Norbornane-based Cationic Antimicrobial Peptidomimetics Targeting the Bacterial Membrane

Shane M. Hickey,^a* Trent D. Ashton,^{b,c} Gareth Boer,^d Christie A. Bader,^a Michael Thomas,^e Alysha G. Elliott,^f Carsten Schmuck,^g Heidi Y. Yu,^h Jian Li,^h Roger L. Nation,^h Matthew A. Cooper,^f Sally E. Plush,^a Douglas A. Brooks,^a and Frederick M. Pfeffer^d*

^aCancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.

^bThe Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia,

^cDepartment of Medical Biology, The University of Melbourne, Parkville 3010, Australia

^dCentre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia,

^eResearch School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia, ^fInstitute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia, ^gInstitute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany, and, ^hDrug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia.

Email: Shane.Hickey@unisa.edu.au, fred.pfeffer@deakin.edu.au

CONTENTS

• Experimental data for all known compounds	p 2
• ¹ H and ¹³ C NMR spectra for novel compounds (Figure S1–S42)	p 15
• Fluorescence profiles (Figure S43–48)	p 57
• Table S1 containing a list of all microbial strains tested	p 60
• Disk diffusion results (Table S2, Figure S49)	p 61
Molecular Modelling Image (Figure S50)	p 62
• Antifungal Activity (Table S3)	p.62
• References	p 63

Experimental

General

Chemicals were purchased from commercial sources and used without further purification. Anhydrous DMF and THF were obtained using the Pure Solv solvent drying system (Innovative Technology, Inc., Amesbury, MA, USA). Solvents were degassed and passed through two drying chambers of alumina and stored and collected under a positive pressure of nitrogen gas. Anhydrous CH₂Cl₂ was obtained by drying over freshly activated 3 Å molecular sieves.

All microwave reactions were conducted using a CEM Discover S-Class Explorer 48 Microwave Reactor, operating on a frequency of 50/60 Hz and continuous irradiation power from 0–300 W. All reactions were performed in sealed reaction vessels.

All melting points were obtained using Stuart Scientific SMP3 melting point apparatus and are uncorrected. All ¹H and ¹³C NMR spectra were collected on either a JEOL JNM-GX 270 MHz FT-NMR spectrometer, a JEOL JNM-ECP 400 MHz FT-NMR spectrometer, or a BRUKER ADVANCE III 500 MHz FT-NMR spectrometer where indicated. All NMR experiments were performed at 25 °C. All 2D NMR experiments were performed on a BRUKER ADVANCE 500 MHz FT-NMR spectrometer and can be provided upon request. Samples were dissolved in CDCl₃, DMSO-*d*₆ or CD₃OD where specified with the residual solvent peak used as the internal reference – CDCl₃; 7.26 (¹H) and 77.0 (¹³C), DMSO-*d*₆; 2.50 (¹H) and 39.52 (¹³C), CD₃OD; 3.31 (¹H) and 49.0 (¹³C).[1] Proton spectra are reported as chemical shift (ppm) δ (integral, multiplicity (s = singlet, br s = broad singlet, d = doublet, t = triplet, q = quartet, quin = quintet and m = multiplet), coupling constant (Hz), assignment). Carbon spectra are reported as chemical shift δ (ppm).

High resolution mass spectral data was collected on an Agilent Technologies 6520 QTOF mass spectrometer (LC-1200 series) under the following conditions: gas temperature (300 °C), nitrogen drying gas (10.0 L min⁻¹), capillary voltage (3500 V), fragmentor (140 V), and nebuliser (45 psi) in a 80% MeCN in H₂O solvent system. Analyte solutions were prepared in HPLC grade methanol (conc. ~ 1 mg mL⁻¹).

All norbornane-based compounds are named using the von-Baeyer system of nomenclature.[2] All other parts of the structure are named following the IUPAC guidelines. Numbering of norbornane protons follows the general structures shown below. Protons on the bridge carbon are labelled either *syn* (*s*) or *anti* (*a*) in regards to the priority functional group.

2-Methylisothiouronium iodide (37)[3]

[CAS Reg. No. 14257-47-7]

$$\overset{SMe}{\underset{H_2N \overset{\oplus}{\swarrow} NH_2}{\overset{\oplus}{\underset{H_2}}} H_2 \overset{\ominus}{\underset{NH_2}}$$

A mixture of thiourea (10.0 g, 0.13 mol), iodomethane (8.2 mL, 0.13 mol) and MeOH (100 mL) was heated at 65 °C for 90 min. The MeOH was removed *in vacuo* and the resulting yellow solid was transferred to a sintered glass funnel and washed with Et₂O (5 × 50 mL) to afford the title compound (28.2 g, 99%) as an amorphous white powder.

m.p. 116–118 °C (lit. 117 °C).[4]

¹H NMR (270 MHz, DMSO-*d*₆) δ 8.89 (4H, br s, NH₂), 2.56 (3H, s, CH₃).

¹³C NMR (67.5 MHz, DMSO-*d*₆) δ 171.1, 13.3.

N,N'-Bis(tert-butoxycarbonyl)-S-methylisothiourea (3)[3]

[CAS Reg. No. 107819-90-9]

SMe BocHN NBoc

To a stirring solution of 2-methylisothiouronium iodide **37** (9.82 g, 45.0 mmol) in sat. NaHCO₃ (50 mL) and CH₂Cl₂ (105 mL) was added Boc₂O (19.67 g, 90.1 mmol) using CH₂Cl₂ (3×25 mL). After 48 h the reaction mixture was transferred to a separatory funnel, the organic phase was isolated and the aqueous phase was extracted using CH₂Cl₂ (2×50 mL). The combined organic phase was dried (MgSO₄), filtered, and concentrated *in vacuo*. The crude solid was stirred in EtOH/H₂O (1:9, 100 mL) for 1 h before the mixture was cooled to 0 °C and the solid was collected by vacuum filtration. Washing with EtOH/H₂O (1:9, 50 mL) gives the title compound (12.3 g, 94%) as a white powder.

m.p. 122-124 °C (lit. 127 °C).[5]

¹H NMR (270 MHz, CDCl₃) δ 11.61 (1H, br s, NH), 2.40 (3H, s, CH₃), 1.53 (9H, br s, *t*-Bu), 1.51 (9H, br s, *t*-Bu).

¹³C NMR (100 MHz, CDCl₃) δ 171.6, 160.9, 150.9, 83.4, 81.1, 28.2, 14.6.

HRMS (ESI, m/z) for C₁₂H₂₂N₂O₄S [M + Na]⁺ calc. 313.1193; found 313.1186.

