Aqueous Benzylic C–H Trifluoromethylation for Late-Stage Functionalization

Shuo Guo, Deyaa I. AbuSalim and Silas P. Cook*

Department of Chemistry, Indiana University,

800 East Kirkwood Avenue, Bloomington, IN 47405-7102

Supporting Information

Table of Contents

Table of Contents	1
General Methods	2
Optimization of Pertinent Reaction Conditions	3
Unreactive substrates	8
Computational Details	8
Synthesis and Characterization of Substrates.	70
Experimental Procedures and Characterization.	75
References	92
NMR Spectra	94

General Methods.

All the reactions were carried out in glassware fitted with rubber septa under a nitrogen atmosphere unless otherwise stated. Analytical grade solvents and commercially available reagents were purchased from commercial sources and used directly without further purification unless otherwise stated. HPLC Acetone (≥99.9%) was obtained from Sigma-Aldrich. PhenCu(CF₃) was purchased from Strem Chemicals, Inc. p-Xylene- $\alpha, \alpha, \alpha - d_3$ was purchased from C/D/N Isotopes Inc. Light irradiation was performed with a Lixada LED lamp (5 W, $\lambda = 365$ nm). Thin-layer chromatography (TLC) was carried out on Merck 60 F254 precoated, glass silica gel plates which were visualized with either ultraviolet light or stained with KMnO₄. Flash chromatography was performed using ZEOprep 60 ECO 40-63 µm silica gel. Automated column chromatography was performed on a Biotage Isolera One using Biotage Snap KPSil cartridges (25g or 50g SiO₂), Biotage Snap Ultra cartridges (25g or 50g SiO₂), Yamzen universal columns (16g 40 μ m SiO₂), or RediSepR_f columns (24g or 40g SiO₂) monitoring wavelengths 254nm and 280nm unless otherwise noted. ¹H-NMR and ¹³C-NMR spectra were recorded at room temperature using a Varian I400 (¹H-NMR at 400MHz and ¹³C-NMR at 100MHz), Varian VXR400 (¹H-NMR at 400MHz and ¹³C-NMR at 100MHz), Varian I500 (¹H-NMR at 500MHz and ¹³C-NMR at 125MHz), Varian I600 (¹H-NMR at 600MHz). ¹⁹F-NMR spectra were recorded at room temperature using a VarianI400 or VXR400 (¹⁹F-NMR at 376 MHz). Chemical shifts are reported in ppm with reference to solvent signals [¹H-NMR: CDCl₃ (7.26 ppm); ¹³C-NMR: CDCl₃ (77.16 ppm)]. Signal patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet. High Resolution Mass (HRMS) analysis was obtained using Electron Impact Ionization (EI) and reported as m/z (relative intensity) for the molecular ion [M], or with Electrospray Ionization (ESI) and reporting the molecular ion $[M+H]^+$ or a suitable fragment ion.

Optimization of Pertinent Reaction Conditions.

Table S1. Evaluation of Acids

Н	3.0 equiv (NH ₄) ₂ S ₂ O ₈ 3.0 equiv <i>i</i> Pr ₃ SiH 8.0 equiv Acid, 1.0 equiv 2a	← CF ₃	
1a	acetone/H₂O 1:1 N₂, hν (365nm), 18 h	3a	
Entry	Acid	Yield of 3a (¹⁹ F NMR)	
1	without Acid	62%	
2	CCl₃COOH	58%	
3	AcOH	59%	
4	MsOH	71%	
5	CH ₃ CF ₂ COOH	59%	
6	TFA	99%	
7	НСООН	65%	
8	PhCOOH	24%	

Procedure: In a N₂ glovebox, to a 2.0 mL screw-cap test tube equipped with a stir bar was added (NH₄)₂S₂O₈ (27.3 mg, 0.12 mmol, 3.0 equiv) and bpyCu(CF₃)₃ (17.1 mg, 0.04 mmol, 1.0 equiv). Acetone (0.20 mL) and toluene **1a** (8.5 μ L, 0.08 mmol, 2.0 equiv) were added via syringe, followed by *i*-Pr₃SiH (24.7 μ L, 0.12 mmol, 3.0 equiv). The tube was sealed with a PTFE lined screw cap, brought outside the glovebox. Degassed H₂O (0.20 mL) and the desired acid (0.12 mmol, 8.0 equiv) were added under N₂ atmosphere. Then the reaction mixture was irradiated with a 5 W LED lamp (centered at 365 nm and placed 15-20 cm away from the reaction vial) at room temperature for 18 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ (4 mL). 1-bromo-4-fluorobenzene (6.0 μ L, 0.059 mmol, internal standard) and acetone-*d*₆ (0.6 mL) were added. The NMR yield of (2,2,2-trifluoroethyl)benzene **3a** was determined by comparing the integration of the ¹⁹F NMR benzene **3a** with that of 1-bromo-4-fluorobenzene (-115.7 ppm).

н	3.0 equiv (NH ₄)₂S₂O ₈ 3.0 equiv Silane 8.0 equiv TFA, 1.0 equiv 2a	CF ₃
н — 1а	acetone/H ₂ O 1:1 N ₂ , hv (365nm), 18 h	3a
Entry	Silane	Yield of 3a ^b (¹⁹ F NMR)
1	without Silane	78%
2	Me ₂ EtSiH	22%
3	MeEt ₂ SiH	35%
4	Et ₃ SiH	60%
5	<i>i-</i> Pr ₃ SiH	99%
6	<i>t</i> -BuMe₂SiH	81%
7	<i>t</i> -Bu₂MeSiH	91%
8	(TMS)₃SiH	92%
9	(EtO) ₃ SiH	56%
10	PHMS	70%

Procedure: In a N₂ glovebox, to a 2.0 mL screw-cap test tube equipped with a stir bar was added (NH₄)₂S₂O₈ (27.3 mg, 0.12 mmol, 3.0 equiv) and bpyCu(CF₃)₃ (17.1 mg, 0.04 mmol, 1.0 equiv). Acetone (0.20 mL) and toluene **1a** (8.5 μ L, 0.08 mmol, 2.0 equiv) were added via syringe, followed by the desired silane (0.12 mmol, 3.0 equiv). The tube was sealed with a PTFE lined screw cap, brought outside the glovebox. Degassed H₂O (0.20 mL) and trifluoroacetic acid (24.5 μ L, 0.12 mmol, 8.0 equiv) were added under N₂ atmosphere. The reaction mixture was irradiated with a 5 W LED lamp (centered at 365 nm and placed 15-20 cm away from the reaction vial) at room temperature for 18 h. Then the reaction mixture was quenched with saturated aqueous NaHCO₃ (4 mL), 1-bromo-4-fluorobenzene (6.0 μ L, 0.059 mmol, internal standard) and acetone-*d*₆ (0.6 mL) were added. The yield of (2,2,2-trifluoroethyl)benzene **3a** with that of 1-bromo-4-fluorobenzene (-115.7 ppm).

Procedure: In a N₂ glovebox, to a 2.0 mL screw-cap test tube equipped with a stir bar was added (NH₄)₂S₂O₈ (27.3 mg, 0.12 mmol, 3.0 equiv) and CF₃ source (0.04 mmol, 1.0 equiv) (if solid). Acetone (0.20 mL) and toluene **1a** (8.5 μ L, 0.08 mmol, 2.0 equiv) were added via syringe, followed by *i*-Pr₃SiH (24.7 μ L, 0.12 mmol, 3.0 equiv) and CF₃ source (0.04 mmol, 1.0 equiv) (if liquid). The tube was sealed with a PTFE lined screw cap, brought outside the glovebox. Degassed H₂O (0.20 mL) and trifluoroacetic acid (24.5 μ L, 0.12 mmol, 8.0 equiv) were added under N₂ atmosphere. The reaction mixture was irradiated with a 5 W LED lamp (centered at 365 nm and placed 15-20 cm away from the reaction vial) at room temperature for 18 h. Then the reaction mixture was quenched with saturated aqueous NaHCO₃ (4 mL), 1-bromo-4-fluorobenzene (6.0 μ L, 0.059 mmol, internal standard) and acetone-*d*₆ (0.6 mL) were added. The yield of (2,2,2-trifluoroethyl)benzene **3a** was determined by comparing the integration of the ¹⁹F NMR (2,2,2-trifluoroethyl)benzene **3a** with that of 1-bromo-4-fluorobenzene (-115.7 ppm).

 Table S4. Ratiometric studies.

Н	3.0 3 z eq	equiv (NH ₄) .0 equiv <i>i</i> Pr ₃ uiv TFA, y e	₂ S ₂ O ₈ ₃ SiH quiv 2a	CF ₃
1a (x equiv)	acetone/H ₂ O 1:1 N ₂ , hν (365nm), 18 h			- Ц Н За
Entry	х	У	z	Yield of 3a (¹⁹ F NMR)
1	1.0	1.5	4.0	46%
2	1.0	1.5	8.0	45%
3	2.0	1.0	8.0	99%
4	2.0	1.0	6.0	97%
5	2.0	1.0	4.0	85%
6	2.0	1.0	2.0	65%
8	2.0	1.0	0.0	62%

Procedure: In a N₂ glovebox, to a 2.0 mL screw-cap test tube equipped with a stir bar was added (NH₄)₂S₂O₈ (27.3 mg, 0.12 mmol, 3.0 equiv) and bpyCu(CF₃)₃ (y equiv). Acetone (0.20 mL) and toluene **1a** (x equiv) were added via syringe, followed by the *i*-Pr₃SiH (24.7 μ L, 0.12 mmol, 3.0 equiv). The tube was sealed with a PTFE lined screw cap, brought outside the glovebox. Degassed H₂O (0.20 mL) and trifluoroacetic acid (z equiv) were added under N₂ atmosphere. The reaction mixture was irradiated with a 5 W LED lamp (centered at 365 nm and placed 15-20 cm away from the reaction vial) at room temperature for 18 h. Then the reaction mixture was quenched with saturated aqueous NaHCO₃ (4 mL), 1-bromo-4-fluorobenzene (6.0 μ L, 0.059 mmol, internal standard) and acetone-*d*₆ (0.6 mL) were added. The yield of (2,2,2-trifluoroethyl)benzene **3a** with that of 1-bromo-4-fluorobenzene (-115.7 ppm).

 Table S5. Heterocycle Screen.

H H	3.0 equiv (NH ₄) ₂ S ₂ O ₈ 3.0 equiv <i>i</i> Pr ₃ SiH 8.0 equiv TFA, 1.0 equiv 2a 1.0 equiv Additive	CF ₃
1a	acetone/H ₂ O 1:1 Ν ₂ , hν (365nm), 18 h	3a
Entry	Additive	Yield of 3a (¹⁹ F NMR)
1	None	99%
2		79%
3	HZ K	6%
4		72%
5	∫ ^S	99%
6		99%
7		94%
8		69%

Procedure: In a N₂ glovebox, to a 2.0 mL screw-cap test tube equipped with a stir bar was added (NH₄)₂S₂O₈ (27.3 mg, 0.12 mmol, 3.0 equiv), bpyCu(CF₃)₃ (17.1 mg, 0.04 mmol, 1.0 equiv) and additive (0.04 mmol, 1.0 equiv). Acetone (0.20 mL) and toluene **1a** (8.5 μ L, 0.08 mmol, 2.0 equiv) were added via syringe, followed by the *i*-Pr₃SiH (24.7 μ L, 0.12 mmol, 3.0 equiv). The tube was sealed with a PTFE lined screw cap, brought outside the glovebox. Degassed H₂O (0.20 mL) and trifluoroacetic acid (24.5 μ L, 0.12 mmol, 8.0 equiv) were added under N₂ atmosphere. The reaction mixture was irradiated with a 5 W LED lamp (centered at 365 nm and placed 15-20 cm away from the reaction vial) at room temperature for 18 h. Then the reaction mixture was quenched with saturated aqueous NaHCO₃ (4 mL), 1-bromo-4-fluorobenzene (6.0 μ L, 0.059 mmol, internal standard) and acetone-*d*₆ (0.6 mL) were added. The yield of (2,2,2-trifluoroethyl)benzene **3a** was determined by comparing the integration of

the ¹⁹F NMR (2,2,2-trifluoroethyl)benzene **3a** with that of 1-bromo-4-fluorobenzene (-115.7 ppm).

