grid between which B-spline curves are fit. The density 8 

of control points on image is user specified in physical spacing. We found 100 µm to be sufficient for 9 

serial sections scanned at ~ 1 µm resolution. A higher number of control points requires a greater 10 

number of parameters to be optimized and we found that going too fine often resulted in unrealistic 11 

transformations such as swirls. These would not be well estimated with the linear transformation, 12 

whereas non-linear transformations can be used for small corrections from these sample preparations. 13 

For optimization, stochastic gradient descent (SGD) was employed. SGD is a variant of GD that uses 14 

smaller sample batches (random samples of pixels from the images) when calculating the gradient to 15 

save computational time. In image registration, smaller batches equate to sampling a number of pixels 16 

in the image selected randomly rather than the entire image for calculation of the cost function (image 17 

similarity metric). Klein et al. proved that robust registration could still be achieved with this approach.35 18 

This is critical when registering high resolution microscopy data where there m x n pixels and each image 19 

has thousands of pixels in each dimension. The SGD optimizer doesn’t stop after reaching a minimum 20 

but will continue for the set number of iterations. In our work we have found 500-1000 iterations 21 

necessary for linear transformations and >1500 and <2500 necessary for nonlinear transformations. This 22 

fits with the degrees of freedom of each model. In general, we tried to overshoot the number of 23 

iterations as the computation time for a given registration is less than 5 minutes unless the dimensions 24 

of the image are very large. 25 

Another critical parameter is the hierarchical resolution scheme used in the registration. In general, we 26 

used 10 resolutions, starting with optimization of registration of very down sampled images and 27 

progressively increasing in dimension until the last layer is the original image dimension. In linear 28 

transformations, this simply means downsampling the images before searching for a transformation, 29 

while in non-linear transformations this entails downsampling the image and downsampling the B-spline 30 

control point grid. The latter point is especially important, as the downsampled image is better for 31 

estimating large warps to begin the registration, then smaller features are progressively registered as 32 

the process goes to higher resolution images. In a sense the registration goes from region localized 33 

warping to cellular level warping. This allows large then small local features to be accurately registered. 34 

Another key element in the multiresolution scheme is optimizer step size (learning rate) which 35 

determines the ‘nudge’ each parameter can receive at each iteration and is set per resolution in physical 36 

amounts. In this we have also selected a large to small regime, where early low resolution 37 

transformations take larger steps (100s of microns), (i.e. large translations and rotations for rough 38 

alignment) and high resolution makes smaller changes (10s of microns) to the transformation 39 

parameters assuming earlier models converged well. In linear models this allows us to first find the gross 40 



translations and rotations, for instance where one tissue section occupies only the top-left quadrant of 1 

the image, and the second section’s image is centered in the image.  2 

Tweaking of parameters is necessary if registration is poor, troubleshooting advice can be found in the 3 

elastix manual at http://elastix.isi.uu.nl/. Parameter files used in all registrations are available at 4 

https://github.com/NHPatterson/regToolboxMSRC/parameter_files.  5 

Supporting Information and Figures 6 

Autofluorescence as an IMS compatible microscopy technique 7 

The lack of sample preparation for AF microscopy makes it ideally suited for integration into IMS 8 

experiments where it can yield a microscopy-grade view into the structure of the tissue without 9 

introducing non-biological variation. The AF modality is general in that it can measure both fresh frozen 10 

and formalin-fixed paraffin-embedded (FFPE) tissue sections and has been used to interrogate 11 

numerous biological phenomena.36 Additionally, AF images can also be acquired from tissues on opaque 12 

surfaces (e.g., metallic slides) if an upright microscope is used, further expanding the application 13 

domains in which microscopic histological information can be obtained. AF microscopy of tissue sections 14 

has presented rich morphology in all tissue types that we have examined to date (several examples are 15 

shown in Figures S1-4). A first critical aspect to determine feasibility of any workflow incorporating AF is 16 

to measure whether AF influences or changes analyte composition in the sample. This aspect was 17 

examined for lipid analysis specifically by performing IMS measurement on three serial sections of 18 

mouse brain, two after AF microscopy and one without AF. The data were subjected to principal 19 

components analysis (PCA) to examine underlying correlative trends in the data for AF derived artifacts. 20 

 

