Molecular Cell, Volume 72

Supplemental Information

An Insulin-Responsive Sensor

in the SIRT1 Disordered Region Binds DBC1

and PACS-2 to Control Enzyme Activity

Troy C. Krzysiak, Laurel Thomas, You-Jin Choi, Sylvain Auclair, Yiqi Qian, Shan Luan, Stephanie M. Krasnow, Laura L. Thomas, Leonardus M.I. Koharudin, Panayiotis V. Benos, Daniel L. Marks, Angela M. Gronenborn, and Gary Thomas

Figure S1. Related to Figure 1. The SIRT1 acidic cluster serves as a binding site for PACS-2. (A) Y2H screen for binding between PACS-2 FBR and mouse SIRT1 constructs representing a 5-Ala scan from Ile¹³² to Thr¹⁶⁹ in either SIRT1¹³²⁻¹⁶⁹ (top) or SIRT1¹³²⁻²⁰⁸ (bottom). (B) Y2H screen for binding between PACS-2 FBR and either WT hSIRT1¹⁴⁰⁻¹⁷⁷ (corresponding to mSIRT1¹³²⁻¹⁶⁹) or its acidic cluster mutant (ES¹⁶²DEED → 6A), WT mSIRT1¹³²⁻¹⁶⁹ or the mSIRT1¹³²⁻¹⁶⁹ acidic cluster mutant (ES¹⁵⁴DDDD → 6A). Lines in panels A and B denote removal of constructs unrelated to this study and alignment of colonies assayed on parallel plates. (C) ¹H-¹⁵N HSQC spectrum of 100 µM PACS-2 FBR (D) Superposition of ¹H-¹⁵N HSQC spectra of 100 µM ubiquitin (black resonances) and of ubiquitin fused to SIRT1 AC (Ub-SIRT1¹⁴⁰⁻¹⁷⁷, green resonances). The ellipse highlights a large number of SIRT1¹⁴⁰⁻¹⁷⁷ resonances that are not present in the ubiquitin spectrum. (E) Measurement of β-galactosidase activity as a read out for the binding of PACS-2 FBR to SIRT1¹³²⁻²⁰⁸, containing the native sequence or the Ser¹⁵⁴ → Asp phosphomimic substitution (assay performed in triplicate, error bars = SD).

Figure S2. Related to Figure 2. pH titration of the SIRT1 3HB. (A) Superposition of ${}^{1}H{}^{-15}N$ HSQC spectra of SIRT1 AC/3HB (SIRT1 ${}^{141-233}$, *left panel*, black resonances) or the SIRT1 NTR (SIRT1 ${}^{1-233}$, *right panel*, black resonances) and SIRT1 3HB (SIRT1 ${}^{183-233}$, green resonances). (B) The ${}^{1}H{}^{-15}N$ HSQC spectra of 100 μ M SIRT1 3HB (SIRT1 ${}^{183-233}$) in 20mM HEPES pH 7.5 (*top left*), 20mM HEPES pH 6.5 (*top right*) or 20 mM Na citrate pH 5.5 (*bottom left*). *Bottom right*: Superposition of the ${}^{1}H{}^{-15}N$ HSQC spectra of SIRT1 3HB at pH 5.5 (green resonances) and at pH 7.5 (black resonances).

Figure S3. Related to Figure 3. DBC1 expression in PACS-2^{-/-} liver. (A) Y2H analysis of the interaction between mouse SIRT1¹⁻⁵⁴ and different SIRT1 NTR mutants (see Figure 1A). Line denotes removal of constructs unrelated to this study and alignment of colonies assayed on parallel plates. (B) Livers from WT or PACS-2^{-/-} mice were harvested and the level of endogenous PACS-2, DBC1 and actin were detected by western blot. Mean \pm SD, n = 6. (C) FLAG-tagged PACS-2 was co-expressed with Myc-tagged DBC1 and V5-tagged human SIRT1 in HCT116 cells as indicated. PACS-2 was immunoprecipitated (FLAG) and co-precipitated human SIRT1 was detected by western blot (V5).