Unreactive substrates

Table S6. Unreactive substrates.

^a 2-Phenylpropan-2-ol is the main by-product.

Computational Details.

A. Computational Methods

All calculations were performed by using DFT, as implemented in the Jaguar 9.1 suite of ab initio quantum chemistry programs.¹ Geometry optimizations were performed with the M06 functional² using the 6-31G** basis set. Cu was represented by using the Los Alamos LACVP³ basis set that included relativistic core potentials. More accurate single-point energies were computed from the optimized geometries by using Dunning's correlationconsistent triple- ζ basis set, cc-pVTZ(-f),⁴ which included a double set of polarization functions. Cu was represented by using a modified version of LACVP, designated as LACV3P, in which the exponents were decontracted to match the effective core potential with triple- ζ quality. Vibrational frequencies were computed at the M06/6-31G** level of theory to derive the zero-point energy (ZPE) and vibrational entropy corrections from unscaled frequencies. Entropy herein referred specifically to the vibrational/rotational/translational entropy of the solutes because the continuum model included the entropy of the solvent implicitly. All intermediates were confirmed as local minima on the potential energy surface with zero imaginary frequencies. Transition states were confirmed to possess only one imaginary frequency. Solvation energies were evaluated by using a self-consistent reaction field (SCRF)⁵⁻⁷ approach based on accurate numerical solutions of the linearized Poisson-Boltzmann equation. Solvation calculations were carried out on the optimized gas-phase geometries by using a dielectric constant of $\varepsilon = 20.7$. The change in solution-phase free energy, $\Delta G(sol)$, was calculated from Equations (S1)–(S5).

$G(sol) = G(gas) + \Delta G(solv)$	(S1)
G(gas) = H(gas) - TS(gas)	(S2)
H(gas) = E(SCF) + ZPE	(S3)
$\Delta E(SCF) = \Sigma E(SCF) \text{ for products} - \Sigma E(SCF) \text{ for reactants}$	(S4)

$\Delta G(sol) = \Sigma G(sol)$) for products -	- $\Sigma G(sol)$ for reactants	(S5)
---------------------------------	------------------	---------------------------------	------

A. C-H Abstraction from toluene.

Scheme S1. Benzylic C-H abstraction was significantly more thermodynamically favorable for sulfate radical anion, calculated at -19.67 kcal/mol; in comparison with triisopropylsilyl radical, which was favored by only -6.23 kcal/mol. This is in line with experimental observations where no product formation is observed in the absence of persulfate. Energies were computed (with uM06/cc-pVTZ(f)–LACV3P**//uM06/LACVP** level of

theory).

B. Assessment of outer sphere CF₃ abstraction mechanisms.

Figure S1. Energy diagram for outer sphere mechanisms involving toluyl radical and different copper species. The barrier for the abstraction of CF₃ from bipyCu^{III}(CF₃)₃ (1_o) was calculated at +63.5 kcal/mol and +61.2 kcal/mol for 1_o-TS_A and 1_oTS_B, respectively. In addition, the barrier 3_o-TS of abstracting CF₃ from bipyCu^{II}(CF₃)₂ (3_o) was calculated at

+51.6 kcal/mol. These barriers were deemed too high for the reaction conditions and hence, the outer sphere mechanism was dismissed in favor of the inner sphere one. Energies were computed (with uM06/cc-pVTZ(f)-LACV3P**//uM06/LACVP** level of theory).

C. Assessment of the ligation of Grushin's complex in a H₂O/TFA mixture

Scheme S2. As expected the Grushin complex does not freely dissociate from the free-base bipy ligand, as this is thermodynamically uphill by +32.5 kcal/mol. Yet, in the presence of a strong acid, like TFA, the diprotonation of bipy can result in a ligand exchange with water to form the bishydrate, calculated at +2.2 kcal/mol or the production of unligated copper(III) which was thermodynamically unfavored by about +4.2 kcal/mol.

Energies were computed (with uM06/cc-pVTZ(f)-LACV3P**//uM06/LACVP** level of theory).

D. Assessment of the ligation of $Cu^{II}(CF_3)_2$ complex in a H₂O/TFA mixture

Scheme S3. In line with the calculated results for the Grushin complex, $Cu^{II}(CF_3)_2$ gains +30.9 kcal/mol with the loss of free-base bipy. Once again, in the presence of TFA, the diprotonation of bipy and exchange with water results in the bishydrate, calculated at -3.08 kcal/mol or the production of unligated copper(II) which was thermodynamically unfavored by only +2.55 kcal/mol.

Energies were computed (with uM06/cc-pVTZ(f)-LACV3P**//uM06/LACVP** level of theory).

E. Assessment of the ligation of Cu^{II}(CF₃)₂ complex in a H₂O/TFA mixture

Figure S2. Based on the ligation study (Scheme S2 and S3) we deemed it appropriate not only to study the bipy complex (shown in black), but also to expand our study to include the bishydrate (blue) and unligated (red) copper systems. Interestingly when assessing the rate determining step in these processes, unligated copper species V had the lowest barrier to reductive elimination V-TS of +10.5kcal/mol. In contrast, the bishydrate species VIII has a barrier of 13.7 kcal/mol and the bipy ligated system **H**_{trans} has to overcome 17.6 kcal/mol for the reductive elimination event.

Energies were computed (with uM06/cc-pVTZ(f)-LACV3P**//uM06/LACVP** level of theory).

F. Computed energy components for DFT-optimized structures

	E(SCF)/(eV) cc-pvtz(-	ZPE/(kcal/mol) 6-	S(gas)/(kcal/mol) 6-	G(solv)/(kcalmol) 6-
	f)/LACV3P* *	31G**/LACVP* *	31G**/LACVP* *	31G**/LACVP* *
Ligands				
bipy – Conformation 1	-13473.4	98.452	94.351	-11.22
BIPY – Conformation 2	-13473.8	98.977	92.766	-6.65
$bipyH^+$ – Conformation 1	-13484.2	107.564	92.964	-49.53
$bipyH^{\scriptscriptstyle +}-Conformation\ 2$	-13483.9	107.357	89.039	-53.09
$bipy {H_2}^{2+}-Conformation \ 1$	-13490.1	115.696	94.634	-180.94
$bipy {H_2}^{2+}-Conformation\ 2$	-13490.2	115.778	94.28	-180.19
H_3O^+	-2086.97	21.626	48.459	-96
H ₂ O	-2079.39	13.688	45.075	-9.53
Radicals				
Toluyl radical	-7368.02	71.548	76.54	-3.19
Secondary radical	-8437.36	89.176	85.884	-3.04
Tertiary radical	-9506.67	106.391	89.411	-3.21
(ⁱ pr) ₃ Si radical	-17548	175.638	121.367	-1.18
SO ₄ radical anion	-19021.7	9.079	71.008	-61.52
CF ₃ Radical	-9185.25	7.931	65.323	-0.29
Organic Molecules				
1° Product	-16557.2	84.205	95.879	-4.36
2° Product	-17626.5	101.787	102.501	-4.05
3° Product	-18695.7	119.352	106.293	-3.95
Toluene	-7385.73	79.909	79.365	-2.94
Ethylbenzene				
Cumene				
(ⁱ Pr) ₃ SiH	-17565.9	181.595	119.695	-1.16

Table S7. Computed energy components.

CF ₃ H	-9203.67	16.182	64.108	-2.56
SO ₄ anion	-19039.9	16.522	69.014	-68.68
Toluene	-7385.73	79.853	74.283	-2.94
Copper(III) Complexes				
(bipy)Cu(CF3)3	-46374.7	126.817	160.405	-13.62
bipyCu ^{III} (CF ₃) ₂ (toluyl) – Isomer 1	-44556.9	191.535	171.28	-13.84
bipyCu ^{III} (CF ₃) ₂ (toluyl) – Isomer 2	-44557.1	192.036	171.654	-11.86
bipyCu ^{III} (CF ₃) ₂ (ethylbenzyl) – Isomer 1 Conformer 1	-45626	209.183	175.556	-14.41
bipyCu ^{III} (CF ₃) ₂ (ethylbenzyl) – Isomer 1 Confromer 2	-45625.8	209.035	184.922	-14.7
bipyCu ^{III} (CF ₃) ₂ (ethylbenzyl) – Isomer 1 Confromer 3	-45626	209.357	178.875	-13.58
bipyCu ^{III} (CF ₃) ₂ (ethylbenzyl) – Isomer 2 Conformer 1	-45626.2	209.273	186.896	-13.33
bipyCu ^{III} (CF ₃) ₂ (ethylbenzyl) – Isomer 2 Conformer 2	-45626.1	209.466	185.861	-12.16
bipyCu ^{III} (CF ₃) ₂ (ethylbenzyl) – Isomer 2 Conformer 3	-45626.2	209.283	180.541	-13.51
bipyCu ^{III} (CF ₃) ₂ (cumenyl) – Isomer 1 Confromer 1	-46695.1	226.906	185.918	-13.93
bipyCu ^{III} (CF ₃) ₂ (cumenyl) – Isomer 1 Confromer 2	-46695.1	226.72	188.439	-13.15
bipyCu ^{III} (CF ₃) ₂ (cumenyl) – Isomer 1 Confromer 3	-46695.1	226.801	190.097	-13.35
bipyCu ^{III} (CF ₃) ₂ (cumenyl) – Isomer 2 Conformer 1	-46694.8	226.833	187.784	-14.83
Cu ^{II} (CF ₃) ₂ (CH ₂ Ph)	-31082.1	91.128	134.927	-9.13
bipyCu ^{III} (CF ₃) ₃ (OH ₂)	-48453.4	141.399	189.855	-14.36

$(H_2O)_2Cu^{III}(CF_3)_3$	-37059.3	58.869	137.045	-14.75
$(H_2O)_3Cu^{III}(CF_3)_3$	-39139.4	74.487	154.47	-15.64
Copper(II) Species				
Cu ^{II} (CF ₃) ₂	-23712	16.8	105.566	-6.55
$((H_2O)_2Cu^{II}(CF_3)_2$	-27872.5	48.973	129.167	-16.98
bipyCu ^{II} (CF ₃) ₂ – Isomer 1	-37187.7	116.989	153.538	-14.27
bipyCu ^{II} (CF ₃) ₂ – Isomer 2	-37187.3	116.755	154.476	-14.04
bipyCu ^{II} (CF ₃) ₂ (OH ₂)	-39267.6	132.931	159.07	-15.61
Copper(I) Species				
(bipy)Cu(CF3)	-28001.2	108.259	131.217	-15.26
(H2O)2Cu(CF3)	-16606.2	24.142	92.343	-18.39
Cu(CF3)	-14525.7	8.476	74.895	-9.81
Transition States				
Reductive Elimination (primary) Transition State 1	-44556	191.112	178.285	-16.33
Reductive Elimination (primary) Transition State 2	-44556.1	191.427	177.926	-12.87
Reductive Elimination (primary) Water Ligand Transition State	-35241.2	123.736	150.531	-13.97
Reductive Elimination (primary) Unligated Transition State	-31081.6	91.335	127.375	-11.36
Outer Sphere 'equatorial' Cu(III) Transition State	-53740.3	197.718	208.783	-17.15
Outer Sphere 'Axial' Cu(III) Transition State	-53740.4	197.341	209.057	-16.75
Outer Sphere 'Axial' Cu(III) Transition State	-44554.1	188.787	187.46	-17.03
Reductive Elimination (secondary) Transition State 1	-45625.2	208.631	176.062	-16.19

Reductive Elimination (secondary) Transition State 2	-45625.2	208.665	178.706	-16.09
Reductive Elimination (secondary) Transition State 3	-45625.2	208.638	181.108	-12.92
Reductive Elimination (secondary) Transition State 4	-45625.2	209.134	176.951	-12.89
Reductive Elimination (secondary) Transition State 5	-45625.2	208.96	184.381	-13
Reductive Elimination (tertiary) Transition State 1	-46694.2	225.842	188.202	-16.24
Reductive Elimination (tertiary) Transition State 2	-46694	225.876	183.418	-15.19
Reductive Elimination (tertiary) Transition State 3	-46694.2	225.739	186.683	-16.4