2-[2,3-Bis(tert-butoxycarbonyl)guanidino]ethylamine (22)[6]

[CAS Reg. No. 203258-44-0]

H₂N NBoc NHBoc

A solution of Boc-protected methylisothiourea **3** (20.4 g, 70.3 mmol) in CH_2Cl_2 (110 mL) was added in one portion to a stirred solution of 1,2-ethylenediamine (11.7 mL, 176 mmol) in CH_2Cl_2 (150 mL). The reaction was stirred at 21 °C for 90 min. The reaction mixture was transferred to a separatory funnel and washed with H₂O (2 × 80 mL), brine (80 mL), then dried (MgSO₄) and filtered. The solvent was removed *in vacuo* at ambient temperature to afford the title compound (20.7 g, 97%) as a white powder.

m.p. 96–100 °C.

¹H NMR (270 MHz, CDCl₃) δ 11.51 (1H, br s, NH), 8.67 (1H, br s, NH), 3.49 (2H, app. q, *J* = 5.5 Hz, CH₂), 2.90 (2H, t, *J* = 6.2 Hz, CH₂), 1.51 (9H, br s, *t*-Bu), 1.50 (9H, br s, *t*-Bu).

¹³C NMR (67.5 MHz, CDCl₃) δ 163.7, 156.5, 153.3, 83.2, 79.4, 43.5, 41.1, 28.4, 28.2.

HRMS (ESI, m/z) for C₁₃H₂₆N₄O₄ [M + H]⁺ calc. 303.2027; found 303.2032.

2-(tert-Butoxycarbonylamino)ethylamine (38)[7]

[CAS Reg. No. 57260-73-8]

H₂N NHBoc

A solution of Boc₂O (8.35 g, 38.3 mmol) in THF (75 mL) was added dropwise, over approximately 30 min, to a stirred solution of ethylenediamine (EDA, 8.4 mL, 125 mmol) in THF (25 mL). The reaction was stirred for 4 h after which time the mixture was filtered and the solvent was then removed *in vacuo* to give the desired product (5.65 g, 92%) as a viscous oil.

¹H NMR (270 MHz, CDCl₃) δ 4.83 (1H, br s, NH), 3.15 (2H, app. q, *J* = 6.0 Hz, NH₂C*H*₂), 2.78 (2H, t, *J* = 6.0 Hz, C*H*₂NH), 1.43 (9H, s, *t*-Bu), 1.16 (2H, br s, NH₂).

¹³C NMR (67.5 MHz, CDCl₃) δ 156.3, 43.4, 41.8, 40.7, 28.4.

HRMS (ESI, m/z) for C₇H₁₆N₂O₂ [M + H]⁺ calc. 161.1285; found 161.1290.

Hexadecanal (39)[8]

[CAS Reg. No. 629-80-1]

To the stirring solution of DMSO (700 μ L, 10.0 mmol) in CH₂Cl₂ (40 mL) at -78 °C was added oxalyl chloride (550 μ L, 6.0 mmol) under an inert atmosphere. After 20 min, 1-hexadecanol (486 mg, 2.0 mmol) in CH₂Cl₂ (6 mL) was added and the reaction was stirred for 5.5 h at -41 °C. The reaction was quenched with Et₃N (3 mL, 21.5 mmol) and slowly warmed to ambient temperature over 30 min. The reaction mixture was washed with sat. NaHCO₃ (50 mL) and extracted with CH₂Cl₂ (3 × 30 mL). The combined organic phase was washed with 2M HCl (2 × 20 mL), sat. NaHCO₃ (20 mL), brine (20 mL), dried (MgSO₄), filtered and concentrated *in vacuo* to afford a yellow solid (445 mg, 92%).

m.p. 36-38 °C (lit. 33.0-35.0 °C).[9]

¹H NMR (270 MHz, CDCl₃) δ 9.76 (1H, t, *J* = 1.9 Hz, CHO), 2.41 (2H, dt, *J* = 7.4, 1.9 Hz, CH₂), 1.62 (2H, app. t, *J* = 7.4 Hz, CH₂), 1.30–1.25 (24H, m, 12 × CH₂), 0.87 (3H, t, *J* = 6.4 Hz, CH₃).

¹³C NMR (100 MHz, CDCl₃) δ 203.1, 44.1, 32.1, 29.8 (6 × C), 29.7, 29.6, 29.5, 29.3, 22.8, 22.2, 14.2.

N-(tert-Butoxycarbonyl)-12-aminododecanoic acid (40)[10]

[CAS Reg. No. 18934-81-1]

BocHN

A 250 mL round-bottom flask was charged with 12-aminododecanoic acid (6.00 g, 27.86 mmol), Boc_2O (6.08 g, 27.86 mmol), Et_3N (4.7 mL, 33.62 mmol) and MeOH (90 mL) and stirred at 60 °C for 16 h. The colourless solution was concentrated under reduced pressure and the residue was dissolved in EtOAc (150 mL). The organic phase was washed with 0.25 M HCl (2 × 40 mL), brine (40 mL), dried (MgSO₄), filtered and concentrated *in vacuo* to give the title compound (7.47 g, 85%) as a white solid.

m.p. 85–86 °C (lit. 83.5–84.5 °C).[11]

¹H NMR (500 MHz, CDCl₃) δ 4.53 (1H, br s, NH), 3.10–3.09 (2H, m, NHC*H*₂), 2.33 (2H, t, *J* = 7.5 Hz, C*H*₂CO₂H), 1.62 (2H, app. quin, *J* = 7.5 Hz, CH₂), 1.48–1.44 (11H, m, *t*-Bu, CH₂), 1.34–1.26 (14H, m, 7 × CH₂).

¹³C NMR (125 MHz, CDCl₃) δ 179.2, 156.2, 79.2, 40.8, 34.1, 30.2, 29.6, 29.54, 29.46, 29.4, 29.3, 29.1, 28.6, 26.9, 24.8.

HRMS (ESI, *m*/*z*) for C₁₇H₃₃NO₄ [M + Na]⁺ calc. 338.2302; found 338.2309.

N-(tert-Butoxycarbonyl)-12-aminododecan-1-ol (14)[10]

[CAS Reg. No. 67341-03-1]

BocHN

To a stirring solution of carboxylic acid **40** (7.33 g, 23.25 mmol) and anhydrous THF (110 mL) at 0 °C under an inert atmosphere, was added Red-Al[®] (18 mL, 59.97 mmol) dropwise over 25 min. The reaction was warmed to ambient temperature and stirring was maintained for 1 h before the reaction was cooled on ice and slowly quenched with sat. Na₂SO₃ (30 mL). The precipitate was removed using vacuum filtration and the filtrate was concentrated under reduced pressure before being diluted with EtOAc (100 mL). The organic phase was washed with H₂O (2 × 40 mL), brine (40 mL), dried (MgSO₄), filtered and concentrated *in vacuo* to give the title compound (5.31 g, 76%) as a white solid.

m.p. 82–83 °C.