Figure S1. Autofluorescence microscopy images of sections from various tissue types. Thumbnail size AF images of various 
tissue types. Samples were all fresh frozen, except where noted as FFPE. Note: these images are not matched in terms of scale 
and are not intended for comparison. Blue = DAPI filter, Green = FITC filter, Red = TRITC filter. See manuscript methods for 
information on the wavelengths of these fluorescence filters. 

http://elastix.isi.uu.nl/
https://github.com/NHPatterson/regToolboxMSRC/parameter_files


In Figure S5, the first 6 PCs account for ~97% of the data variance are shown for the dataset. They show 1 

remarkable similarity across all datasets, suggesting very little to no impact from AF microscopy on the 2 

IMS measurements. 3 

 4 



 1 

Figure S2. Mouse Spleen registered AF and H&E images. High magnification shows an area of white pulp. 2 



 1 

Figure S3. Rat brain registered AF and H&E. Mid magnification shows an area of cerebellum, arrows indicate a 2 

Purkinje cell. High magnification shows a further zoom on the Purkinje cell body. 3 
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 1 

Figure S4. Rat brain registered AF and H&E. High magnification shows the transition from cortex to medulla to 2 

pelvis (left to right). 3 
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Figure S5. Evaluation of the effect of AF on mouse brain cerebellum tissue using DAN matrix and PCA.  

Serial Section 1 Serial section 2 Serial section 3

AF data acquired AF data acquired AF data acquired

P
C

1
P

C
2

P
C

3

P
C

4
P

C
5

P
C

6

96.6 % 
cumulative 

variance

Serial Section 1 Serial section 2 Serial section 3

AF data acquired AF data acquired AF data acquired



Registration-driven histology-directed IMS workflow and time 1 

considerations 2 

Figure S6 outlines the workflow in a simplistic flowchart with time highlights with the AF registration-3 

driven workflow’s unique steps highlighted with black boxes and the common steps to all histology 4 

directed workflows in red boxes. 5 

 6 

Figure S6. AF registration-driven histology-directed flowchart with time considerations. Black boxes highlight 7 

steps unique to the novel workflow while red boxes highly common steps between the new workflow and previous 8 

ones. 9 



Figure S6 highlights the commonalities between workflow and where the AF registration-driven 1 

approach differs. The most important time factor is the AF microscopy which may add differing amounts 2 

of time dependent on the microscope and magnification used. In all experiments in this work, a 10x 3 

magnification objective was used (~1 µm / pixel). A single fluorescence channel rat kidney (~15x15 mm) 4 

AF scan required 10 minutes on the Nikon Eclipse 90i microscope. On a more modern fluorescence slide 5 

scanner, a 10x acquisition is likely to be 5-10x faster at the same magnification.  Adding additional filters 6 

(not necessary for registration only experiments, see Supplement Methods), adds time linearly. Overall, 7 

the AF microscope and additional registration steps are estimated to add 5-10 minutes of user time 8 

(time where a user is interacting with a software, setting up the AF scans, etc.) and 20-30 minutes total 9 

per serial section pair (user + instrument + computational time) at 10x magnification with the system 10 

used in this work with the caveat that faster microscopes will reduce this time significantly. Lower 11 

magnification objectives could also be explored as even a 5x objective produces pixels of approximately 12 

2 µm, allowing fine registration to be achieved in approximately a quarter of the time required by a 10x. 13 

Comparatively, manual serial registration approaches using microscope images or a mixture of high and 14 

low resolution images can take several hours or minutes, depending on desired accuracy and the user. 15 

Computational serial section registration approaches6,11,29 using high and low resolution images may be 16 

faster at the image scanning phase (a flat-bed scan takes minutes for multiple sections) but have limited 17 

accuracy and limited ability to evaluate accuracy as described in the next section.  18 

  19 



Evaluation of autofluorescence image serial section registration using test  1 

 

Figure S7. Landmark distance evaluation mouse brain images. A. Autofluorescence images of the two mouse brain sections pre-registration. 

Numbers indicate corresponding points. B. Point sets displayed with different registrations at low magnification. C. Point sets at high magnification 

in first 3 panels, left to right, then a merged AF image where the registered image is purple and the target image is green. Lines are between the 

points and were used to calculate distance.  



  1 

Figure 

S8. Landmark distance evaluation rat kidney images. A. Autofluorescence images of the two rat kidney sections pre-registration. Numbers 

indicate corresponding points. B. Point sets displayed with different registrations at low magnification. C. Point sets at high magnification in 

first 3 panels, left to right, then a merged AF image where the registered image is purple and the target image is green. Lines are between the 

points and were used to calculate distance. 