G. Cartesian coordinates for the M06-minimized structures:

<u>Ligands:</u>

bipy – Conformation 1

Ν	1.007953400	-1.315162100	0.097705446
С	1.095210400	-2.639139000	0.122001540
Η	0.146611800	-3.178904800	0.193866010
С	2.297207400	-3.343074000	0.065241240
Н	2.307344200	-4.429423000	0.093369960
С	3.473711300	-2.607346800	-0.031776390
Η	4.442746000	-3.103745200	-0.086588800
С	3.398577000	-1.222765400	-0.066439930
Η	4.316288000	-0.642503440	-0.164100080
С	2.140316700	-0.602536800	0.007081670
Ν	0.746750400	1.364391900	-0.101171140
С	1.995621600	0.883215100	-0.015191414
С	3.110753300	1.734790600	0.053800750
Н	4.123888500	1.343701800	0.147793550
С	2.916722000	3.107667200	0.019708500
Н	3.771879000	3.781940000	0.071218700
С	1.620382900	3.602908600	-0.072574740
Η	1.421652400	4.670960400	-0.100165890
С	0.576556700	2.680344300	-0.125206290
Η	-0.458691600	3.026413000	-0.193430830

bipy - Conformation 2

Ν	2.196564260	-1.209571002	-1.190634246
С	2.325047735	-2.532506896	-1.206279140
Η	2.368535333	-3.000931422	-2.190759838
С	2.403207629	-3.314565306	-0.057879713
Η	2.507758985	-4.393447200	-0.131880042
С	2.343170154	-2.672947609	1.173184588
Η	2.399909367	-3.241247400	2.098907214
С	2.209289899	-1.292951843	1.208515290
Η	2.156920688	-0.739246911	2.140557337
С	2.139354566	-0.597182741	0.000197097
Ν	1.938668694	1.490441742	1.182334602
С	1.995914730	0.878099023	-0.008469161
С	1.926009935	1.573867303	-1.216792123

Η	1.977786313	1.020173525	-2.148879450
С	1.791711443	2.953832730	-1.181403265
Η	1.734420428	3.522100583	-2.107111693
С	1.731720582	3.595429156	0.049688865
Н	1.626823666	4.674281799	0.123636971
С	1.809991698	2.813349376	1.198056981
Н	1.766301564	3.281683945	2.182578856

bipyH⁺ – Conformation 1

С	1.033599533	-2.564085821	0.043254926
Η	0.059194590	-3.048301910	0.051407292
С	2.206530901	-3.321966325	0.057480273
Η	2.154694720	-4.406104209	0.076803832
С	3.426269782	-2.663219925	0.046966568
Н	4.358658342	-3.220455736	0.058235082
С	3.442250630	-1.272255651	0.022041102
Η	4.386233123	-0.734721594	0.014389543
С	2.220506113	-0.608686719	0.008848178
Ν	0.846404708	1.332115860	-0.022198367
С	2.111244991	0.857930121	-0.016795641
С	3.149875144	1.782296825	-0.036304945
Н	4.179920114	1.441166351	-0.033966853
С	2.855986449	3.137795265	-0.059876074
Η	3.666012902	3.861781910	-0.075483993
С	1.530694124	3.577557120	-0.064060172
Η	1.282684850	4.632867334	-0.082313890
С	0.525390627	2.635635865	-0.044829560
Н	-0.531572082	2.878016709	-0.046791328
Н	0.139507763	0.582492772	-0.008329753

bipyH⁺ – Conformation 2

Ν	2.256437176	-1.126307703	-1.191303391
С	2.354132379	-2.440942833	-1.323320843
Н	2.381123774	-2.823490321	-2.342309250
С	2.420587090	-3.315173767	-0.235644028
Η	2.499955156	-4.385860910	-0.396204112
С	2.382528411	-2.783023377	1.043665919

Н	2.431366131	-3.426980015	1.917013612
С	2.280208709	-1.404757091	1.194860631
Η	2.250415856	-0.991965866	2.201809041
С	2.220232069	-0.616701692	0.045736394
Ν	2.066351918	1.507270603	1.263017632
С	2.111357128	0.850234920	0.078758485
С	2.050738663	1.619031369	-1.080474568
Н	2.086798699	1.093382758	-2.028618874
С	1.948471880	2.997080062	-0.994386796
Η	1.901548770	3.589333669	-1.904236287
С	1.905280547	3.629373880	0.252125588
Η	1.825315736	4.706705424	0.343945672
С	1.966699818	2.850676794	1.381034471
Η	1.940321109	3.247356541	2.389969889
Η	2.109321560	0.962682190	2.119301574

bipyH₂²⁺ – Conformation 1

N	1.140630981	-1.375832539	-0.457110721
С	1.190442217	-2.723929467	-0.456394847
Н	0.337397143	-3.244744836	-0.881260769
С	2.300990723	-3.368667732	0.056113421
Н	2.335729436	-4.453734946	0.057290570
С	3.355187339	-2.605078688	0.545560405
Н	4.241354258	-3.090308395	0.947597778
С	3.276887559	-1.209054930	0.529145176
Н	4.080915697	-0.601865472	0.935553552
С	2.147839414	-0.593125233	0.023752339
Ν	0.866036428	1.450767869	0.453948057
С	2.005263902	0.875835751	-0.025594658
С	2.992523815	1.696244146	-0.537317963
Н	3.898915867	1.254900227	-0.942190252
С	2.799139247	3.081017931	-0.558889611
Н	3.573213842	3.726625449	-0.966729709
С	1.618170927	3.628263642	-0.069155149
Н	1.441588339	4.699401587	-0.076601728
С	0.654669163	2.783076904	0.449479301
Н	-0.281749290	3.130600331	0.875868545
Η	0.169409082	0.869343366	0.918261327
Н	0.340953246	-0.938850768	-0.913536522

bipyH ₂ ²⁺ – Conformation 2				
Ν	2.651244698	-1.247330087	-1.040720161	
С	2.786156743	-2.586419061	-1.095937776	
Н	3.200734892	-2.998189605	-2.011379070	
С	2.415265510	-3.358548366	-0.009612490	
Η	2.523797692	-4.437604788	-0.057892343	
С	1.909878807	-2.727124650	1.121040896	
Η	1.604319167	-3.313798357	1.983989812	
С	1.775131717	-1.335628737	1.144581994	
Η	1.331049947	-0.842616755	2.005538363	
С	2.152399579	-0.591354423	0.041382297	
Ν	2.368772362	1.615252461	1.036248041	
С	2.005605608	0.874570293	-0.045088433	
С	1.485680905	1.530570765	-1.146340027	
Η	1.145810500	0.960616120	-2.007221031	
С	1.344396520	2.921441664	-1.121684410	
Η	0.926196598	3.437060124	-1.982764195	
С	1.719252014	3.639319112	0.008267919	
Η	1.613179380	4.718571457	0.057644032	
С	2.238338595	2.954700556	1.092546597	
Η	2.566904567	3.439367124	2.007214942	
Η	2.786537859	1.146050757	1.839090073	
Н	2.964220667	-0.706324604	-1.845999663	

Radicals:

Toluyl Radical

С	-1.192643927	-0.977670185	-2.037633647
Η	-1.599509101	-1.876209848	-1.581429386
Η	-1.747221968	-0.050108050	-1.921822835
С	0.006793127	-1.014139360	-2.760528015
С	0.736244087	-2.222685976	-2.922116657
С	0.540741442	0.157424747	-3.361927602
С	1.917105875	-2.251861967	-3.637460308
С	1.722644638	0.116815624	-4.075019086
С	2.421176644	-1.085325196	-4.219867663
Η	0.344399318	-3.132532486	-2.469136051
Η	-0.003042214	1.094676962	-3.250542717
Н	2.458434940	-3.189086079	-3.747783550

Η	2.112130411	1.026652222	-4.526807351
Н	3.351679032	-1.112696215	-4.781752026

Ethylbenzyl radical

С	-1.193099221	-0.938003774	-2.039569869
Η	-1.549503663	-1.873008390	-1.607247862
С	0.011047604	-0.977917999	-2.769992610
С	0.723829877	-2.197403040	-2.910514604
С	0.561391729	0.171897339	-3.392275963
С	1.905798742	-2.260576919	-3.621887200
С	1.745362737	0.098172468	-4.102769214
С	2.428789197	-1.113422572	-4.224911616
Η	0.317574013	-3.093069454	-2.441541772
Η	0.040438609	1.123970661	-3.309316600
Η	2.431742257	-3.208720811	-3.712575694
Η	2.146912127	0.994372321	-4.571400417
Η	3.359691147	-1.163685739	-4.784574943
С	-2.005568682	0.291189668	-1.833208714
Η	-2.379847282	0.699306423	-2.784482792
Н	-2.873384506	0.093951780	-1.198350653
Н	-1.422055560	1.092731208	-1.357298692

Cumenyl Radical

С	-1.198892779	-0.993795329	-2.006078643
С	0.013058496	-1.033063928	-2.750600470
С	0.757238363	-2.227137138	-2.944910516
С	0.538227918	0.143129319	-3.350832290
С	1.932797923	-2.236972263	-3.672540996
С	1.714852155	0.122914656	-4.077126926
С	2.427167960	-1.064647178	-4.246133954
Η	0.399709385	-3.161771945	-2.520171497
Н	0.005155060	1.084405621	-3.239210937
Η	2.474309490	-3.172489467	-3.798652359
Η	2.084814508	1.045243547	-4.520622485
Η	3.352067155	-1.077425549	-4.817511950
С	-1.967422036	0.283091215	-1.875224691
Η	-2.299887150	0.671098131	-2.849801876
Η	-2.861903358	0.143237549	-1.259001680
Η	-1.371119114	1.082256310	-1.411148271

С	-1.801017067	-2.194003462	-1.356227344
Н	-2.703631620	-2.528375319	-1.892698200
Н	-1.126276277	-3.051278775	-1.291644126
Н	-2.129084159	-1.956107009	-0.334666544

ⁱPr∕,, ⁱPr**∕**

Triisopropylsilyl radical

Si	0.107207734	0.349892916	0.075374927
С	-0.347012937	2.207760965	0.199616924
Н	0.599833557	2.765084836	0.314827328
С	0.445790974	-0.352827617	1.824735790
Н	-0.478072861	-0.187420402	2.401264999
С	1.623642242	0.000087496	-1.049680409
Н	2.492421564	-0.005650898	-0.366904740
С	1.517408780	-1.378475301	-1.703310984
Н	2.423250811	-1.616280846	-2.279576917
Н	1.366894309	-2.183466813	-0.973709303
Н	0.668123427	-1.409428350	-2.399807724
С	1.863873519	1.061276138	-2.117470391
Н	2.768905041	0.833704036	-2.698622671
Н	1.028581777	1.094994974	-2.831348909
Н	1.985145557	2.067506240	-1.698636384
С	0.737915063	-1.850538370	1.809592820
Н	0.855643518	-2.243231752	2.829451596
Н	-0.058513113	-2.424881571	1.319659014
Н	1.675433878	-2.065036415	1.277317875
С	1.584961369	0.402203297	2.513229058
Н	1.756947105	0.017319998	3.529262575
Н	2.528681381	0.280722274	1.962805908
Н	1.391933581	1.478981146	2.597933773
С	-1.056547457	2.704092397	-1.059433384
Н	-0.453996732	2.574087260	-1.965611165
Н	-1.998685403	2.159041755	-1.210661275
Н	-1.306221529	3.771679349	-0.977877418
С	-1.223259221	2.473950711	1.421998986
Н	-2.146417549	1.877483636	1.379765145
Н	-0.721587615	2.235279889	2.367457101
Н	-1.524871725	3.529970643	1.466499583
		CF ₃	

CF3 Radical

С	-0.734080476	-0.247521538	-2.066017087
F	-1.362971034	-1.332317710	-2.465994315

F	0.525800640	-0.258728642	-2.444571133
F	-1.346406289	0.842890988	-2.476172001

$$\odot O - S - O'$$

Sulfonate radical anion

S	2.344938497	-0.041639618	-1.934056920
0	1.220676352	-0.024689333	-0.894456606
0	2.362693916	1.190230492	-2.731094518
0	3.468836905	-0.057883684	-0.893874290
0	2.326781860	-1.273548535	-2.731391099