¹H NMR (270 MHz, CDCl₃) δ 4.48 (1H, br s, NH), 3.63 (2H, t, *J* = 6.6 Hz, C*H*₂CO₂H), 3.09 (2H, t, *J* = 7.0 Hz, NHC*H*₂), 1.56–1.26 (29H, m, 10 × CH₂, *t*-Bu).

¹³C NMR (125 MHz, CDCl₃) δ 156.2, 79.2, 63.2, 40.8, 32.9, 30.2, 29.70, 29.66 (3 × C), 29.5, 29.4, 28.6, 26.9, 25.9.

HRMS (ESI, *m/z*) for C₁₇H₃₅NO₃ [M + Na]⁺ calc. 324.2509; found 324.2504.

Dimethyl bicyclo[2.2.1]hept-5-ene-3-endo-2-exo-dicarboxylate (41)

[CAS Reg. No. 3014-58-2]

Method A[12]

To the stirring solution of dimethyl fumarate (65.3 g, 0.453 mol) in THF (200 mL), was added freshly prepared cyclopentadiene (40 mL, 0.476 mol), and the reaction was stirred at ambient temperature for 16 h. The solvent was removed under reduced pressure to give the title compound (95.2 g, 99%) as a colourless oil.

Method B[13, 14]

A 35 mL MW vial was charged with dicyclopentadiene (2.0 mL, 15.0 mmol), dimethyl fumarate (2.88 g, 20.0 mmol) and hydroquinone (100 mg, 0.90 mmol), and heated using microwave irradiation to 150 °C for 2 h. The resulting orange oil was purified by flash column chromatography (10% EtOAc in pet. spirits) to give a clear oil (4.14 g, 98%).

 $R_f = 0.32$ (10% EtOAc in pet. spirits).

¹H NMR (400 MHz, CDCl₃) δ 6.27 (1H, dd, J = 5.6, 3.1 Hz, H5), 6.06 (1H, dd, J = 5.6, 2.8 Hz, H6), 3.71 (3H, s, Me), 3.64 (3H, s, Me), 3.37 (1H, app. t, J = 5.6 Hz, H3), 3.25 (1H, br s, H1), 3.12 (1H, br s, H4), 2.68 (1H, dd, J = 3.1, 1.2 Hz, H2), 1.61 (1H, d, J = 8.8 Hz, H7*a*), 1.45 (1H, dd, J = 8.8, 1.7 Hz, H7*s*).

¹³C NMR (100 MHz, CDCl₃) δ 175.2, 174.0, 137.7, 135.3, 51.9, 51.7, 47.7, 47.5, 47.2, 46.9, 45.5.

HRMS (ESI, m/z) for C₁₁H₁₄O₄ [M + Na]⁺ calc. 233.0784; found 233.0785.

Dimethyl 5,6-exo-dihydroxybicyclo[2.2.1]heptane-3-endo-2-exo-dicarboxylate (17)

[CAS Reg. No. 1228039-59-5]

Method A[15]

The dimethyl ester **41** (3.05 g, 14.5 mmol) and NMO·H₂O (1.87 g, 16.0 mmol) were dissolved in a solution of H₂O/acetone (1:4, 36 mL) to which OsO₄ (4% in H₂O, 730 μ L, 0.40 mol%) was added. The reaction was stirred for 3 d and then quenched with sat. NaHSO₃ (30 mL). The suspension was extracted with EtOAc (4 × 25 mL), and the combined organic phase was washed with brine (25 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to give the title compound (3.34 g, 94%) as a white solid.

Method B[16]

A solution of KMnO₄ (405 mg, 2.56 mmol), K₂CO₃ (212 mg, 1.54 mmol) in H₂O (6.0 mL) was added dropwise to a stirring solution of dimethyl ester **41** (270 mg, 1.28 mmol), *t*-BuOH (4.7 mL) and H₂O (1.2 mL) at 0 °C. The reaction was stirred for a further 25 min before consumption of starting material was observed by TLC analysis. The reaction mix was quenched with sat. NaHSO₃ (25 mL) and extracted with EtOAc (3×20 mL). The combined organic phase was washed with brine (20 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to afford the title compound (181 mg, 58%) as a white solid.

m.p. 90–92 °C (lit. 81–84 °C).[15]

¹H NMR (270 MHz, CDCl₃) δ 3.85 (1H, br s, H5), 3.77–3.71 (1H, m, H6), 3.64 (3H, s, Me), 3.62 (3H, s, Me), 3.11 (1H, app. t, *J* = 5.1 Hz, H3), 2.63 (1H, d, *J* = 4.9 Hz, H2), 2.46 (1H, dd, *J* = 4.5, 1.2 Hz, H4), 2.40 (1H, br s, H1), 1.78 (1H, dd, *J* = 11.0, 1.2 Hz, H7*a*), 1.33 (1H, d, *J* = 11.0 Hz, H7*s*). ¹³C NMR (67.5 MHz, CDCl₃) δ 174.2, 173.2, 73.3, 70.2, 52.5, 52.3, 48.2, 46.4, 46.2, 44.8, 31.8. HRMS (ESI, *m/z*) for C₁₁H₁₆O₆ [M + Na]⁺ calc. 267.0839; found 267.0836.

Dimethyl 4-heptyl-3,5-dioxatricyclo[5.2.1.0^{2,6}]decane-8-endo-9-exo-dicarboxylate (42)[17]

[CAS Reg. No. 1233074-95-7]

O OMe

To a stirring suspension of diol **17** (3.50 g, 14.34 mmol), *p*-TSA (140 mg, 0.72 mmol), MgSO₄ (1.73 g, 14.34 mmol) and PhMe (24 mL) was added octanal (3.4 mL, 21.5 mmol) and the reaction was heated for 3 h at 120 °C. Solid MgSO₄ was removed by filtration and the filtrate was diluted with EtOAc (50 mL), washed with H₂O (2 × 15 mL), brine (15 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to give the crude material which was purified using column chromatography (10% EtOAc in pet. spirits) to afford the title compound (4.66 g, 92%) as a light yellow viscous oil.

 $R_f = 0.26$ (10% EtOAc in pet. spirits).