Figure S4. Related to Figure 4. PACS-2 and DBC1 regulate SIRT1-dependent deacetylation of the H3K9 peptidyl substrate. (A) *Top*: SIRT1-V5 was expressed alone or together with FLAG-tagged DBC1 or DBC1¹⁻²³⁰ in HCT116 cells. DBC1 was immunoprecipitated (FLAG) and coprecipitated SIRT1 was detected by western blot (V5). *Bottom*: HA-tagged PACS-2 was expressed alone or together with FLAG-tagged DBC1. DBC1 was immunoprecipitated (FLAG) and coprecipitated PACS-2 was detected by western blot (HA). (B) The Ac-Lys⁹-H3 peptidyl substrate was added to assay tubes containing recombinant human SIRT1, SIRT1⁸⁴⁻⁷⁴⁷ or SIRT1^{S162D} pre-mixed with different combinations of recombinant DBC1⁵²⁻¹²⁰ (DBC1 S1-L) and PACS-2²²⁻¹⁸⁰ (PACS-2 FBR). Enzyme reactions were initiated by the addition of NAD⁺ or vehicle (background control) and stopped after 1hr. Reaction products were developed with the OPT cocktail and quantified by the fluorescent signal. Error bars represent mean \pm SD, n = 4.

Figure S5. Related to Figure 5. Complete Resonance Assignments and structural mapping of the SIRT1 3HB/SRT1720 interaction. Superposition of ¹H-¹⁵N HSQC spectra of 100 μ M SIRT1 3HB (SIRT1¹⁸³⁻²³³) alone (black resonances) and in the presence of 100 μ M SRT1720 (green resonances). Resonance assignments are provided by amino acid name and number. *Inset*: top and side views of SRT1720 (magenta) bound to the SIRT1 3HB (PDB:4ZZH). SIRT1 3HB residues that undergo the greatest chemical shift changes (mean + one standard deviation) are highlighted in green and those which exhibit smaller changes are in dark gray. The top view looks down on the hydrophobic core of the 3HB and the bottom view shows the STAC binding interface.

Figure S6. Related to Figure 6. PACS-2^{-/-} mice are resistant to diet-induced obesity. (A) Nuclear extracts from WT and PACS-2^{-/-} mice, fed a CD or HFD, were assayed for SIRT1 activity using the Ac-Lys⁷⁷⁸-PGC-1 α peptidyl substrate. Data are mean ± SD, n = 3. (B) Western blot of PACS-2, SIRT1 and actin from WT and PACS-2^{-/-} mouse liver following 8 weeks of CD or HFD. Line denotes removal of unused samples. (C and D) Whole body mass and percent lean body mass of 8 weeks HFD WT and PACS-2^{-/-} mice measured using an EchoMRI 4-in-1 system.

Figure S7. Related to Figure 7. PACS-2 undergoes nucleocytoplasmic trafficking independent of its Akt phosphorylation status. (A) SIRT1-V5 was co-expressed with FLAG-tagged PACS-2 or PACS-2^{S437A} in AML12 cells as indicated. The AML12 cells were fed or serum-starved for 16 hrs, PACS-2 proteins were immunoprecipitated (FLAG) and co-precipitating SIRT1 was detected by western blot (V5), n = 5. (B) U2OS cells expressing mCherry-tagged PACS-2, PACS-2^{Δ NLS}, PACS-2^{S437A} or PACS-2^{S437D} were treated with 40 nM LMB (3 hrs) and analyzed by deconvolution microscopy. Nuclei were stained with DAPI. The percent total cellular fluorescent protein signal in the nucleus was quantified. Error bars represent mean \pm SD from >100 cells in 3 independent experiments. Scale bar, 20 µm. (C) Hela cells expressing FLAG-tagged PACS-2 were starved for 14 hrs. The cells were then pre-treated or not with 1 µM Torin 1 or 5 µM MK-2206 and then treated with 100 nM insulin for 30 min. PACS-2 was immunoprecipitated (FLAG) and pSer⁴³⁷-PACS-2 was detected by western blot (CST #81E12B5 (Aslan et al., 2009)), n = 3. (D) Isolated WT and PACS-2^{-/-} mouse primary hepatocytes were starved overnight and treated for 6 hrs with 10 µM WY-14643, then treated or not with 100 nM insulin treatment for 4 hrs. Cells were harvested and the indicated proteins analyzed by western blot. Line denotes removal of unused samples. (E) AML12 cells were starved overnight, pre-treated with 12 µM SRT1720 for one hr and then treated with 10 nM insulin for 30 min. Endogenous SIRT1 was immunoprecipitated and co-precipitated PACS-2 and DBC1 were detected by western blot. Data are mean \pm SD, n = 3. Line denotes placement of IgG control on last lane.