  1 

Figure 

S9. Landmark distance evaluation mouse spleen images. A. Autofluorescence images of the two mouse spleen sections pre-

registration. Numbers indicate corresponding points. B. Point sets displayed with different registrations at low magnification. C. 

Point sets at high magnification in first 3 panels, left to right, then a merged AF image where the registered image is purple and 

the target image is green. Lines are between the points and were used to calculate distance. 



On the difficulty of comparing the novel method to previously published 1 

approaches 2 

It is important to note the difficulty confronted in comparing our novel approach with previous 3 

histology-directed approaches6,11,29 as such fine (< 10 µm) comparisons are impossible when working in 4 

a histology-directed platform mixing low and high-resolution images. The low-resolution images are not 5 

resolved to the level of detail to select cellular and micron level morphological features as 6 

corresponding landmarks. Previous works using this approach have had success targeting large 7 

histological structures but was not presented as targeting cellular-level foci. Further, the mean distance 8 

error of the novel method’s non-linear registration was ~10 µm across multiple tests and most flat-bed 9 

scanners images achieve maximum resolving of > 10 µm, meaning comparison at these levels is not 10 

technically possible. Figure S10 demonstrates this difficult using a rat kidney H&E image scanned with a 11 

high-resolution slide scanner and a low resolution flatbed scan where the resolving power of the 12 

scanner is estimated to be between 15-30 µm, already above the mean distance error of our AF method. 13 

Besides poor resolving power, this registration is also multi-modal between a stained whole slide digital 14 

image and flatbed scan image of an unstained section, which reduces certainty. 15 

  16 



 1 

 

Figure S10. Comparison of microscopy to flatbed scan of same tissue section of a rat kidney. The red bar in the highest 

resolution microscopy panel is 30 µm. We qualitatively assess the true resolving power of the flatbed scan to be somewhere 

around 15-30 µm, below the mean distance we calculated for corresponding landmarks across multiple tissue types highlighting 

the difficulty of assessing registration at the level our novel approach achieves.  



 1 

 

Figure S11. First and final video frames of Video S2 showing registration of the malaria infected mouse liver.  The green mask 

are infected hepatocytes from the target image and the magenta are from the source (warped) image. Resolutions refer to the 

multi-resolution registration scheme where registration starts on a down-sampled image and the final registration ends on the 

full resolution image. 

First frame 



 1 

 

Figure S11 (cont.). 

Final frame 



Grading accuracy of the annotation overlap of the infected mouse 1 

hepatocytes 2 

In order to grade the overlap between the annotation section and IMS section for all ROIs numerically 3 

presented in Figure 4, Dice similarity coefficients (DSCs) 37 were calculated post-registration.  Equation 1 4 

shows the mathematical definition of the DSC 5 

𝐷𝑆𝐶 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  (1) 6 

where in this context TP is a true positive (overlapping pixel), and FP is a false positive, a target pixel that 7 

does not overlap with a registered source pixel, and FN is a false negative or a registered source pixel 8 

that does not overlap with a target pixel. A DSC of 1 indicates perfect overlap between the ROI masks. 9 

Thus, the mean DSC of 0.725 of the infected hepatocytes in section displayed in Figure 3 indicates there 10 

was a mean 72.5% overlap across all 14 annotations. Figure S12 shows images of the overlap, together 11 

with corresponding DSCs. Of the twelve annotated ROIs on the staining, the minimum DSC value was 12 

0.57 indicating that even in the worst-case ROI, infected hepatocytes, which are individual cellular 13 

structures, still had >50% overlap after AF-based registration, allowing for reliable targeting post-14 

registration. The compared structures (infected hepatocytes) change in size and shape from one section 15 

and secondarily, these values are being calculated on pixel areas with an average area of 1.7 mm2 and 16 

average widths and heights of 43 and 40 µm, respectively. This latter point differs from many 17 

applications of DSC where whole organs are annotated in medical images and compose a large portion 18 

of the image. 19 

To further supplemental the infected hepatocyte targeting analysis for the IMS section, serial sections 20 

from 3 biological replicates were made in triplicate (3 technical replicates) and a microscopy only 21 

accuracy evaluation was performed. Figure S13 outlines the competitive registration evaluation 22 

workflow. In this assay, three microscopy modality images were made per serial section pair for 23 

competitive evaluation. First, AF microscopy was performed, followed by unstained brightfield 24 

microscopy (BF), and finally, the sections were stained by H&E and a microscopy image was obtained. 25 

Unstained BF images were obtained to make a comparison of histology-directed targeting accuracy of 26 

AF with another simple, non-destructive microscopy modality and H&E was taken as a gold standard and 27 

for annotation of the infected hepatocyte ROIs.  28 



 1 

 

Figure S12. Dice-Sorenson coefficient for overlap of infected hepatocytes for 12 malarial lesions after AF-to-AF registration. 