¹H NMR (400 MHz, CDCl₃) δ 4.61 (1H, t, *J* = 4.9 Hz, H4), 3.98 (1H, d, *J* = 5.6 Hz, H2), 3.85 (1H, d, *J* = 5.6 Hz, H6), 3.66 (6H, s, 2 × Me), 3.18 (1H, app. t, *J* = 4.7 Hz, H8), 2.67 (1H, d, *J* = 4.7 Hz, H9), 2.60 (2H, br s, H1, H7), 1.73 (1H, d, *J* = 10.8 Hz, H10*a*), 1.59–1.56 (2H, m, CHC*H*₂), 1.36–1.19 (11H, m, 5 × CH₂, H10*s*), 0.82 (3H, t, *J* = 6.6 Hz, CH₃).

¹³C NMR (100 MHz, CDCl₃) δ 174.2, 173.0, 104.2, 81.2, 78.7, 52.1, 51.9, 45.0, 44.8, 43.4, 43.0, 32.5, 31.5, 31.3, 29.2, 28.9, 23.9, 22.3, 13.7.

HRMS (ESI, m/z) for C₁₉H₃₀O₆ [M + Na]⁺ calc. 377.1935; found 377.1924.

4-Heptyl-3,5-dioxatricyclo[5.2.1.0^{2,6}]decane-8-endo-9-exo-dicarboxylic acid (43)[17]

[CAS Reg. No. 1233074-96-8]

To the stirred solution of the ester **42** (1.00 g, 2.82 mmol) in THF (12 mL), 2M NaOH (6 mL) was added and the reaction was stirred for 16 h at ambient temperature. The reaction was concentrated under reduced pressure and all organic-soluble impurities were extracted with CH_2Cl_2 (2 × 10 mL). The aqueous solution was acidified with sat. KH_2PO_4 (pH = 5), extracted with EtOAc (3 × 15 mL), dried (MgSO₄) and filtered to give a white waxy solid (795 mg, 86%).

m.p. 141-143 °C (lit. 153.0-154.0 °C).[15]

¹H NMR (270 MHz, DMSO- d_6) δ 4.62 (1H, t, J = 4.7 Hz, H4), 3.97 (2H, d, J = 5.6 Hz, H2), 3.88 (1H, d, J = 5.6 Hz, H6), 3.00 (1H, dd, J = 5.2, 0.6 Hz, H8), 2.45 (1H, br s, H7), 2.54 (1H, br s, H1), 2.40 (1H, d, J = 5.2 Hz, H9), 1.61–1.50 (3H, m, CHC H_2 , H10a), 1.33–1.19 (11H, m, 5 × CH₂, H10s), 0.85 (3H, t, J = 6.4 Hz, CH₃).

¹³C NMR (67.5 MHz, CDCl₃) δ 174.6, 173.3, 103.2, 80.7, 78.2, 45.0, 44.4, 43.3, 42.6, 32.3, 31.2 (2 × C), 28.9, 28.6, 23.7, 22.1, 14.0.

HRMS (ESI, m/z) for C₁₇H₂₆O₆ [M + Na]⁺ calc. 349.1622; found 349.1627.

8-endo-9-exo-Di[2'-(2",3"-bis-tert-butoxycarbonylamino)ethylcarbamoyl]-4-heptyl-3,5dioxatricyclo[5.2.1.0^{2,6}]decane (44)[17]

[CAS Reg. No. 1774366-82-3]

A MW vial was charged with diacid **43** (333 mg, 1.02 mmol), EDCI (590 mg, 3.06 mmol), HOBt (14 mg, 0.1 mmol) and anhydrous CHCl₃ (2.1 mL) and was stirred at ambient temperature for 30 min. Amine **50** (490 mg, 3.06 mmol) was then added and the reaction was irradiated for 30 min at 50 °C. The resulting homogenous clear liquid was diluted with CHCl₃ (15 mL), washed with brine (3×10 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to afford a white solid that was purified by flash column chromatography (50–70% EtOAc in pet. spirits) to give the title compound (357 mg, 57%) as a white solid.

 $R_f = 0.21$ (70% EtOAc in pet. spirits).

m.p. 122-123 °C.

¹H NMR (270 MHz, CDCl₃) δ 6.89 (1H, br s, NH), 6.86 (1H, br s, NH), 5.08–5.01 (2H, m, 2 × NH), 4.64 (1H, t, *J* = 4.8 Hz, H4), 4.13 (1H, d, *J* = 5.7 Hz, H6), 3.96 (1H, d, *J* = 5.7 Hz, H2), 3.41–3.26 (8H, m, 4 × NHC*H*₂), 2.92 (1H, app. t, *J* = 5.1 Hz, H8), 2.57–2.53 (2H, m, H7, H9), 2.43 (1H, d, *J* = 5.0 Hz, H1), 1.80 (1H, d, *J* = 10.3 Hz, H10*a*), 1.65–1.57 (3H, m, CHC*H*₂, H10*s*), 1.44–1.25 (28H, m, 5 × CH₂, 2 × *t*-Bu), 0.87 (3H, t, *J* = 6.9 Hz, CH₃).

¹³C NMR (67.5 MHz, CDCl₃) δ 174.3, 172.5, 157.1, 156.8, 104.2, 81.6, 80.0, 79.8, 78.8, 47.8, 44.7, 44.5, 43.4 (2 × C), 41.2, 40.6, 40.4, 33.0, 32.6, 31.9, 29.8, 29.6, 29.3, 28.5, 24.4, 22.8, 14.2.

HRMS (ESI, m/z) for C₃₁H₅₄N₄O₈ [M + H]⁺ calc. 611.4014; found 611.4031.

4-Heptyl-3,5-dioxatricyclo[5.2.1.0^{2,6}]decane-8-*endo-9-exo*-dicarboxamidoethylamine hydrogen chloride (5)[15]

[CAS Reg. No. 1233074-99-1]

To a stirring solution of Boc-protected amine **44** (650 mg, 1.06 mmol) and MeOH (10.6 mL) was added dropwise AcCl (760 μ L, 10.6 mmol), and the reaction was stirred for 24 h at ambient temperature. The reaction was concentrated *in vacuo* and co-evaporated with MeOH (2 × 0.5 mL), to afford the title compound (510 mg, 99%) as a white solid.

m.p. 242–243 °C.

¹H NMR (270 MHz, CD₃OD) δ 4.66 (1H, t, *J* = 4.7 Hz, H4), 4.04 (1H, d, *J* = 5.6 Hz, H2), 4.00 (1H, d, *J* = 5.6 Hz, H6), 3.53–3.35 (4H, m, 2 × NHC*H*₂), 3.23 (1H, app. t, *J* = 4.9 Hz, H8), 3.10–3.03 (4H, m, 2 × NHC*H*₂), 2.65–2.62 (2H, m, H1, H7), 2.51 (1H, br s, H9), 1.75 (1H, d, *J* = 9.8 Hz, H10*a*), 1.64–1.56 (2H, m, CHC*H*₂), 1.48–1.29 (11H, m, 5 × CH₂, H10*s*), 0.90 (3H, t, *J* = 6.5 Hz, CH₃).