Organic Molecules:

Toluene

С	0.140775177	1.024325053	-2.250702030
С	-1.060244481	1.024255129	-1.537415085
С	1.336635112	1.024448238	-1.533240847
С	-1.065615214	1.024492593	-0.148093845
С	1.336824208	1.024699356	-0.141592340
С	0.135009381	1.024716133	0.556154536
Η	-2.003384997	1.023976734	-2.084061618
Η	2.281548813	1.024356233	-2.075358580
Η	-2.011984359	1.024415522	0.388930606
Η	2.281228996	1.024797842	0.398850663
Η	0.132505041	1.024824286	1.643795596
С	0.134018195	1.024592424	-3.752207011
Η	1.151210656	1.015211365	-4.157255731
Н	-0.392409845	0.147833121	-4.148297623
Н	-0.375735767	1.911292798	-4.148102723

Triisopropylsilane

Si 0.132273050 0.362128447 0.087497882

С	-0.355260742	2.197742529	0.207977347
Η	0.560973421	2.795770567	0.343583665
С	0.471833940	-0.335471312	1.823343553
Н	-0.453347345	-0.162773344	2.397369277
С	1.624958647	0.013920750	-1.049643253
Η	2.510480696	0.003711391	-0.391163318
С	1.492778448	-1.367564616	-1.694804025
Η	2.381496382	-1.613921418	-2.292979885
Η	1.355185160	-2.170452518	-0.960331789
Η	0.626875846	-1.395762237	-2.370599950
С	1.857959682	1.064207503	-2.132995483
Η	2.755321228	0.828699589	-2.722471325
Η	1.015700598	1.094562396	-2.838941810
Η	1.985993963	2.074207247	-1.725403772
С	0.742204517	-1.838752110	1.807264954
Н	0.839671488	-2.236488293	2.827225087
Η	-0.056005442	-2.401571630	1.306131372
Η	1.684079451	-2.065716058	1.287786124
С	1.613932158	0.402609292	2.520555865
Н	1.772732850	0.022292373	3.539372273
Н	2.561447663	0.265783891	1.980035965
Н	1.436740065	1.482898667	2.597067170
С	-1.063250376	2.665343931	-1.064537601
Η	-0.433837193	2.581961676	-1.957905536
Η	-1.970222346	2.071063963	-1.244013853
Η	-1.376412961	3.715528250	-0.979915917
С	-1.269894993	2.427568614	1.411731267
Η	-2.167168642	1.793703784	1.350250757
Η	-0.778732051	2.208478668	2.367452598
Η	-1.617482627	3.469513727	1.450896781
Η	-1.058228935	-0.355825879	-0.476124785

Primary Product

С	-0.773797589	-0.379235268	0.765510160
F	-1.914364681	-0.304227717	1.462949828
F	-0.031454316	-1.345989336	1.315126961
F	-0.120790518	0.774779159	0.932772183
С	-1.053792941	-0.656102585	-0.688961929
Η	-1.619957822	-1.594073651	-0.729205107
Η	-1.714164389	0.143564881	-1.043847436
С	0.202478755	-0.737185998	-1.507156153

С	0.874077646	-1.950672251	-1.651707266
С	0.733922321	0.406496124	-2.101568563
С	2.051078921	-2.022535525	-2.387005083
С	1.910674695	0.337584399	-2.837684937
С	2.570642621	-0.878124426	-2.982859416
Η	0.468405090	-2.844253249	-1.179167968
Н	0.218519863	1.358661460	-1.980825651
Η	2.564013747	-2.975234594	-2.496057093
Η	2.313811269	1.235796697	-3.299596530
Η	3.489504052	-0.933876727	-3.561832310

Secondary Product

С	-0.782187483	-0.375636640	0.739596254
F	-1.904234400	-0.392530888	1.473640439
F	0.044930027	-1.287987992	1.258270803
F	-0.216205038	0.825974951	0.905602295
С	-1.079199342	-0.660734130	-0.718197860
Η	-1.527555776	-1.665233174	-0.716881124
С	0.206217818	-0.722451002	-1.511054648
С	0.835330435	-1.951675789	-1.708141353
С	0.804284463	0.426873452	-2.028261328
С	2.027432717	-2.037384155	-2.416465839
С	1.997537686	0.345118219	-2.736844127
С	2.611636644	-0.886756582	-2.934528482
Η	0.380958453	-2.852613946	-1.296865101
Η	0.339006026	1.398222073	-1.874968879
Η	2.501042724	-3.005168059	-2.564415138
Η	2.450983262	1.250032252	-3.134918254
Η	3.543830585	-0.949787895	-3.491112234
С	-2.101281117	0.336207160	-1.250382162
Η	-2.272610225	0.167976228	-2.317418155
Η	-3.054114463	0.235674991	-0.723200426
Н	-1.758500773	1.367825805	-1.118860051

Tertiary Product

С	-1.409895521	-1.804215900	0.027649364
F	-2.618112328	-1.869368514	0.608326414
F	-0.890966654	-3.037285400	0.068907761

F	-0.644682707	-1.022431604	0.797588528
С	-1.505956236	-1.268891034	-1.398345941
С	-0.095031488	-1.211224296	-1.983688873
С	0.509221165	-2.357540764	-2.509298072
С	0.643886569	-0.026268651	-1.986483929
С	1.795964544	-2.317465871	-3.031371438
С	1.931242486	0.018531136	-2.509863851
С	2.513339363	-1.126999052	-3.037119109
Η	-0.024571233	-3.304025791	-2.510252144
Η	0.216109266	0.885302041	-1.578484544
Η	2.239439051	-3.224769877	-3.435387908
Η	2.480430408	0.957374773	-2.502627954
Η	3.519706785	-1.093522559	-3.447926069
С	-2.414574970	-2.200839481	-2.206242332
Η	-2.435876123	-1.875033568	-3.251764665
Η	-2.083043620	-3.242292285	-2.178590666
Η	-3.436142078	-2.170521731	-1.813737992
С	-2.166963593	0.110050113	-1.336466100
Η	-2.173377687	0.563783045	-2.333400702
Η	-3.202276814	0.016654085	-0.995153996
Η	-1.653931032	0.789299500	-0.649349559

Cu(III) Complexes:

Grushin's Reagent bipyCu^{III}(CF3)3

Cu	-0.717828211	-0.245194336	0.002560647
Ν	1.038629502	-1.294371079	0.014444416
С	1.064990821	-2.624792574	0.039578925
Н	0.096680991	-3.123428301	0.045385533
С	2.253678739	-3.340464040	0.057540725
Н	2.238537266	-4.425395877	0.077619859
С	3.446063841	-2.628858048	0.049668112
Н	4.400254048	-3.149098056	0.063658830
С	3.412254551	-1.242090773	0.024697920
Н	4.337884185	-0.674837579	0.020075347
С	2.181770010	-0.590181414	0.007555931
Ν	0.790723863	1.348245490	-0.019264091
С	2.045963219	0.886610532	-0.017176876

С	3.131854169	1.759219584	-0.038104510
Н	4.152415121	1.388162285	-0.037883989
С	2.889413173	3.126523012	-0.060906822
Н	3.721999790	3.825191518	-0.077529670
С	1.580606570	3.590585536	-0.063012596
Η	1.355399819	4.652430218	-0.080968877
С	0.553580670	2.654553911	-0.042007358
Η	-0.496138052	2.945789763	-0.043597682
С	-0.749053924	-0.247913193	-1.970276743
С	-2.628593598	0.194576579	0.001598651
С	-0.744434187	-0.218476497	1.975604161
F	-1.351876447	-1.332735980	-2.484628169
F	0.511232815	-0.257467591	-2.467494920
F	-1.333475341	0.842295589	-2.495087028
F	-2.666218019	1.541924455	0.001297957
F	-3.313966396	-0.225366299	-1.061529632
F	-3.311517663	-0.225703120	1.066350823
F	-1.339424138	0.869827520	2.491099232
F	-1.333581350	-1.304801327	2.503450436
F	0.517266662	-0.208237311	2.469500057

bipyCu^{III}(CF₃)₂(toluyl) - Isomer 1

Cu	-0.870105625	-0.536634880	0.008203650
Ν	1.018956878	-1.273521414	0.006190180
С	1.265723293	-2.547839115	0.305823036
Η	0.400294378	-3.152238623	0.576486332
С	2.545145989	-3.082985201	0.275386463
Н	2.708902912	-4.126613694	0.525090205
С	3.595730228	-2.246147397	-0.079482808
Η	4.614252250	-2.623991320	-0.121005897
С	3.336931728	-0.916244610	-0.372615325
Η	4.152252688	-0.250343611	-0.636812934
С	2.026049337	-0.445587930	-0.314949771
Ν	0.376310126	1.280099249	-0.383500767
С	1.662818008	0.969077556	-0.572967655
С	2.587157494	1.931026606	-0.981751009
Н	3.628945286	1.674437150	-1.151069687
С	2.146908655	3.228844465	-1.195815292
Н	2.847340743	3.992803461	-1.524333023

С	0.808215860	3.542049424	-0.987422493	
Η	0.432168091	4.548951457	-1.141588214	
С	-0.045810786	2.526296965	-0.575393963	
Η	-1.105838345	2.698909218	-0.392147641	
С	-2.804686468	-0.257612449	0.141904920	
С	-0.688944376	-0.153006255	1.975135358	
F	-2.984696088	1.056555050	-0.140484931	
F	-3.583997262	-0.937308026	-0.713603930	
F	-3.333832807	-0.472772652	1.348343438	
F	-1.326997961	0.972275522	2.349432709	
F	-1.147030921	-1.157178978	2.748787119	
F	0.603226287	0.029084183	2.349226907	
С	-1.206517510	-0.952226593	-1.970151455	
Η	-1.739075863	-1.905136751	-1.909596783	
Η	-1.881997014	-0.148524399	-2.271934572	
С	0.021480790	-1.005001753	-2.762412327	
С	0.731625158	-2.207138176	-2.931904309	
С	0.548987139	0.144282103	-3.373351988	
С	1.917092405	-2.252952504	-3.649879800	
С	1.734504717	0.100644598	-4.096337109	
С	2.432777363	-1.095518069	-4.231833492	
Η	0.331666018	-3.117772698	-2.483840738	
Η	0.010500898	1.087452269	-3.270427405	
Η	2.444174416	-3.199159749	-3.762194937	
Η	2.117207176	1.010417997	-4.556461920	
Η	3.361907986	-1.130754332	-4.796786845	

bipyCu^{III}(CF₃)₂(toluyl) – Isomer 2

Cu	-1.078890143	-0.473175659	-0.009044739
Ν	0.898721208	-1.192561745	0.079897056
С	1.098389208	-2.509251649	0.148815173
Η	0.203699568	-3.125396126	0.184026242
С	2.363994542	-3.075597332	0.172639436
Η	2.480571867	-4.153009698	0.229121178
С	3.461470115	-2.227665968	0.116779526
Η	4.473663112	-2.624788601	0.124637683
С	3.254056518	-0.859889214	0.049187320
Н	4.104995430	-0.188563819	-0.001817589
С	1.951414715	-0.359965534	0.037887719

Ν	0.381107048	1.448460271	-0.112524290
С	1.669437297	1.093971193	-0.020242765
С	2.693558278	2.041843701	0.026088884
Н	3.734077275	1.744936878	0.114452825
С	2.369689448	3.389063747	-0.033820238
Н	3.153405363	4.142383783	0.001027440
С	1.036084169	3.753061008	-0.134877312
Н	0.732584531	4.794787031	-0.184708971
С	0.079005449	2.743716890	-0.168331366
Н	-0.977251890	2.989348690	-0.245427991
С	-1.024917212	-0.858142081	-1.965939714
С	-1.094596315	-0.544625016	1.982053459
F	-2.076239638	-0.629469536	-2.789338866
F	0.022870041	-0.230220740	-2.546988465
F	-0.772182087	-2.192851730	-2.091481471
F	-2.152338028	-0.148578005	2.726910591
F	-0.908637210	-1.856148221	2.305975769
F	-0.032175240	0.116513883	2.496597287
С	-3.024887334	-0.130555020	-0.065043593
Η	-3.406437588	-0.543775866	0.866777235
Η	-3.365329839	-0.674627416	-0.944140356
С	-3.151826851	1.334037300	-0.171737042
С	-3.157033353	1.970212622	-1.423957019
С	-3.279728267	2.133865859	0.975757595
С	-3.301030653	3.347927602	-1.523228683
С	-3.422507683	3.511544307	0.873568015
С	-3.436046448	4.126589879	-0.376020394
Η	-3.035034961	1.367288418	-2.319532196
Η	-3.254796772	1.658308049	1.952156940
Н	-3.304496101	3.818858295	-2.504120722
Н	-3.522588686	4.110514907	1.776440996
Н	-3.547262588	5.206005081	-0.455532293

bipyCu^{III}(CF₃)₂(ethylbenzyl) – Isomer 1 Conformer 1 Cu -0.966202305 -0.143453071 -0.095445006