HEIMS = H&E stain of the section where IMS was performed after IMS acquisition. HEserial = H&E stain of the section that was 

annotated for IMS data acquisition. In this case, HEserial is shown registered to  HEIMS  by AF-to-AF. DICE mean = 0.725.  



Figure S13-A shows representative data from each modality and the overall registration scheme. 1 

Initially, H&E and BF microscopy images from one section (intra-section registration) are aligned to the 2 

AF of the same section using a linear affine model resulting in a stack of AF, BF, and H&E in the same 3 

coordinate space (indicated by the transparent green arrow in the Figure S13-A). This step allows for all 4 

subsequent inter-section registration to start from the same point. Appendix I shows the intra-section 5 

registered images of 5 randomly selected patches from 3 of the 18 tissue sections (1 from each 6 

biological replicate). After intra-section registration, inter-section registration (between serial sections) 7 

is performed using an affine then non-linear transformation model for each serial section pair. In each 8 

registration, the same optimized parameters used elsewhere are employed. Since there are two serial 9 

sections, two registrations are performed from the first section to the second section, and vice versa. 10 

Figure S13. Schematic of the workflow for competitive evaluation of registration accuracy of infected hepatocytes between 

serial tissue sections using different modalities.  A. This workflow shows the idea of intra-section and inter-section registration. 

In each vertical image stack of modalities, we see the intra-section registration of modalities (highlighted by the green arrow), 

then between inter-section between the labelled Section 1 and Section 2 images (with the horizontal black arrow). B. Evaluation 

is done by making polygonal ROIs on the intra-section registered H&E and then applying the inter-section registration to the 

masks, in both directions, and computed the resulting overlapping with a DICE coefficient. This is tabulated for every possible 

pair (n = 9) in both directions (Serial Section 1  Serial Section 2, Serial Section 2  Serial Section 1).  



Figure S13-B highlights the evaluation using the DICE metric of infected hepatocyte segmentation masks. 1 

First, annotation of the infected hepatocytes is done using polygonal ROIs on the H&E images registered 2 

to AF (Figure S13-B, annotation). In order to only compare registration accuracy and not ROI presence 3 

and absence, only infected hepatocytes visible in each section were annotated. After annotation of 4 

infected hepatocytes (mean number of ROIs per section = 22.7 ± 4.9), binary masks of the annotations 5 

were generated for each tissue section, shown in the green and magenta in Figure S13-B. As the masks 6 

were made in the intra-section coordinate space, they could be transformed using the previously 7 

developed inter-section registrations. After transformation of the masks using a nearest neighbor 8 

interpolation (to prevent interpolation error from expanding the segmentation dimensions), the DICE of 9 

the masks was calculated for the entirety of the section. Table S1 shows the raw tabulated mask data. 10 

For final comparison, the section 1 to 2 and section 2 to 1 intra-section registration DICE coefficients 11 

were averaged, although they only minimally diverged, 0.006 on average across all registrations. Based 12 

on this metric, AF outperforms all other image microscopy when chaining linear (Affine) then non-linear 13 

registration, although only statistically significantly between AF and BF when using a pair-wise t-test and 14 

a = 0.05 (p-value = 0.033). Non-linear registration globally improves overlap by 28.7% (mean DICE from 15 

all modalities = 0.287 ± 0.04), with AF performing 33.3% better when using non-linear models. 16 

Importantly, AF was also the only modality that had some overlap in every final registration, indicated 17 

by the lack of zeroes in the DICE Non-linear columns. BF and H&E has 2 and 3 section pairs respectively 18 

where there was no mask overlap at any step. However, for some samples, like s3_1 in Table S1, all 19 

modalities were performant.  20 

Another critical aspect of this evaluation is determine the expected degree of overlap. As the sections 21 

are serial, the annotated ROI changes in size and shape from section to section. This was quantified 22 

across all ROI pairs by calculating the difference in area for each, shown in the histogram in Figure S15.  23 