¹³C NMR (67.5 MHz, CD₃OD) δ 177.0, 175.1, 105.1, 82.8, 80.0, 47.3, 47.1, 45.1, 44.9, 40.8, 38.5, 38.4, 33.9, 32.9, 32.7, 30.6, 30.3, 28.2, 25.2, 23.7, 14.4.

HRMS (ESI, m/z) for C₂₁H₃₈N₄O₄ [M + 2H]²⁺ calc. 206.1519; found 206.1528.

Dimethyl 4-pentadecyl-3,5-dioxatricyclo[5.2.1.0^{2,6}]decane-8-endo-9-exo-dicarboxylate (45)[17]

[CAS Reg. No. 1774366-94-7]

To a stirring suspension of diol **17** (403 mg, 2.0 mmol), *p*-TSA (18 mg, 0.139 mmol), MgSO₄ (210 mg, 1.31 mmol) and PhMe (5 mL) was added hexadecanal **39** (805 mg, 3.0 mmol) and the reaction was heated for 16 h at 110 °C. Solid MgSO₄ was removed by filtration and the filtrate was diluted with EtOAc (30 mL), washed with H₂O (2 \times 25 mL), brine (25 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to give the crude material which was purified by column chromatography (5% EtOAc in pet. spirits) to afford the title compound (505 mg, 65%) as a white solid.

 $R_f = 0.10$ (50% EtOAc in pet. spirits).

m.p. 71–74 °C.

¹H NMR (270 MHz, CDCl₃) δ 4.65 (1H, t, *J* = 4.8 Hz, H4), 4.03 (1H, d, *J* = 5.4 Hz, H2), 3.90 (1H, d, *J* = 5.4 Hz, H6), 3.70 (6H, s, 2 × Me), 3.22 (1H, app. t, *J* = 4.9 Hz, H8), 2.72 (1H, d, *J* = 4.9 Hz, H9), 2.66–2.64 (2H, m, H1, H7), 1.78 (1H, dd, *J* = 10.7, 1.4 Hz, H10*a*), 1.66–1.59 (2H, m, CHC*H*₂), 1.41–1.25 (27H, m, 13 × CH₂, H10*s*), 0.88 (3H, t, *J* = 6.4 Hz, CH₃).

¹³C NMR (67.5 MHz, CDCl₃) δ 174.1, 172.9, 104.4, 81.4, 78.9, 52.5, 52.3, 45.4, 45.2, 43.8, 43.4, 32.9, 32.1, 31.8, 29.8 (6 × C), 29.7 (2 × C), 29.6, 29.5, 24.4, 22.8, 14.3.

HRMS (ESI, m/z) for C₂₇H₄₆O₆ [M + H]⁺ calc. 467.3367; found 467.3378.

4-Pentadecyl-3,5-dioxatricyclo[5.2.1.0^{2,6}]decane-8-endo-9-exo-dicarboxylic acid (46)[17]

[CAS Reg. No. 1233075-00-7]

To the stirred solution of the ester **45** (258 mg, 0.56 mmol) in THF (2.3 mL), 2M NaOH (1.1 mL) was added and the reaction was stirred for 16 h at ambient temperature. The reaction was concentrated under reduced pressure and all organic-soluble impurities were extracted with CH_2Cl_2 (2 × 10 mL). The aqueous solution was acidified with sat. KH_2PO_4 (pH = 5), extracted with EtOAc (4 × 25 mL), dried (MgSO₄) and filtered to give a white waxy solid (198 mg, 86%).

m.p. 127-134 °C (lit. 125.0-127.0 °C).[15]

¹H NMR (270 MHz, DMSO- d_6) δ 4.62 (1H, t, J = 4.7 Hz, H4), 3.96 (1H, d, J = 5.6 Hz, H2), 3.89 (1H, d, J = 5.6 Hz, H6), 3.00 (1H, app. t, J = 5.0 Hz, H8), 2.53 (1H, br s, H1), 2.45 (1H, br s, H7), 2.40 (1H, d, J = 5.0 Hz, H9), 1.62–1.49 (3H, m, CHC H_2 , H10a), 1.23–1.18 (27H, m, 13 × CH₂, H10s), 0.85 (3H, t, J = 6.2 Hz, CH₃).

¹³C NMR (100 MHz DMSO-*d*₆) δ 174.6, 173.3, 103.2, 80.7, 78.2, 45.0, 44.4, 43.6, 43.3, 32.3, 31.3, 31.2, 29.0 (7 × C), 28.9 (2 × C), 28.7, 23.6, 22.1, 13.9.

HRMS (ESI, m/z) for C₂₅H₄₂O₆ [M + Na]⁺ calc. 461.2874; found 461.2882.

8-endo-9-exo-Di[2'-(2",3"-bis-tert-butoxycarbonylamino)ethylcarbamoyl]-4-pentadecyl-3,5dioxatricyclo[5.2.1.0^{2,6}]decane (47)[17]

[CAS Reg. No. 1774366-99-2]

A MW vial was charged with diacid **46** (350 mg, 0.798 mmol), EDCI (640 mg, 3.34 mmol), HOBt (12 mg, 0.089 mmol) and anhydrous CHCl₃ (13 mL) and stirred at ambient temperature for 30 min. Amine **38** (387 mg, 2.42 mmol) was then added and the reaction was irradiated for 30 min at 50 °C. The resulting homogenous clear solution was diluted with CHCl₃ (15 mL), washed with brine (3 \times 10 mL), dried (MgSO₄), filtered, and concentrated *in vacuo* to afford a white solid that was purified using flash column chromatography (50–70% EtOAc in pet. spirits) to give the title compound (303 mg, 52%) as a colourless oil.

 $R_f = 0.07$ (70% EtOAc in pet. spirits).

¹H NMR (500 MHz, CDCl₃) δ 6.84 (1H, br s, NH), 6.69 (1H, br s, NH), 5.08–5.01 (2H, m, 2 × NH), 4.64 (1H, t, *J* = 4.9 Hz, H4), 4.13 (1H, d, *J* = 5.2 Hz, H6), 3.96 (1H, d, *J* = 5.2 Hz, H2), 3.43–3.22 (8H, m, 4 × NHC*H*₂), 2.91 (1H, app. t, *J* = 5.3 Hz, H8), 2.57 (1H, br s, H1), 2.54 (1H, d, *J* = 3.7 Hz, H7), 2.42 (1H, d, *J* = 5.3 Hz, H9), 1.81 (1H, d, *J* = 9.8 Hz, H10*a*), 1.64–1.59 (2H, m, CHC*H*₂), 1.44–1.43 (18H, m, 2 × *t*-Bu), 1.39–1.24 (27H, m, 13 × CH₂, H10*s*), 0.87 (3H, t, *J* = 6.9 Hz, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 174.3, 172.5, 157.1, 156.8, 104.2, 81.6, 80.0, 79.8, 78.7, 47.8, 44.6, 44.5, 43.4, 41.1, 40.6, 40.5, 34.0, 33.0, 32.6, 32.1, 29.84 (2 × C), 29.81 (2 × C), 29.80 (2 × C), 29.72, 29.69, 29.67, 29.5, 28.55, 28.53, 24.4, 22.8, 14.3.