Cu	-0.966202305	-0.143453071	-0.095445006
Ν	0.999298068	-1.222902776	0.127281084
С	1.189440716	-2.488513401	0.482515054
Н	0.307467820	-3.016850893	0.846102780
С	2.432953399	-3.104056561	0.396817246

Η	2.555930797	-4.142095032	0.691445345
С	3.503492165	-2.355006413	-0.077375321
Η	4.490287956	-2.802130545	-0.170231605
С	3.307208284	-1.027356416	-0.431199402
Η	4.135235732	-0.436242613	-0.810272872
С	2.027303944	-0.486805802	-0.305730121
N	0.413460236	1.276372864	-0.554202485
С	1.707945131	0.926200141	-0.616973566
С	2.685602520	1.870903909	-0.926902358
Η	3.732180311	1.585649701	-0.970748537
С	2.310537005	3.182036670	-1.171718159
Η	3.062617607	3.927153614	-1.418335882
С	0.969021100	3.534553579	-1.080251144
Н	0.635544713	4.554129525	-1.245847177
С	0.054018561	2.543963518	-0.757522071
Η	-1.008225786	2.763905615	-0.655342972
С	-2.690744219	-0.998407015	0.305425376
С	-0.779547133	0.296849301	1.895559175
F	-3.549471080	-0.036282341	0.688164161
F	-3.337099203	-1.683642996	-0.661910452
F	-2.566263009	-1.867136968	1.319673196
F	-1.803054024	0.980907581	2.439710966
F	-0.611499794	-0.810403794	2.649200386
F	0.327330888	1.051853716	2.133604553
С	-1.294762010	-0.551640342	-2.108865352
С	-0.025662072	-0.701620733	-2.835986717
С	0.600637983	-1.960546620	-2.875696946
С	0.605295853	0.349015896	-3.521676326
С	1.802611740	-2.156270137	-3.536901853
С	1.812135330	0.156271110	-4.185188154
С	2.423387148	-1.093237363	-4.191943968
Н	0.120060709	-2.794708936	-2.363087646
Η	0.146286555	1.337089308	-3.532127065
Η	2.260362588	-3.144134715	-3.544085567
Η	2.277457883	0.992025832	-4.705500874
Н	3.365774074	-1.242878354	-4.714674894
С	-2.235465470	0.537077228	-2.567376257
Η	-2.459134059	0.438142146	-3.641974423
Η	-3.183534812	0.489981715	-2.023261735
Η	-1.826796240	1.547769165	-2.430935320
Η	-1.797837428	-1.515011998	-2.039959169

bipy	Cu ^{III} (CF3)2(ethyl	benzyl) – Isome	r 1 Confromer 2
Cu	-1.032306932	-0.685476051	-0.002180594
Ν	0.930044864	-1.348649433	-0.084545519
С	1.291888985	-2.547356184	0.369236031
Η	0.491998727	-3.167992761	0.771949113
С	2.607472837	-2.987985389	0.335850471
Η	2.865030517	-3.974519974	0.708141277
С	3.571206128	-2.131567216	-0.181853595
Η	4.614031770	-2.435377181	-0.227311385
С	3.193686007	-0.876658048	-0.636363107
Η	3.941041751	-0.193741670	-1.028435940
С	1.851996215	-0.503005913	-0.574696037
Ν	0.049321174	1.037732408	-0.837197011
С	1.354262341	0.818876931	-1.030135616
С	2.163938698	1.778804285	-1.635741328
Η	3.221135094	1.598376955	-1.808379597
С	1.590967547	2.983229247	-2.025208494
Η	2.202969566	3.746523773	-2.499657568
С	0.236816641	3.201062507	-1.807401717
Η	-0.242792489	4.129042389	-2.103456953
С	-0.503198265	2.186531222	-1.210697112
Н	-1.575844062	2.275904988	-1.036731351
С	-2.945357185	-0.551065271	0.397153799
С	-0.610742142	0.034250715	1.849639533
F	-3.289295570	0.703740185	0.019135524
F	-3.824593488	-1.372672135	-0.211761050
F	-3.235667343	-0.659034434	1.699745819
F	-1.325250829	1.118574089	2.205155520
F	-0.792558609	-0.902166987	2.806127413
F	0.690923716	0.415576587	1.974041714
С	-1.343255060	-1.521983239	-1.880127739
С	-1.861450284	-0.524757622	-2.835067901
С	-0.958247265	0.168465863	-3.660105943
С	-3.224523468	-0.219448212	-2.976185842
С	-1.384060892	1.134674094	-4.560724701
С	-3.651727772	0.746540543	-3.876628255
С	-2.738140418	1.435236470	-4.670764731
Η	0.105835447	-0.063076551	-3.585019410
Н	-3.952903367	-0.722021526	-2.346800629

Η	-0.654214238	1.653579410	-5.180340435
Н	-4.714135210	0.967832216	-3.958115971
Н	-3.079721276	2.192459733	-5.373127435
С	-2.018714231	-2.870176976	-1.813207396
Η	-1.809837753	-3.437015273	-2.734145354
Η	-1.642258057	-3.467550463	-0.971997787
Η	-3.101996766	-2.803616748	-1.706187785
Η	-0.275460962	-1.663154654	-2.083049669

bipyCu ^{III} (CF ₃) ₂ (ethylbenzyl) – Isomer 1 Confromer 3				
Cu	-1.019079686	-0.491156439	-0.064166936	
Ν	0.787318266	-1.376236290	-0.198003104	
С	0.917207504	-2.677485522	0.066914548	
Η	-0.000804956	-3.218093102	0.289522317	
С	2.147837694	-3.318123442	0.053561839	
Н	2.208252718	-4.380721417	0.267088743	
С	3.275876500	-2.566588846	-0.241873158	
Н	4.259624194	-3.028872622	-0.266192383	
С	3.139505127	-1.209495726	-0.498703942	
Н	4.017241645	-0.608842334	-0.714530860	
С	1.873983458	-0.627706195	-0.461494793	
Ν	0.391402710	1.247758026	-0.524438517	
С	1.648340958	0.820773846	-0.691204423	
С	2.669738359	1.698041912	-1.057626080	
Η	3.687465374	1.348681372	-1.205232887	
С	2.364289432	3.039066908	-1.241507705	
Η	3.144285790	3.739345861	-1.530204881	
С	1.058296083	3.474035618	-1.053507480	
Н	0.784691499	4.516747551	-1.184041609	
С	0.100279674	2.533588194	-0.692544753	
Η	-0.941449131	2.806962791	-0.528654522	
С	-2.835379676	0.160351742	0.274677138	
С	-0.626668133	-0.327338009	1.932485882	
F	-2.733305300	1.464508094	0.612148467	
F	-3.767169236	0.121390051	-0.702969373	
F	-3.396579994	-0.487325284	1.308295901	
F	-1.339739667	0.513843147	2.693184781	
F	-0.800867604	-1.568929279	2.460812634	
F	0.672651827	-0.011504664	2.178482618	

С	-1.503970976	-1.031885671	-1.997792773
С	-1.511983371	-2.501315224	-1.890012687
С	-0.565819916	-3.316311907	-2.532081769
С	-2.474611325	-3.136385489	-1.082074294
С	-0.584083394	-4.699410398	-2.379413000
С	-2.485544509	-4.513939176	-0.922808122
С	-1.537417727	-5.306798609	-1.570249580
Η	0.196939603	-2.861848765	-3.162353473
Η	-3.210996613	-2.521889905	-0.564730010
Η	0.158447541	-5.306011902	-2.895311178
Η	-3.238401776	-4.974673894	-0.286699890
Η	-1.546269481	-6.387168538	-1.444669555
С	-0.573893637	-0.410686795	-3.005210238
Η	-0.676148974	0.679490182	-3.013759861
Η	0.484831444	-0.641972393	-2.826438722
Η	-0.807993378	-0.769788360	-4.020716108
Η	-2.512160950	-0.636719237	-2.093198935

bipyCu^{III}(CF₃)₂(ethylbenzyl) – Isomer 2 Conformer 1

Cu	-0.513169006	-0.576207636	0.137135367
Ν	1.081209003	-1.837395618	-0.489395438
С	1.036119038	-3.157750295	-0.334358803
Η	0.122669866	-3.554697195	0.107781069
С	2.082131839	-3.984993758	-0.720392996
Η	2.015122493	-5.058538711	-0.574311820
С	3.201222593	-3.397929219	-1.295456469
Η	4.043254254	-4.007731541	-1.613130837
С	3.238518844	-2.021222207	-1.466465640
Η	4.107302930	-1.554937763	-1.921022629
С	2.151349723	-1.255796368	-1.048394685
Ν	0.985936085	0.815205373	-0.741738247
С	2.102212953	0.222703028	-1.182703124
С	3.146755576	0.972338824	-1.721943699
Η	4.053624258	0.494318388	-2.079875149
С	3.017289132	2.352384023	-1.793983707
Η	3.822032488	2.952659423	-2.210868303
С	1.857091851	2.955013957	-1.326371814
Η	1.721260064	4.031620051	-1.362349331
С	0.863747545	2.136136232	-0.803647113

Η	-0.068375076	2.547873562	-0.415917422	
С	-1.401078427	-0.990588833	-1.598077043	
С	0.359101500	-0.215437815	1.884777551	
F	-0.519735412	-0.778675733	-2.613663725	
F	-1.678746066	-2.320246883	-1.643419057	
F	-2.534533288	-0.367420707	-2.000225861	
F	0.088175507	1.034988957	2.340266052	
F	0.035780495	-1.058567532	2.900511969	
F	1.710091907	-0.275021276	1.803168969	
С	-2.266703433	-0.320329602	1.133201118	
С	-3.016851254	-1.571739815	0.923855273	
С	-4.173405193	-1.651722998	0.143713181	
С	-2.545038869	-2.741219245	1.541422551	
С	-4.820267265	-2.868548418	-0.037467971	
С	-3.182676956	-3.955595711	1.350119242	
С	-4.323667197	-4.025767583	0.551674955	
Η	-4.558802667	-0.758887273	-0.342183198	
Η	-1.651041539	-2.673586071	2.162527274	
Η	-5.717768162	-2.913485414	-0.651053018	
Η	-2.796423913	-4.852841527	1.830290294	
Η	-4.827364992	-4.977675268	0.398477111	
С	-2.836360118	0.998931474	0.692137473	
Η	-2.162135716	1.810250737	0.990326580	
Η	-3.002905170	1.052360933	-0.386643752	
Η	-3.800383218	1.181262949	1.193964636	
Н	-1.922436695	-0.266349517	2.164648762	

bipyCu^{III}(CF₃)₂(ethylbenzyl) – Isomer 2 Conformer 2

Cu	-0.619932742	-0.793286322	0.084600535
Ν	1.277995532	-1.684492213	-0.269270149
С	1.516403696	-2.949428406	0.060793244
Η	0.714107709	-3.466240882	0.585398355
С	2.718270567	-3.579609604	-0.231482873
Η	2.877192519	-4.616095037	0.049684048
С	3.696903745	-2.844539113	-0.886754269
Η	4.653701542	-3.297187900	-1.134862900
С	3.445121163	-1.522747925	-1.226457824
Η	4.204236071	-0.941865390	-1.740144735
С	2.209259552	-0.962282261	-0.905702608