Here there is a noticeable distribution of changes favoring increase area. The bias towards ROI 24 

expansion is due to the fact that annotations were made between ROIs visible in both sections, and 25 

substantial shrinking between sections meant a confident annotation could not be made. The mean ROI 26 

area from all annotations was 1393 ± 472 µm2. The mean absolute change (both smaller and larger) in 27 

ROI area for all pairs was 384 ± 274 µm2. The absolute value accounts for both expanded and shrunk 28 



ROIs between serial sections. Relative to the mean ROI area, the mean change is ~30%, indicating the 1 

impossibility to have perfect DICE coefficients. Indeed, it is unwise to aim for perfect overlap in these 2 

structures as the registration models would need to become complex and registration artifacts are much 3 

more likely to occur with the required fine warping grids. Therefore, in targeting for IMS blind to the 4 

degree of overlap, the goal is to have some overlap as IMS ROIs can be expanded to account for target 5 

ROI size discrepancies between serial sections at a small penalty of increased instrument time. More 6 

critical is consistent overlap for every ROI pair, i.e., every annotated ROI should have some overlap with 7 

its corresponding ROI in the serial section after registration. This consistency is somewhat quantified in 8 

the overall DICE coefficient given in Table S1, but given (1), larger ROIs will bias have more weight in the 9 

overall DICE calculation. Therefore, to quantify consistency, the number of ROIs with any overlap was 10 

divided by the number of ROIs total. The results from this analysis are summarized in Table S2. Again, AF 11 

to AF proved the most effective registration with 93.9% of ROIs (n=188) having positive overlap after 12 

non-linear registration. BF to BF had 76.6 % of structures overlapping and H&E to H&E had 71.2% of 13 

structures overlapping.   14 

Figure S14. The difference in area between matched infected hepatocytes (n = 188) of the 9 serial sections (3 biological 

replicates) used for evaluation.   