HRMS (ESI, m/z) for C₃₉H₇₀N₄O₈ [M + H]⁺ calc. 723.5266; found 723.5263.

4-Pentadecyl-3,5-dioxatricyclo[5.2.1.0^{2,6}]decane-8-*endo*-9-*exo*-dicarboxamidoethylamine hydrogen chloride (8)[17]

[CAS Reg. No. 1774367-02-0]

To a stirring solution of Boc-protected amine **47** (76 mg, 0.11 mmol) and MeOH (1.1 mL) was added dropwise AcCl (80 μ L, 1.1 mmol), and the reaction was stirred for 24 h at ambient temperature. The reaction was concentrated *in vacuo* and co-evaporated with MeOH (2 × 0.5 mL), to afford the title compound (58 mg, 94%) as a white solid.

m.p. 156–200 °C (slow decomposition).

¹H NMR (500 MHz, DMSO-*d*₆) δ 8.33 (1H, t, *J* = 5.5 Hz, NH), 8.23 (1H, t, *J* = 5.4 Hz, NH), 7.96 (6H, br s, 2 × NH₃), 4.59 (1H, t, *J* = 4.7 Hz, H4), 3.91 (1H, d, *J* = 5.6 Hz, H2), 3.86 (1H, d, *J* = 5.6 Hz, H6), 3.32–3.19 (4H, m, 2 × NHC*H*₂), 3.10 (1H, app. t, *J* = 4.7 Hz, H8), 2.86–2.81 (4H, m, 2 × NHC*H*₂), 2.60 (1H, d, *J* = 4.7 Hz, H9), 2.51–2.49 (1H, m, H7), 2.41 (1H, br s, H1), 1.53–1.49 (3H, m, CHC*H*₂, H10*a*), 1.31–1.23 (27H, m, 13 × CH₂, H10*s*), 0.85 (3H, t, *J* = 7.1 Hz, CH₃).

¹³C NMR (125 MHz, DMSO-*d*₆) δ 173.5, 171.5, 102.9, 81.0, 78.2, 46.1, 44.5, 43.1, 42.8, 38.5, 38.4, 36.8, 36.7, 32.4, 31.3, 31.1, 29.1 (3 × C), 29.04 (3 × C), 28.99 (3 × C), 28.7, 23.8, 22.1, 14.0.

HRMS (ESI, m/z) for C₂₉H₅₄N₄O₄ [M + 2H]²⁺ calc. 262.2145; found 262.2150.

6-Amino-2-propyl-1*H*-benz[*de*]isoquinoline-1,3-(2*H*)-dione (35)[18]

[CAS Reg. No. 94860-68-1]

A stirring solution of *tert*-Butyl (1,3-dioxo-2-propyl-2,3-dihydro-1*H*-benzo[*de*]isoquinolin-6yl)carbamate[19] (106 mg, 0.299 mmol) in CH₂Cl₂ (2.7 mL) was treated with TFA (300 μ L, 3.918 mmol, 13.1 equiv.) and the homogeneous yellow solution stirred at ambient temperature for 18 h. After this time an orange precipitate had formed. The solvent was removed under reduced pressure to give a powder that was reconstituted in H₂O (*ca*. 3 mL) and the pH was adjusted to 8 using sat. NaHCO₃. The resulting solid was collected using vacuum filtration, washing with H₂O gives the title compound (72 mg, 95%) as a light orange powder.

¹H NMR (500 MHz, CDCl₃) δ 8.60 (dd, J = 7.4, 0.7, 1H), 8.42 (d, J = 8.1, 1H), 8.10 (dd, J = 8.3, 0.7, 1H), 7.66 (dd, J = 8.3, 7.4, 1H), 6.89 (d, J = 8.1, 1H), 4.14–4.11 (m, 2H), 1.75 (app. sext, J_{app} = 7.5, 2H), 1.01 (t, J = 7.5, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 164.6, 164.1, 148.9, 133.7, 131.5, 129.8, 126.7, 125.0, 123.2, 120.1, 112.3, 109.6, 41.7, 21.4, 11.5.

Data is in accordance with the literature.[18]

4-Propylamino-7-nitrobenzo-2-oxa-1,3-diazole (36)[20]

[CAS Reg. No. 54517-98-5]

To the stirring solution of 4-chloro-7-nitrobenzofuran (196 mg, 0.982 mmol) in MeOH (9.8 mL) was added propylamine (80 μ L, 0.982 mmol) and Et₃N (210 μ L, 1.51 mmol). Stirring was maintained at ambient temperature for 24 h before the reaction mixture was concentrated under reduced pressure. The crude material was diluted in EtOAc (20 mL) and washed with 0.1 M HCl (10 mL), sat. NaHCO₃ (10 mL), brine (10 mL), dried (MgSO₄), filtered and concentrated *in vacuo* to afford the title compound (204 mg, 94%) as a dark green oil.

¹H NMR (500 MHz, CDCl₃) δ 8.49 (1H, d, *J* = 8.7 Hz, ArH), 6.31 (1H, br s, NH), 6.18 (1H, d, *J* = 8.7 Hz, ArH), 3.49–3.46 (2H, m, NHC*H*₂), 1.89–1.82 (2H, m, C*H*₂CH₃), 1.10 (3H, t, *J* = 7.4 Hz, CH₃).

¹³C NMR (125 MHz, CDCl₃) δ 144.4, 144.1, 144.0, 136.7, 124.0, 98.7, 45.8, 22.0, 11.6.

HRMS (ESI, m/z) for C₉H₁₀N₄O₃ [M + H]⁺ calc. 223.0826; found 223.0823.

Figure S1: ¹H NMR spectrum of 15 in CDCl₃.

Figure S2: ¹³C NMR spectrum of 15 in CDCl₃.

Figure S3: ¹H NMR spectrum of 6 in CDCl₃.

Figure S4: ¹³C NMR spectrum of 6 in CDCl₃.

Figure S5: ¹H NMR spectrum of **7** in CD₃OD.