Ν	0.608694763	0.822116012	-0.898050491
С	1.839363877	0.433718636	-1.253142554
С	2.703566030	1.298556335	-1.924308088
Н	3.702758752	0.983876114	-2.209937425
С	2.266498731	2.579629773	-2.230442873
Н	2.925586815	3.268841984	-2.752731084
С	0.983345834	2.966609462	-1.867848144
Н	0.603749511	3.957996800	-2.096207039
С	0.184121399	2.045793784	-1.201163168
Η	-0.832527568	2.291893701	-0.891674644
С	-1.225417172	-1.323808462	-1.764705880
С	0.065867343	-0.459195507	1.935264487
F	-1.649688302	-0.247245659	-2.471611231
F	-0.198229386	-1.830969039	-2.491393569
F	-2.218467812	-2.241894450	-1.881931659
F	-0.514603351	0.370911805	2.837780703
F	0.133161943	-1.670101458	2.560561563
F	1.347300896	-0.018559376	1.867526996
С	-2.584846117	-0.664736644	0.612898306
С	-2.946433546	0.737958127	0.309800823
С	-2.645228347	1.804856184	1.171038431
С	-3.645973878	1.025673909	-0.872398576
С	-3.015829421	3.104510712	0.850686018
С	-4.021420555	2.324352479	-1.189009682
С	-3.702679328	3.373672694	-0.331249914
Η	-2.088897056	1.612457150	2.082805148
Η	-3.885891384	0.210890213	-1.552085826
Η	-2.764861084	3.915730083	1.531053790
Η	-4.563925400	2.517868976	-2.112074724
Η	-3.993539031	4.392426500	-0.578172837
С	-2.873916770	-1.193680332	1.993352704
Η	-2.511857744	-0.549852072	2.795198970
Η	-3.966074985	-1.285129661	2.099797781
Η	-2.445192083	-2.189709904	2.139734236
Н	-3.003109994	-1.339645115	-0.133911280

$bipyCu^{III}(CF_3)_2(ethylbenzyl) - Isomer 2 Conformer 3$

Cu	-0.551882989	-0.804453059	0.168943694
Ν	1.037840824	-1.936858832	-0.968571806
С	0.963133843	-3.192404641	-1.393868666
---	--------------	--------------	--------------
Н	0.025844368	-3.710584744	-1.190905748
С	2.008351479	-3.820676244	-2.060093977
Η	1.911201098	-4.850154077	-2.391310391
С	3.168740458	-3.091893523	-2.283455970
Η	4.013301718	-3.542340929	-2.798944626
С	3.244671234	-1.777692685	-1.843419883
Η	4.148906346	-1.201228084	-2.014554848
С	2.149320168	-1.222485218	-1.182644582
Ν	1.023223474	0.566044689	-0.039281752
С	2.134187389	0.174402362	-0.678015148
С	3.201343604	1.055316292	-0.844689198
Н	4.103306349	0.745943208	-1.363426589
С	3.101804271	2.343500808	-0.338510322
Н	3.926414562	3.040904213	-0.463011326
С	1.945679259	2.729536980	0.326448740
Η	1.833213660	3.726900303	0.739803662
С	0.925559206	1.797125497	0.455382752
Н	-0.002239549	2.029411359	0.977392455
С	-1.310754120	-0.315077943	-1.598019034
С	0.191349934	-1.248403236	1.964833834
F	-2.276061734	0.642213906	-1.580798968
F	-0.366988275	0.156448071	-2.446757806
F	-1.858192092	-1.380520313	-2.236531985
F	0.056476953	-0.166144282	2.775295747
F	-0.249657651	-2.304016806	2.689435949
F	1.535121788	-1.449366081	1.862354973
С	-2.438300275	-1.371145622	0.653269316
С	-2.788043754	-0.601198612	1.861722560
С	-2.976605037	0.784399609	1.733904493
С	-2.948441595	-1.179883169	3.123741778
С	-3.276416286	1.568649602	2.835352635
С	-3.261140133	-0.393936441	4.226504130
С	-3.414937929	0.981082663	4.091992730
Н	-2.863321050	1.232690529	0.746024197
Η	-2.810397044	-2.250809361	3.247759859
Н	-3.410042410	2.642220971	2.716971337
Η	-3.378797451	-0.860351025	5.202435159
Η	-3.650038374	1.593225525	4.959905471
С	-2.449851377	-2.874165166	0.672146656
Н	-1.732575026	-3.295875067	1.380149482
Н	-3.452168410	-3.240471245	0.945952433
Η	-2.232654833	-3.258811971	-0.330587153

bipyCu^{III}(CF₃)₂(cumenyl) – Isomer 1 Confromer 1

Cu	-0.929240906	-0.527991477	-0.029233794
Ν	0.934626895	-1.316821535	-0.077102456
С	1.158718058	-2.591942374	0.236692186
Н	0.281390644	-3.183009774	0.498559439
С	2.430615896	-3.145017276	0.235545781
Н	2.573656635	-4.189542560	0.493992344
С	3.500068988	-2.324064275	-0.098276190
Η	4.513935529	-2.715810607	-0.116723106
С	3.265607777	-0.990448418	-0.396154123
Н	4.096190204	-0.335779090	-0.639596016
С	1.961323458	-0.500647320	-0.367367523
Ν	0.344049138	1.257473065	-0.452182792
С	1.629126971	0.923615457	-0.613834536
С	2.583408086	1.875087347	-0.975203097
Η	3.624138355	1.600769557	-1.121550565
С	2.176057714	3.185696482	-1.174885576
Η	2.900926535	3.941221020	-1.468357174
С	0.839362466	3.523043018	-0.992670158
Η	0.489040226	4.541345658	-1.132389298
С	-0.045327570	2.517728597	-0.622108440
Η	-1.104542018	2.710905555	-0.453786865
С	-2.837421662	-0.171091151	0.338082124
С	-0.544616474	-0.123453250	1.945105952
F	-3.008797164	1.151146620	0.075947593
F	-3.795977060	-0.813571452	-0.367562292
F	-3.202605339	-0.357291099	1.611860337
F	-1.136503699	1.003300662	2.379409313
F	-0.932311457	-1.130494664	2.752760323
F	0.776995536	0.053876007	2.207963560
С	-1.294532398	-1.031908060	-2.084066379
С	0.016768210	-1.021807002	-2.795676390
С	0.775586547	-2.192112473	-2.991672545
С	0.537930988	0.155246270	-3.364007041
С	1.982501522	-2.180479813	-3.677356726
С	1.743761936	0.170493985	-4.053738949
С	2.483512158	-0.996266423	-4.210336369

Η	0.414465484	-3.141336962	-2.603431564
Η	-0.008711631	1.090043180	-3.259493670
Η	2.534363476	-3.110922971	-3.801945039
Н	2.106849805	1.108825586	-4.470797424
Η	3.426793522	-0.987319197	-4.752399622
С	-2.255773202	-0.021677812	-2.691527136
Η	-2.265189739	-0.130771863	-3.788376806
Η	-3.273907376	-0.163605795	-2.332469055
Η	-1.979077907	1.016830641	-2.474498191
С	-1.900459474	-2.418645390	-1.969095115
Η	-2.023586078	-2.872460702	-2.968006090
Η	-1.281172258	-3.110698279	-1.382934955
Η	-2.881949718	-2.381138826	-1.496214875

bipyCu ^{III} (CF ₃) ₂ (cumenyl) – Isomer 1 Confromer 2				
Cu	-1.039281473	-0.552827799	-0.032050606	
Ν	0.838643374	-1.368828164	-0.069329806	
С	1.009324763	-2.665494404	0.206344250	
Η	0.104462606	-3.257129508	0.311066737	
С	2.259551109	-3.243546195	0.361814075	
Η	2.339070097	-4.305525691	0.572278880	
С	3.376941610	-2.429935101	0.253668185	
Η	4.376702392	-2.835720395	0.385886081	
С	3.203247889	-1.081452015	-0.020324462	
Н	4.066307863	-0.427375416	-0.086533302	
С	1.917774542	-0.569013984	-0.189670916	
Ν	0.433576266	1.305978139	-0.412967635	
С	1.690054358	0.860764093	-0.520125296	
С	2.723705138	1.696746174	-0.948888030	
Η	3.736966669	1.324827991	-1.067455357	
С	2.434377003	3.019885951	-1.250039230	
Η	3.224009645	3.685958070	-1.588936297	
С	1.129339523	3.476383505	-1.122564515	
Η	0.862695881	4.504056979	-1.351401675	
С	0.158612266	2.574864237	-0.701733018	
Н	-0.884542106	2.869603376	-0.601149604	
С	-2.565338013	0.639285304	0.077252881	
С	-0.993243198	-0.728936088	1.996672413	
F	-2.709355220	1.452910849	-0.997922665	

F	-3.747755710	0.051039382	0.290303420
F	-2.350553701	1.496770457	1.090962210
F	-0.054246301	0.078387268	2.544046962
F	-2.126109212	-0.517723780	2.689436590
F	-0.618666294	-2.001374214	2.331278088
С	-1.584302650	-1.097409833	-2.012460888
С	-1.406847629	-2.554349516	-1.769651233
С	-0.454661273	-3.329758542	-2.450349455
С	-2.245346095	-3.216524688	-0.852780454
С	-0.357819516	-4.701240111	-2.239770053
С	-2.134766363	-4.583407850	-0.629282633
С	-1.193393621	-5.337714368	-1.326875195
Η	0.210730609	-2.855740511	-3.169464454
Η	-2.985216537	-2.637277152	-0.299827066
Η	0.378245657	-5.277944046	-2.797180678
Η	-2.793619957	-5.062700134	0.091405847
Η	-1.115281489	-6.409799037	-1.162079330
С	-2.993847240	-0.836992964	-2.524216079
Η	-3.130687997	-1.426746538	-3.446442490
Η	-3.779608853	-1.139958447	-1.827484711
Η	-3.151037792	0.212942291	-2.776648142
С	-0.579579137	-0.442120307	-2.927726699
Η	-0.719467924	0.645360585	-2.917828921
Η	0.461027345	-0.655517303	-2.657928099
Η	-0.729622527	-0.773864473	-3.971134661

bipyCu^{III}(CF₃)₂(cumenyl) - Isomer 1 Confromer 3

Cu	-1.109207651	-0.627811479	-0.076788303
Ν	0.869099798	-1.183194263	-0.068809323
С	1.233606493	-2.426797485	0.253724220
Η	0.424975786	-3.115334033	0.489216835
С	2.557993613	-2.836864052	0.285644699
Η	2.805980365	-3.862455036	0.540129165
С	3.543669965	-1.904388861	-0.010821532
Η	4.595253247	-2.180477224	0.004965757
С	3.169037049	-0.606694798	-0.317881872
Η	3.925720856	0.144319802	-0.522762287
С	1.815890552	-0.268490643	-0.344247757
N	0.071269421	1.357880042	-0.422516026