TABLE S1

TFactS analysis of transcription factors altered in PACS- $2^{-/-}$ mice. False discovery rate = 0.05. Related to Figure 1.

Transcription Factor	P.value	E.value	Q.value	FDR control (B-H)	Intersection	Target genes	Random Control(%)
NR1H3	3.000e-5	6.300e-4	1.075e-4	2.381e-3	2	17	0
NR1H2	3.000e-5	6.300e-4	1.075e-4	4.762e-3	2	17	0
PPARG	2.100e-4	4.410e-3	5.018e-4	7.143e-3	2	41	0
HNF1A	3.700e-4	7.770e-3	6.630e-4	9.524e-3	2	54	0
CREBBP	3.510e-3	7.371e-2	4.898e-3	1.190e-2	1	6	0
FOXM1	4.100e-3	8.610e-2	4.898e-3	1.429e-2	1	7	0
NR2F2	7.600e-3	1.596e-1	7.782e-3	1.667e-2	1	13	0
FOXA2	1.226e-2	2.575e-1	1.023e-2	1.905e-2	1	21	0
PPARA	1.284e-2	2.696e-1	1.023e-2	2.143e-2	1	22	0
ETS2	1.748e-2	3.671e-1	1.253e-2	2.381e-2	1	30	0
SP1	2.164e-2	4.544e-1	1.410e-2	2.619e-2	2	428	0
SREBF1	2.957e-2	6.210e-1	1.659e-2	2.857e-2	1	51	0
STAT5B	3.186e-2	6.691e-1	1.659e-2	3.095e-2	1	55	0
STAT5A	3.244e-2	6.812e-1	1.659e-2	3.333e-2	1	56	0
RARA	3.472e-2	7.291e-1	1.659e-2	3.571e-2	1	60	0
CEBPB	4.099e-2	8.608e-1	1.836e-2	3.810e-2	1	71	0
FOXO3	4.496e-2	9.442e-1	1.880e-2	4.048e-2	1	78	0
HNF4A	4.722e-2	9.916e-1	1.880e-2	4.286e-2	1	82	0
CEBPA	6.797e-2	1.427e+0	2.564e-2	4.524e-2	1	119	1
SP3	7.518e-2	1.579e+0	2.694e-2	4.762e-2	1	132	2
FOXO1	9.112e-2	1.914e+0	3.110e-2	5.000e-2	1	161	0

TABLE S2

qRT-PCR primers used in this study. Related to Figure 1.