Figure S6: ¹³C NMR spectrum of 7 in CD₃OD.

Figure S7: ¹H NMR spectrum of 9 in CDCl₃.

Figure S8: ¹³C NMR spectrum of 9 in CDCl₃.

Figure S9: ¹H NMR spectrum of **10** in CD₃OD.

Figure S10: ¹³C NMR spectrum of 10 in CD₃OD.

Figure S11: ¹H NMR spectrum of 12 in DMSO-*d*₆.

Figure S12: ¹³C NMR spectrum of 12 in DMSO-*d*₆.

Figure S13: ¹H NMR spectrum of 13 in DMSO-*d*₆.

Figure S14: ¹³C NMR spectrum of 13 in DMSO-*d*₆.

Figure S15: ¹H NMR spectrum of 18 in CDCl₃.

Figure S16: ¹³C NMR spectrum of 18 in CDCl₃.

Figure S17: ¹H NMR spectrum of 19 in CDCl₃.

Figure S18: ¹³C NMR spectrum of 19 in CDCl₃.

Figure S19: ¹H NMR spectrum of 20 in CDCl₃

Figure S20: ¹³C NMR spectrum of 20 in CDCl₃

Figure S21: ¹H NMR spectrum of 21 in CD₃OD.

Figure S22: ¹³C NMR spectrum of 21 in CD₃OD.

Figure S23: ¹H NMR spectrum of 23 in CD₃OD.

Figure S24: ¹³C NMR spectrum of 23 in CD₃OD.

Figure S25: ¹H NMR spectrum of 25 in CDCl₃.

Figure S26: ¹³C NMR spectrum of 25 in CDCl₃.

Figure S27: ¹H NMR spectrum of 26 in CDCl₃.

Figure S28: ¹³C NMR spectrum of 26 in CDCl₃.

Figure S29: ¹H NMR spectrum of 27 in CDCl₃.

Figure S30: ¹³C NMR spectrum of 27 in CDCl₃.

Figure S31: ¹H NMR spectrum of 28 in CDCl₃.

Figure S32: ¹³C NMR spectrum of 28 in CDCl₃.

Figure S33: ¹H NMR spectrum of **29** in CD₃OD.

Figure S34: ¹³C NMR spectrum of 29 in CD₃OD.

Figure S35: ¹H NMR spectrum of 31 in CDCl₃.

Figure S36: ¹³C NMR spectrum of 31 in CDCl₃.

Figure S37: ¹H NMR spectrum of 32 in DMSO-*d*₆.

Figure S38: ¹³C NMR spectrum of 32 in DMSO-*d*₆.

Figure S39: ¹H NMR spectrum of 33 in CDCl₃.

Figure S40: ¹³C NMR spectrum of 33 in CDCl₃.

Figure S41: ¹H NMR spectrum of 34 in CD₃OD.

Figure S42: ¹³C NMR spectrum of 34 in CD₃OD.

Photophysical Properties

Figure S43: Normalised absorption and emission spectra of naphthalimide 28 in DMSO; $\lambda_{ex} = 442$ nm, $\lambda_{em} = 526$ nm and $\phi_f = 0.89$.

Figure S44: Normalised absorption and emission spectra of naphthalimide 29 in DMSO; $\lambda_{ex} = 437$ nm, $\lambda_{em} = 528$ nm and $\phi_f = 0.88$.

Figure S45: Normalised absorption and emission spectra of naphthalimide 29 in H₂O; $\lambda_{ex} = 449$ nm, $\lambda_{em} = 549$ nm and $\phi_f = 0.16$.

Figure S46: Normalised absorption and emission spectra of NBD 33 in DMSO; $\lambda_{ex} = 475$ nm, $\lambda_{em} = 538$ nm and $\phi_f = 0.55$.

Figure S47: Normalised absorption and emission spectra of NBD 34 in DMSO; $\lambda_{ex} = 472$ nm, $\lambda_{em} = 538$ nm and $\phi_f = 0.55$.

Figure S48: Normalised absorption and emission spectra of NBD 34 in H₂O; $\lambda_{ex} = 475$ nm, $\lambda_{em} = 550$ nm and $\phi_f = 0.02$.

Organism	rganism Strain Strain description		Assay	
Escherichia coli	ATCC 25922	FDA control strain Seattle 1946	MIC	
Klebsiella pneumoniae	ATCC 13883	Control strain	DD	
Klebsiella pneumoniae	ATCC 700603	Multi-drug resistant	MIC	
Acinetobacter baumannii	ATCC 19606	Type strain	MIC/DD	
Pseudomonas aeruginosa	ATCC 27853	Type strain	MIC/DD	
Staphylococcus aureus	ATCC 43300	MRSA (methicillin resistant <i>S. aureus</i>)	MIC/DD	
Enterococcus faecium	ATCC 700221	VRE (vancomycin resistant Enterococcus)	DD	
Streptococcus pneumoniae	ATCC 700677	Multi-drug resistant	MIC	
Staphylococcus aureus	NRS 17	GISA (glycopeptide- intermediate <i>S. aureus</i>)	MIC	
Staphylococcus aureus	NRS 1	GISA, MRSA	MIC	
Staphylococcus aureus	VRS 10	Vancomycin Resistant S. aureus	MIC	
Candida albicans	ATCC 90028	CLSI reference	MIC	
Cryptococci neoformans H99	ATCC 208821	Type strain	MIC	

Table S1: Microbial strains used for Minimum Inhibitory Concentration (MIC) and disk diffusion (DD) assay

Disk Diffusion Results

	A. baumannii	P. aeruginosa	K. pneumoniae	S. aureus	E. faecium
	ATCC 19606	ATCC	ATCC	MRSA	VRE
		27853	13883	ATCC 43300	ATCC 700221
Compound				45500	
7	10	13	15	17	18
21	12	12	14.5	14	-
29	-	-	-	-	-
34	-	9	8.5	9	-
COL^b	20	19	20	-	-

Table S2: ZOI as measured (in mm) using disk diffusion assay^a

^a Measured after incubation of disk (6 mm diameter, 50 µg/disk) at 37 °C for 20 h.

^b Tested at 10 µg/disk.

Figure S49: Antibacterial activity against *K. pneumoniae* (LHS) and MRSA (RHS) at 50 μg/disk. Compounds are numbered as such; 29 (43), 34 (42), 7 (40) and 21 (41). Colistin and DMSO were used as controls and are labelled accordingly.

Molecular Dynamics Simulation Images

Figure S50: A snapshot of the curvature in the 2nd replicate of the simulation of compound 2 interacting with the membrane. Colours as per Figure 3 in the main text. Periodic images of the simulation system have been included to emphasise the curvature of the membrane.