С	1.356860661	1.098048457	-0.683648224
С	2.194801613	2.051322364	-1.266001458
Н	3.227387566	1.821859715	-1.512539589
С	1.674084923	3.306612438	-1.553660767
Η	2.304881674	4.065436116	-2.010629752
С	0.343380615	3.574889628	-1.260619268
Η	-0.098833775	4.543107483	-1.475562176
С	-0.424920523	2.558147673	-0.702046921
Н	-1.482480742	2.695156847	-0.479172843
С	-2.976043609	-0.160494383	0.195797011
С	-0.872449793	-0.553860130	1.960789420
F	-3.805933630	-0.077358905	-0.853411390
F	-3.559594932	-1.012730221	1.053136002
F	-2.991354760	1.070714080	0.749432527
F	0.334228181	-0.054781688	2.327944783
F	-1.755471528	0.006878095	2.790831931
F	-0.830918905	-1.882862353	2.297808480
С	-1.400515996	-1.308863015	-2.069777155
С	-1.928017551	-0.242426373	-2.971288921
С	-3.195023027	-0.319649867	-3.564813362
С	-1.110919402	0.830134443	-3.365320217
С	-3.629738816	0.632827097	-4.478750162
С	-1.545309272	1.790600849	-4.266726650
С	-2.813805051	1.701775409	-4.832043019
Η	-3.858525388	-1.141035245	-3.306967451
Η	-0.106491444	0.917137474	-2.956537855
Η	-4.619711187	0.534654660	-4.919697608
Η	-0.880601287	2.611123295	-4.534395605
Η	-3.156727405	2.448697121	-5.544137642
С	-2.307472172	-2.504840260	-1.840593329
Η	-2.426551510	-3.084437547	-2.774004509
Η	-1.855360099	-3.189729981	-1.108435270
Η	-3.301568894	-2.242136867	-1.472888012
С	-0.085485664	-1.825654092	-2.654602088
Η	0.708655689	-1.073585334	-2.728133384
Η	0.311975570	-2.685754558	-2.104424595
Н	-0.282830240	-2.170301621	-3.683997870

bipyCu^{III}(CF₃)₂(cumenyl) - Isomer 2 Conformer 1

Cu	-1.008438515	-0.404962471	-0.104320004
N	0.996849037	-1.342807653	0.299140757
С	1.208506177	-2.499454511	0.914125201
Н	0.317087844	-3.050336373	1.215127893
С	2.482748224	-2.995433626	1.162084765
Н	2.614540977	-3.948819099	1.664568466
С	3.567198177	-2.233734953	0.749531506
Η	4.583536985	-2.578414546	0.922845084
С	3.345092097	-1.020444424	0.112619534
Η	4.188682267	-0.416424956	-0.206640197
С	2.034350055	-0.596836752	-0.100920044
N	0.403138744	0.985645664	-0.881336282
С	1.704516644	0.685595307	-0.775127886
С	2.674268752	1.544837325	-1.290311542
Η	3.730411749	1.306516881	-1.213630080
С	2.273397097	2.717341308	-1.916366714
Η	3.017361578	3.397938359	-2.322985528
С	0.920021888	3.007183336	-2.026083820
Н	0.568832856	3.909947124	-2.516529318
С	0.014220860	2.099880009	-1.493070889
Η	-1.062096675	2.254442608	-1.566068498
С	-0.993623475	-1.154831011	-1.998070637
С	-0.834646819	0.407972645	1.704393014
F	-1.515791822	-0.242762245	-2.857811150
F	0.296465425	-1.318669239	-2.408076575
F	-1.586109957	-2.333292699	-2.314321803
F	-1.662950791	1.432734688	2.011487471
F	-0.934768286	-0.495764226	2.713861935
F	0.410327074	0.932817923	1.854099911
С	-2.948332587	-1.062931010	0.291188394
С	-3.687871744	-0.596552535	-0.916236106
С	-4.292383314	-1.476848684	-1.816799281
С	-3.844795578	0.780825876	-1.133287494
С	-5.006557334	-0.996807769	-2.909010839
С	-4.548231378	1.260224348	-2.225891586
С	-5.131361227	0.369677767	-3.125142534
Η	-4.192160639	-2.549941444	-1.675148519
Η	-3.373901071	1.478434588	-0.437863547
Η	-5.465018896	-1.701030460	-3.600483128
Η	-4.642885263	2.333249217	-2.381902042
Η	-5.681628448	0.740947623	-3.986768805
С	-3.625729374	-0.520327689	1.536227040
Η	-4.635075109	-0.963391395	1.548811638

Η	-3.114984432	-0.814858029	2.453855412
Η	-3.750061701	0.562846738	1.536977558
С	-2.717352871	-2.547212021	0.461906267
Η	-3.683468100	-3.056772888	0.622327423
Н	-2.219810312	-3.015674768	-0.388047172
Η	-2.125074753	-2.716654900	1.370083244

bipyCu^{III}(CF3)3(OH2)

Cu	-0.514137840	0.047063589	-0.346956425
Ν	1.366912075	-0.996244471	-0.320553251
С	1.492875516	-2.311298642	-0.491054704
Η	0.590624505	-2.841715188	-0.783991316
С	2.697436815	-2.975760716	-0.307463073
Η	2.757355988	-4.048583763	-0.461802145
С	3.803034550	-2.234268900	0.085653585
Н	4.762467193	-2.717002497	0.253731787
С	3.670789428	-0.865850954	0.272676454
Н	4.521333608	-0.276913479	0.601842952
С	2.430155536	-0.268656331	0.053305229
Ν	0.924021495	1.594087860	0.187396806
С	2.202417688	1.186765045	0.210892577
С	3.251471178	2.093530946	0.352043366
Н	4.283073034	1.755700568	0.348602867
С	2.964024619	3.445610465	0.471151054
Η	3.769593847	4.167728722	0.577761207
С	1.640396398	3.858411610	0.439468869
Η	1.369919869	4.906625865	0.521744995
С	0.651212393	2.893779748	0.292689250
Н	-0.399242196	3.167377324	0.261070673
С	-1.622109987	-1.309739761	-1.491965143
С	-2.199121117	1.255008487	-0.162890821
С	-0.945763403	-0.889400727	1.568316614
F	-2.216386802	-2.307764134	-0.834897834
F	-0.760886996	-1.899964792	-2.389630291
F	-2.554294323	-0.717655927	-2.260237925
F	-2.229821004	2.146199098	-1.208899673
F	-3.392259657	0.666247594	-0.136040209
F	-2.121248317	2.019755075	0.953050829
F	-0.126456541	-0.305923371	2.453566985
F	-2.193401355	-0.749758429	1.990283679

F	-0.654714148	-2.195086575	1.542215659
0	-0.034758099	0.958475464	-2.599114752
Η	-0.897070202	1.395462010	-2.564179308
Н	-0.196169170	0.126222261	-3.059124585

 $\begin{array}{c} \mathsf{CF}_{3}\\ \mathsf{H}_{2}\mathsf{O}_{\prime,\prime} \mid \\ \mathsf{H}_{2}\mathsf{O}^{\checkmark} \mid \\ \mathsf{H}_{2}\mathsf{O}^{\checkmark} \mid \\ \mathsf{CF}_{3} \end{array} \\ \mathsf{CF}_{3}$

(H₂O)₂Cu^{III}(CF₃)₃

Cu	-0 534961404	-0 074797478	-0 166940080
C	0.000071041	1 222727956	1,717240072
C	-0.9662/1041	-1.222727850	-1./1/2400/2
С	0.004935813	1.182815618	1.256319646
С	-1.996210109	1.174102365	-0.592480729
F	-2.214004585	-1.638807640	-1.933353168
F	-0.216728559	-2.368650103	-1.575300325
F	-0.518993796	-0.658949024	-2.860352403
F	0.819679187	0.499001550	2.075987041
F	0.784516976	2.137233026	0.677407314
F	-0.889415390	1.807113431	2.016912565
F	-1.585208030	2.437260925	-0.582320545
F	-2.567213852	0.962778669	-1.771719577
F	-2.924412394	1.009591679	0.349095351
0	1.559217836	-0.229812711	-0.723250995
Н	1.602503603	-0.241485817	-1.687243774
0	-0.286608066	-1.839444851	1.051131590
Н	-1.051317580	-2.049103601	1.597120803
Н	1.953480946	0.604689501	-0.437049335
Н	-0.216869136	-2.534944140	0.381612674

(H₂O)₃Cu^{III}(CF₃)₃

Cu	-0.809537128	-0.504088681	0.031988603
С	-0.718232501	-0.239119096	-1.941976816
С	-2.490321392	0.511865940	0.049905134
С	-0.816815388	-0.455444756	2.012152524
F	-1.562875697	-0.976774342	-2.678712845
F	0.535449957	-0.570645258	-2.373118504
F	-0.881528286	1.048152278	-2.322038754
F	-2.217607010	1.812122227	0.174685380
F	-3.206994059	0.345404072	-1.063599804

F	-3.290540559	0.152496602	1.056516422
F	-0.999810486	0.783540558	2.517656350
F	-1.689025569	-1.267360283	2.612663556
F	0.419871271	-0.833742091	2.451739369
0	0.828374071	-1.633774116	-0.003016888
Η	1.347103418	-1.341909303	-0.766212680
0	0.760052672	1.473577361	0.139824634
Н	0.360740681	1.905856063	-0.625245989
Η	1.322178608	-1.436515483	0.805138239
Н	0.306527823	1.854559217	0.901416536
0	-2.250314563	-2.482669992	-0.213276415
Η	-2.953124305	-2.348155824	0.431167815
Η	-2.638794337	-2.284986089	-1.073213879

) Cu^{III}—CF₃ | CF₃

	Cu ^{II} (CF ₃) ₂ (CH ₂ Ph)				
Cu	-0.580445402	0.255454317	0.230758660		
С	-2.075361223	1.491392753	0.248735727		
С	-0.870097796	-1.059622652	1.657702670		
F	-1.621568909	2.770179079	0.308522289		
F	-2.732828307	1.386759341	-0.938439287		
F	-3.003000196	1.378958346	1.204764068		
F	-2.089738819	-0.959529152	2.173746997		
F	-0.694484364	-2.341200823	1.310684785		
F	0.007917989	-0.778454922	2.638405841		
С	1.102165239	-0.734202510	-0.240451497		
Н	1.724731135	-1.043524733	0.595995929		
Н	0.743446012	-1.537826707	-0.884158565		
С	1.271471261	0.580240701	-0.788606898		
С	2.034340035	1.574038114	-0.114270784		
С	0.391116798	1.011046561	-1.821919908		
С	1.976687495	2.889689566	-0.512593625		
С	0.340522492	2.353861355	-2.207643006		
С	1.132838455	3.284653961	-1.563996464		
Н	2.672242399	1.267300737	0.712496328		
Η	-0.198662716	0.265935734	-2.357582345		
Н	2.577805810	3.634480545	0.002988282		
Η	-0.336916181	2.657410793	-3.000454592		
Η	1.090098611	4.330702549	-1.854794977		

S45

-0.881386403	-0.241724912	0.002517777
-0.745763809	-0.232753376	-1.913416052
-2.791885822	0.209942520	0.003062837
-0.741406283	-0.205660430	1.917992525
-1.226570422	-1.275906860	-2.585290478
0.622271117	-0.323937386	-1.940015764
-1.087549369	0.877606168	-2.562887076
-2.821995873	1.527865808	0.001074706
-3.396094114	-0.261650816	-1.066660933
-3.394064054	-0.258405372	1.075365923
-1.093243333	0.906580434	2.558320933
-1.210819420	-1.247959236	2.599748422
0.627419572	-0.283324878	1.942994516
	-0.881386403 -0.745763809 -2.791885822 -0.741406283 -1.226570422 0.622271117 -1.087549369 -2.821995873 -3.396094114 -3.394064054 -1.093243333 -1.210819420 0.627419572	-0.881386403-0.241724912-0.745763809-0.232753376-2.7918858220.209942520-0.741406283-0.205660430-1.226570422-1.2759068600.622271117-0.323937386-1.0875493690.877606168-2.8219958731.527865808-3.396094114-0.261650816-3.394064054-0.258405372-1.0932433330.906580434-1.210819420-1.2479592360.627419572-0.283324878

Cu(II) Complexes:

bipyCu^{II}(CF₃)₂ – Isomer 1

-0.537436061	-0.031758513	0.568418398
1.188465146	-1.177395787	0.253171064
1.268995052	-2.488925830	0.484222658
0.334913170	-2.981718275	0.744743273
2.469158965	-3.181704116	0.405075333
2.495224956	-4.250388131	0.593647136
3.621384729	-2.472012448	0.092147014
4.582882349	-2.976101054	0.036990056
3.538532840	-1.106158362	-0.141814048
4.433923827	-0.535784549	-0.369556841
2.295303884	-0.482658462	-0.061748455
0.868464977	1.434083885	0.000178265
2.093963600	0.966699558	-0.293018207
3.089175881	1.811114118	-0.779945330
4.070218253	1.424110833	-1.039401043
2.804202183	3.160151527	-0.942227691
3.567631589	3.835644794	-1.319680857
1.538413905	3.633913316	-0.622537777
1.280721753	4.682547738	-0.732730407
0.592279316	2.728755800	-0.160761683
	-0.537436061 1.188465146 1.268995052 0.334913170 2.469158965 2.495224956 3.621384729 4.582882349 3.538532840 4.433923827 2.295303884 0.868464977 2.093963600 3.089175881 4.070218253 2.804202183 3.567631589 1.538413905 1.280721753 0.592279316	-0.537436061-0.0317585131.188465146-1.1773957871.268995052-2.4889258300.334913170-2.9817182752.469158965-3.1817041162.495224956-4.2503881313.621384729-2.4720124484.582882349-2.9761010543.538532840-1.1061583624.433923827-0.5357845492.295303884-0.4826584620.8684649771.4340838852.0939636000.9666995583.0891758811.8111141184.0702182531.4241108332.8042021833.1601515273.5676315893.8356447941.5384139053.6339133161.2807217534.6825477380.5922793162.728755800