Gene Name	Forward primer (5'-3')	Reverse primer (5'-3')	Accession
			number
			number
mPpar γ	GATGGAAGACCACTCGCATT	AACCATTGGGTCAGCTCTTG	NM 001127330
mPparδ	CCATCGTCAACAAAGACGGG	ACTTGGGCTCAATGATGTCAC	NM 011145
mPparα	TCGGCGAACTATTCGGCTG	GCACTTGTGAAAACGGCAGT	NM 011144
mNrf1	CTGCAGGTCCTGTGGGAATG	ACTCGCGTCGTGTACTCATC	NM 001164226
mCpt1α	GCAGTCGACTCACCTTTCCT	ATTTCTCAAAGTCAAACAGTTCCA	NM 013495
mCpt2	CCAAAGAAGCAGCGATGG	TAGAGCTCAGGCAGGGTGA	NM 009949
mAcadvl	GGTGGTTTGGGCCTCTCTA	GGGTAACGCTAACACCAAGG	NM 017366
mMcad	AGTACCCTGTGGAGAAGCTGAT	TCAATGTGCTCACGAGCTATG	NM 007382
mAcad4 (Lcad)	CCCATGGCATTAGCCTCTT	AGAATAGTTCTGCTGTGTCCTGAG	NM 007381
mG6pase	CCTCCTCAGCCTATGTCTGC	AACATCGGAGTGACCTTTGG	NM 008061
mPepck	GTCAACACCGACCTCCCTTA	ATTTGCCCCTAGCCTGTTCT	NM 011044
mPgc-1α	ATGTGTCGCCTTCTTGCTCT	ATCTACTGCCTGGGGGACCTT	NM 008904
mCyt-c	GAGTTTTGGGCTGATGGGTA	ATCCCGCTGTAACACCAGTC	NM 007808
mLxrα	CTGAAGCGGCAAGAAGAGGA	CTGTGGCAGGACTTGAGGAG	NM 013839
mFasn	CCCTTGATGAAGAGGGATCA	ACTCCACAGGTGGGAACAAG	NM 007988
mGlut4	ACTCTTGCCACACAGGCTCT	CCTTGCCCTGTCAGGTATGT	NM 009204
mSrebp-1c	GTGAGCCTGACAAGCAATCA	GGTGCCTACAGAGCAAGAGG	NM 011480
mTnfa	AGCCCCCAGTCTGTATCCTT	GAGTTGGACCCTGAGCCATA	NM 013693
mSerpin1	ATCCCAGACCTCGGACTCTT	TGAGACCTTTGTGGGGGTAGG	NM 008871
mHmgcr	CGTAACCCAAAGGGTCAAGA	GACCCAAGGAAACCTTAGCC	NM 008255
mCyclophilin B	GGAGATGGCACAGGAGGAA	GCCCGTAGTGCTTCAGCTT	NM 011149
mCyp7a1	CCGTCTACGCATGTTTCTCA	GAAGGTTGCAGGAATGGTGT	NM 007824
mCyp8b1	AAGCACCAGGATGCCATGAA	AGACTCTCCTCCATCACGCT	NM 010012
mCyp27a1	CAAGGACTTTGCCCACATGC	ATCCGGGAGTTTGTGGGAAC	NM 024264
mShp	CATGGCCTCTACCCTCAAGA	TGATAGGGCGGAAGAAGAGA	NM 011850
mBsep	GGACAATGATGTGCTTGTGG	CACACAAAGCCCCTACCAGT	NM 021022
mMrp3	ACAACAGGGTCCTGGTCTTG	CTTGGCCATCCCATAGAAGA	NM 029600
mHnf4	TACCTTCCTCCGCCATCTGA	TCCTACCCTCTGCCTTACCC	NM_008261
mFxr	AGGGGATGAGCTGTGTGTTG	CGGAAGAAACCTTTGCAGCC	NM_001163700
mScd1	GCGATACACTCTGGTGCTCA	CCCAGGGAAACCAGGATATT	NM_009127
mAcc	GCCTCTTCCTGACAAACGAG	TGATCTGTGCTGTCCTGGAG	NM_133360
mCD36	GCTTGCAACTGTCAGCACAT	GCCTTGCTGTAGCCAAGAAC	NM_007643
mLpl	CCTACTTCAGCTGGCCTGAC	CTTTCACTCGGATCCTCTCG	NM_008509
mFabp4	TCACCTGGAAGACAGCTCCT	AAGCCCACTCCCACTTCTTT	NM_024406
mLdlr	GAACTCAGGGCCTCTGTCTG	AGCAGGCTGGATGTCTCTGT	NM_010700
mSrebp2	ATGAACCGGACTCTCCTCCT	CCAGGAAGGTGAGGACACAT	NM_033218
mIl-6	AGTTGCCTTCTTGGGACTGA	GTCTCCTCTCCGGACTTGTG	NM_031168
mInfg	ACTGGCAAAAGGATGGTGAC	GCTGATGGCCTGATTGTCTT	NM_008337
mAbca1	CCAGACAGTTGTGGATGTGG	CCTGTGTGAACGGGATTCTT	NM_013454
mFgf21	CCTCTAGGTTTCTTTGCCAACAG	AAGCTGCAGGCCTCAGGAT	NM_020013
mPcsk9	CATTGCAGACACCATTTTGG	CTGGAGGTGTGCAGAACTGA	NM_153565