A video depicting compound 2_{28} interacting with the model Gram-negative membrane can be made available upon request.

Fluorescence Microscopy

A video depicting a 3D-representation of naphthalimide **29** in *E. coli* cells can be made available upon request.

Anti-fungal Activity

Fungal strain	7	29	34	FLU ^a
C. albicans ATCC 90028	128	128	16	1
C. neoformans ATCC 20881	2	0.25	4	8
^{<i>a</i>} FLU – Fluconazole				

Table S3: MIC values (µg/mL)

The antifungal properties were evaluated for compounds **7**, **29** and **34** and excellent activity was observed against *Cryptococcus neoformans* for all compounds (MIC = 2, 0.25 and 4 μ g/mL respectively); a result comparable to the activity range displayed by commercially available Fluconazole.

References

[1] H.E. Gottlieb, V. Kotlyar, A. Nudelman, NMR chemical shifts of common laboratory solvents as trace impurities, J. Org. Chem., 62 (1997) 7512-7515.

[2] G. Moss, Extension and revision of the von Baeyer system for naming polycyclic compounds (including bicyclic compounds), Pure Appl. Chem., 71 (1999) 513-529.

[3] G. Radau, S. Schermuly, A. Fritsche, New cyanopeptide-derived low molecular weight inhibitors of trypsin-like serine proteases, Arch. Pharm., 336 (2003) 300-309.

[4] A. Kraus, P. Ghorai, T. Birnkammer, D. Schnell, S. Elz, R. Seifert, S. Dove, G. Bernhardt, A. Buschauer, NG-Acylated aminothiazolylpropylguanidines as potent and selective histamine H2 receptor agonists, ChemMedChem, 4 (2009) 232-240.

[5] C. Liu, W. Guo, X. Shi, M.A. Kaium, X. Gu, Y.Z. Zhu, Leonurine-cysteine analog conjugates as a new class of multifunctional anti-myocardial ischemia agent, Euro. J. Med. Chem., 46 (2011) 3996-4009.

[6] S.M. Hickey, T.D. Ashton, S.K. Khosa, F.M. Pfeffer, An optimised synthesis of 2-[2, 3-Bis (tertbutoxycarbonyl) guanidino] ethylamine, Synlett, 23 (2012) 1779-1782.

[7] L.D. Van Vliet, T. Ellis, P.J. Foley, L. Liu, F.M. Pfeffer, R.A. Russell, R.N. Warrener, F. Hollfelder, M.J. Waring, Molecular recognition of DNA by rigid [*n*]-polynorbornane-derived bifunctional intercalators: synthesis and evaluation of their binding properties, J. Med. Chem., 50 (2007) 2326-2340.
[8] L. He, H.-S. Byun, R. Bittman, A stereocontrolled, efficient synthetic route to bioactive sphingolipids: Synthesis of phytosphingosine and phytoceramides from unsaturated ester precursors *via* cyclic sulfate intermediates, J. Org. Chem., 65 (2000) 7618-7626.

[9] C.-X. Miao, L.-N. He, J.-L. Wang, F. Wu, Self-neutralizing *in situ* acidic CO₂/H₂O system for aerobic oxidation of alcohols catalyzed by TEMPO functionalized imidazolium salt/NaNO₂, J. Org. Chem., 75 (2009) 257-260.

[10] C.C. Forbes, K.M. DiVittorio, B.D. Smith, Bolaamphiphiles promote phospholipid translocation across vesicle membranes, J. Am. Chem. Soc., 128 (2006) 9211-9218.

[11] C.M. Jakobsen, S.R. Denmeade, J.T. Isaacs, A. Gady, C.E. Olsen, S.B. Christensen, Design, synthesis, and pharmacological evaluation of thapsigargin analogues for targeting apoptosis to prostatic cancer cells, J. Med. Chem., 44 (2001) 4696-4703.

[12] M.M. Flook, J. Börner, S.M. Kilyanek, L.C.H. Gerber, R.R. Schrock, Five-coordinate rearrangements of metallacyclobutane intermediates during ring-opening metathesis polymerization of 2,3-dicarboalkoxynorbornenes by molybdenum and tungsten monoalkoxide pyrrolide initiators, Organometallics, 31 (2012) 6231-6243.

[13] M. Dejmek, H. Hrebabecky, M. Sala, M. Dracinsky, R. Nencka, Microwave-assisted solvent-free Diels-Alder reaction-a fast and simple route to various 5, 6-substituted norbornenes and polychlorinated norbornenes, Synthesis, (2011) 4077-4083.

[14] S.M. Hickey, S.K. Tripcony, R. Li, R.J. Williams, F.M. Pfeffer, Organogelators based on the norbornane scaffold, Supramol. Chem., 27 (2015) 425-435.

[15] L.C. Henderson, J. Li, R.L. Nation, T. Velkov, F.M. Pfeffer, Developing an anion host for lipid A binding and antibacterial activity, Chem. Commun., 46 (2010) 3197-3199.

[16] T.J. Donohoe, A. Jahanshahi, M.J. Tucker, F.L. Bhatti, I.A. Roslan, M. Kabeshov, G. Wrigley, Exerting control over the acyloin reaction, Chem. Commun., 47 (2011) 5849-5851.

[17] S.M. Hickey, T.D. Ashton, S.K. Khosa, R.N. Robson, J.M. White, J. Li, R.L. Nation, H.Y. Yu, A.G. Elliott, M.S. Butler, J.X. Huang, M.A. Cooper, F.M. Pfeffer, Synthesis and evaluation of cationic norbornanes as peptidomimetic antibacterial agents, Org. Biomol. Chem., 13 (2015) 6225-6241.

[18] W. Xuan, R. Pan, Y. Cao, K. Liu, W. Wang, A fluorescent probe capable of detecting H2S at submicromolar concentrations in cells, Chem. Commun., 48 (2012) 10669-10671.

[19] K.N. Hearn, T.D. Nalder, R.P. Cox, H.D. Maynard, T.D.M. Bell, F.M. Pfeffer, T.D. Ashton, Modular synthesis of 4-aminocarbonyl substituted 1,8-naphthalimides and application in single molecule fluorescence detection, Chem. Commun., 53 (2017) 12298-12301.

[20] M.K. Buchanan, C.N. Needham, N.E. Neill, M.C. White, C.B. Kelly, K. Mastro-Kishton, L.M. Chauvigne-Hines, T.J. Goodwin, A.L. McIver, L.J. Bartolotti, A.R. Frampton, A.J. Bourdelais, S. Varadarajan, Glycoconjugated site-selective DNA-methylating agent targeting glucose transporters on glioma cells, Biochemistry, 56 (2017) 421-440.