 1 

 Sample S1->S2 DICE S2->S1 DICE S1->S2 DICE S2->S1 DICE Merge DICE Merge DICE 

Modality Pair Affine Affine Non-linear Non-linear Affine Non-linear 

AF to AF s1_1 0.198 0.193 0.525 0.491 0.196 0.508 

AF to AF s1_2 0.215 0.215 0.433 0.418 0.215 0.426 

AF to AF s1_3 0.124 0.047 0.423 0.406 0.086 0.415 

AF to AF s2_1 0.497 0.482 0.621 0.606 0.489 0.614 

AF to AF s2_2 0.404 0.412 0.639 0.632 0.408 0.635 

AF to AF s2_3 0.409 0.404 0.723 0.729 0.406 0.726 

AF to AF s3_1 0.166 0 0.677 0.686 0.083 0.682 

AF to AF s3_2 0 0 0.390 0.391 0 0.391 

AF to AF s3_3 0.195 0.183 0.692 0.646 0.189 0.669 

 Mean 0.245 0.215 0.569 0.556 0.230 0.563 

  SD 0.150 0.172 0.121 0.123 0.159 0.122 

 Sample S1->S2 DICE S2->S1 DICE S1->S2 DICE S2->S1 DICE Merge DICE Merge DICE 

Modality Pair Affine Affine Non-linear Non-linear Affine Non-linear 

BF to BF s1_1 0 0.037 0.009 0.441 0.018 0.225 

BF to BF s1_2 0 0 0 0 0 0 

BF to BF s1_3 0.119 0 0.386 0.162 0.060 0.274 

BF to BF s2_1 0.483 0.485 0.516 0.461 0.484 0.489 

BF to BF s2_2 0.345 0.415 0.528 0.524 0.380 0.526 

BF to BF s2_3 0.387 0.419 0.663 0.673 0.403 0.668 

BF to BF s3_1 0.200 0.226 0.642 0.630 0.213 0.636 

BF to BF s3_2 0.102 0 0.529 0.537 0.051 0.533 

BF to BF s3_3 0.134 0.128 0.500 0.506 0.131 0.503 

 Mean 0.197 0.190 0.419 0.437 0.193 0.428 

  SD 0.162 0.190 0.234 0.206 0.174 0.205 

 Sample S1->S2 DICE S2->S1 DICE S1->S2 DICE S2->S1 DICE Merge DICE Merge DICE 

Modality Pair Affine Affine Non-linear Non-linear Affine Non-linear 

H&E to H&E s1_1 0 0.034 0.578 0.502 0.017 0.540 

H&E to H&E s1_2 0 0 0 0 0 0 

H&E to H&E s1_3 0 0 0 0 0 0 

H&E to H&E s2_1 0.496 0.497 0.623 0.627 0.497 0.625 

H&E to H&E s2_2 0.380 0.402 0.596 0.596 0.391 0.596 

H&E to H&E s2_3 0.360 0.348 0.750 0.699 0.354 0.725 

H&E to H&E s3_1 0.221 0.222 0.778 0.726 0.222 0.752 

H&E to H&E s3_2 0.094 0.128 0.588 0.591 0.111 0.590 

H&E to H&E s3_3 0.096 0.058 0.496 0.460 0.077 0.478 

 Mean 0.183 0.188 0.490 0.467 0.185 0.478 

 SD 0.178 0.177 0.274 0.262 0.177 0.268 



Table S1. Table of DICE coefficients for all ROIs for registrations across all modalities. Merge DICE coefficients are 1 

the average of the S1S2 and S2S1 registrations. Non-linear is an affine followed by a non-linear 2 

transformation. 3 

  4 



AF to AF S1->S2  S1->S2  S2->S1  S2->S1  Merge Merge 

Sample Affine Non-linear Affine Non-linear Affine Non-linear 

s1_1 0.636 0.939 0.606 1 0.621 0.970 

s1_2 0.500 0.750 0.500 0.833 0.500 0.792 

s1_3 0.333 0.741 0.222 0.741 0.278 0.741 

s2_1 0.882 1 0.882 1 0.882 1 

s2_2 1 1 0.955 1 0.977 1 

s2_3 0.913 1 0.875 1 0.894 1 

s3_1 0.526 1 0 1 0.263 1 

s3_2 0 1 0 0.941 0 0.971 

s3_3 0.500 1 0.409 0.955 0.455 0.977 

Mean 0.588 0.937 0.494 0.941 0.541 0.939 

SD 0.282 0.099 0.330 0.083 0.306 0.091 

       

BF to BF S1->S2  S1->S2  S2->S1  S2->S1  Merge Merge 

Sample Affine Non-linear Affine Non-linear Affine Non-linear 

s1_1 0 0.061 0.273 1 0.136 0.530 

s1_2 0 0 0 0 0 0 

s1_3 0.333 0.815 0 0.481 0.167 0.648 

s2_1 0.882 1 0.882 0.941 0.882 0.971 

s2_2 0.864 1 1 1 0.932 1 

s2_3 0.870 1 0.792 0.958 0.831 0.979 

s3_1 0.474 1 0.421 1 0.447 1 

s3_2 0.235 0.824 0 0.882 0.118 0.853 

s3_3 0.409 0.909 0.409 0.909 0.409 0.909 

Mean 0.452 0.734 0.420 0.797 0.436 0.766 

SD 0.316 0.363 0.352 0.304 0.325 0.297 

       

H&E to H&E S1->S2  S1->S2  S2->S1  S2->S1  Merge Merge 

Sample Affine Non-linear Affine Non-linear Affine Non-linear 

s1_1 0 0.970 0.182 0.788 0.091 0.879 

s1_2 0 0 0 0 0 0 

s1_3 0 0 0.037 0 0.019 0 

s2_1 0.882 0.941 0.882 0.824 0.882 0.882 

s2_2 0.818 1 0.864 0.909 0.841 0.955 

s2_3 0.870 1 0.875 0.958 0.872 0.979 

s3_1 0.421 1 0.421 1 0.421 1 

s3_2 0.294 0.765 0.176 0.882 0.235 0.824 

s3_3 0.364 0.864 0.273 0.909 0.318 0.886 

Mean 0.405 0.727 0.412 0.697 0.409 0.712 

SD 0.335 0.375 0.328 0.358 0.329 0.364 



Table S2. Table of ROI consistency for registration between modalities. Values in Affine and Non-linear columns 1 

are number of overlapping ROI pairs after registration / total number of ROI pairs per serial section pair. Values of 2 

1 indicate every ROI pair has a DICE coefficient > 0 (i.e., they overlap to some degree). Merge values are the 3 

average of the S1S2 and S2S1 registrations. Non-linear is an affine followed by a non-linear transformation.  4 
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