Η	-0.421787278	3.031226687	0.091436810
С	-2.192962529	0.973487799	0.125448305
С	-1.416302795	-1.242810932	1.897959615
F	-2.322158486	2.014829927	0.998211571
F	-2.086342916	1.558628735	-1.103558387
F	-3.363510860	0.327170853	0.131099608
F	-2.468053817	-0.780705665	2.581836378
F	-1.825688837	-2.393585267	1.292362553
F	-0.500708455	-1.639867572	2.830109409

Cu	-0.498348684	0.091373119	0.757577198
Ν	1.227076059	-1.077559674	0.436256914
С	1.249404041	-2.404912263	0.537099057
Η	0.339519799	-2.868455358	0.910504794
С	2.366105601	-3.156018903	0.193343913
Η	2.345798480	-4.237408831	0.285747184
С	3.493097988	-2.487911139	-0.264250130
Н	4.389163851	-3.038409763	-0.539514613
С	3.465943504	-1.104329234	-0.375871049
Η	4.337476173	-0.571704313	-0.743692210
С	2.304274982	-0.422203219	-0.021056958
Ν	0.945619586	1.537516382	0.182060389
С	2.155649056	1.048495274	-0.137138239
С	3.184644196	1.889889088	-0.553824552
Η	4.161240327	1.491596159	-0.811131750
С	2.947441345	3.255246015	-0.635161911
Η	3.738967634	3.926555771	-0.958468958
С	1.694665981	3.749492442	-0.299249891
Η	1.471038068	4.810606743	-0.348066775
С	0.717756694	2.848844093	0.104543625
Н	-0.283067784	3.173845926	0.379738633
С	-2.125894477	1.244488996	0.429072983
С	-1.488138483	-1.179271346	1.976560618
F	-2.229256227	2.362546331	1.189802864
F	-2.040950531	1.713318869	-0.871496859
F	-3.321851975	0.633029394	0.487523993
F	-2.406631087	-0.662766273	2.802519685
F	-2.159825841	-2.111723918	1.211006487

F	-0.662975887	-1.928006950	2.762371122
0	-1.342097699	-1.076374063	-1.350499440
Η	-1.795832784	-0.264174306	-1.608415936
Н	-1.941694755	-1.498762983	-0.719611305

bipyCu^{II}(CF3)2 - Isomer 2

Cu	-0.654903037	-0.194090953	-0.000225431
Ν	1.146129594	-1.379649641	0.037726096
С	1.204214873	-2.705697616	0.121439189
Н	0.248773599	-3.226500939	0.145603186
С	2.407735471	-3.394932607	0.181413109
Н	2.417132905	-4.478573845	0.243775675
С	3.583745614	-2.657154530	0.163680959
Н	4.549474007	-3.153849893	0.210688174
С	3.518891783	-1.273450777	0.091915737
Н	4.434153007	-0.690380894	0.090790893
С	2.271641865	-0.651467074	0.029836647
Ν	0.869625711	1.307925882	-0.030962322
С	2.119762548	0.826080695	-0.039740467
С	3.211000310	1.692424925	-0.115753750
Η	4.227210462	1.311471242	-0.130019236
С	2.987529144	3.060045594	-0.181442934
Н	3.828871965	3.745906353	-0.239322655
С	1.684622354	3.540018141	-0.178617657
Η	1.469559704	4.602570091	-0.234394101
С	0.650522720	2.617245270	-0.107680418
Н	-0.392207231	2.928941892	-0.117599390
С	-0.851863884	-0.026212650	-1.937798452
С	-0.813073425	-0.373453620	1.938655101
F	-1.716970256	-0.883332829	-2.527181222
F	0.308661672	-0.134631450	-2.630717623
F	-1.321615108	1.226382816	-2.217007397
F	-1.834189367	0.317748610	2.497982364
F	-1.030586753	-1.683727911	2.251092461
F	0.297401187	-0.017443292	2.629341917

(H2O)2Cu^{II}(CF3)2 Cu -0.587198841 0.217633311 0.769321889

С	-2.378510457	0.907939068	0.168619225
С	-1.337968989	-1.314847508	1.835339645
F	-2.978326149	1.641430761	1.120577899
F	-2.243143159	1.758938689	-0.916963855
F	-3.245943266	-0.030823677	-0.216243012
F	-2.407917022	-1.010447436	2.572184014
F	-1.667326662	-2.362012848	1.063065858
F	-0.396815023	-1.801652665	2.727860801
0	1.380357783	-0.220064745	1.470956627
Н	1.938281701	-0.609248412	0.789082962
Η	1.156278379	-0.931352100	2.093234203
0	0.409220039	1.665517979	-0.448535772
Η	0.827787505	2.365482237	0.063040268
Η	-0.365774629	2.057553493	-0.882866211

Cu^{II}(CF3)2

Cu	-0.807415811	-0.029194473	0.701809225
С	-2.179177077	1.221091387	0.022156208
С	-1.295286785	-1.480628442	1.949862899
F	-2.096959016	2.409678792	0.623723302
F	-2.032784469	1.408457642	-1.294727450
F	-3.391295777	0.720693964	0.243487176
F	-2.474513766	-1.219466819	2.506900523
F	-1.377980380	-2.653434907	1.318137245
F	-0.383804043	-1.594131892	2.923160365

Cu(I) Complexes:

Cu^l CF₃

bipyCu ^I CF3			
Cu	-0.481270045	0.046984405	0.752348539
Ν	1.248186235	-1.334461019	0.076288651
С	1.370145089	-2.637117593	0.310934160
Н	0.434494871	-3.178670051	0.444338028
С	2.609879521	-3.263786870	0.397712998
Н	2.673809314	-4.331847355	0.584968193
С	3.752005480	-2.487166484	0.252756466
Η	4.738752243	-2.936794997	0.332124937

С	3.625235440	-1.121854661	0.023227088
Η	4.507249302	-0.491911766	-0.056722279
С	2.344051070	-0.580809031	-0.062548990
Ν	0.883882458	1.326254500	0.101302415
С	2.088685197	0.863636040	-0.285959983
С	3.022420457	1.707767209	-0.881647884
Η	3.979505497	1.313132559	-1.210275733
С	2.699505672	3.042354950	-1.083652082
Η	3.413227841	3.711073825	-1.557228720
С	1.452202728	3.508099822	-0.687504840
Н	1.155317809	4.541603928	-0.834204102
С	0.575311125	2.611477308	-0.095941835
Н	-0.414739527	2.917750162	0.235763217
С	-1.956875716	-1.035947328	1.309688203
F	-2.667510960	-0.684980227	2.412516060
F	-2.896740414	-1.231287779	0.337650865
F	-1.508230888	-2.314890036	1.591243922

Cu^ICF₃

Cu	-0.514152311	0.057060209	0.773816288
С	-1.945661785	-1.099895059	1.291104268
F	-2.595197428	-0.652098209	2.379473166
F	-2.866495628	-1.234085112	0.320067497
F	-1.508954294	-2.337958003	1.582499422

(H₂O)Cu^ICF₃

Cu	-1.048074023	0.571690605	0.883832341
С	-1.581433271	-1.198371580	1.305628451
F	-2.713462165	-1.261661771	2.050006086
F	-1.829032957	-1.955229041	0.205212900
F	-0.645578533	-1.884160178	2.011846156
0	-0.471489601	2.409878770	0.433332658
Η	0.371156456	2.680332801	0.816602532
Н	-0.417950349	2.579581457	-0.514244157

Transition States:

Outer Sphere 'Axial' Cu(III) Transition State

Cu	3.664977980	0.124601838	-1.532708343
Ν	5.559085113	-0.107932800	-2.334782897
С	6.023496185	-1.294414978	-2.730229495
Н	5.310503889	-2.116237539	-2.709002433
С	7.337215118	-1.485178669	-3.134275559
Н	7.673405323	-2.465913912	-3.455787084
С	8.198226821	-0.395403167	-3.105250842
Н	9.237094107	-0.502693782	-3.407449728
С	7.721830624	0.835617619	-2.678582756
Η	8.388079155	1.691820440	-2.637351022
С	6.386036467	0.953419623	-2.297440125
Ν	4.513369390	2.163096867	-1.442912192
С	5.793018270	2.230639239	-1.833434375
С	6.496437081	3.434389465	-1.800709027
Η	7.530552817	3.492942033	-2.127005227
С	5.845845662	4.573574072	-1.345762521
Н	6.374030202	5.523316020	-1.312800506
С	4.520500224	4.489824078	-0.937207393
Н	3.984864626	5.361686657	-0.574188435
С	3.889627466	3.253326552	-1.005376844
Η	2.852508190	3.110743967	-0.702402609
С	3.021879100	1.065539115	-4.029695369
С	1.759376462	0.008291423	-1.113333994
С	4.300694807	-0.794754269	0.202735873
F	2.548827478	-0.132290222	-4.260152219
F	4.253320605	1.345124864	-4.380315034
F	2.261882775	2.022181610	-3.573066689
F	1.500448671	0.966021588	-0.174239783
F	0.878197049	0.250769418	-2.117288952
F	1.368323614	-1.159116867	-0.570389366
F	3.478609308	-0.817574575	1.250961491
F	4.672322550	-2.072397392	-0.043353111
F	5.426136139	-0.150577569	0.607083565
С	2.303356072	1.613319808	-6.286755113
Η	1.260991625	1.491527847	-5.999774017
Η	2.806550224	0.743847503	-6.705246812
С	2.853257908	2.901426203	-6.463105385

С	2.150550502	4.062224315	-6.056666083
С	4.154773149	3.073791191	-6.995248906
С	2.715072205	5.317795398	-6.187800269
С	4.710582504	4.333395462	-7.124348025
С	3.996395450	5.464458973	-6.723318683
Η	1.151585332	3.947270637	-5.638109481
Η	4.711539172	2.190719140	-7.307828164
Η	2.155178356	6.196747333	-5.874361753
Η	5.708568576	4.443307445	-7.544044984
Н	4.434295847	6.454310706	-6.830749711

Outer Sphere 'equatorial' Cu(III) Transition State

Cu	3.819250942	1.057845947	-1.026788449
Ν	5.195730353	-0.547419183	-1.768780695
С	4.819543905	-1.738399299	-2.219738308
Н	3.765555008	-1.981788921	-2.101219826
С	5.709271416	-2.631569102	-2.800568741
Н	5.364381226	-3.597938223	-3.155414157
С	7.038101484	-2.246296038	-2.915571804
Н	7.767290643	-2.909244016	-3.373882808
С	7.430793499	-1.002091017	-2.443230130
Н	8.464319927	-0.686434909	-2.542966513
С	6.475780080	-0.167254414	-1.860657149
Ν	5.785972115	1.948172227	-0.939876054
С	6.811767754	1.174377634	-1.315183249
С	8.125622820	1.625031311	-1.184739999
Н	8.962704290	0.992530506	-1.462610077
С	8.355970500	2.893056231	-0.671359650
Н	9.374389713	3.256585082	-0.559218543
С	7.280350700	3.688802736	-0.300364291
Η	7.420147917	4.687037672	0.103414682
С	6.003665683	3.163249372	-0.449429590
Н	5.117293534	3.730109966	-0.165626971
С	3.449889909	1.706357966	-2.856062923
С	1.215461864	0.224000868	-1.016635783
С	3.878086602	0.386641752	0.819456620
F	2.973852655	0.707367935	-3.664514588
F	4.577540977	2.138083013	-3.485152698

F	2.561129447	2.727020731	-2.989655483	
F	0.846275199	1.367370587	-1.503099129	
F	1.700270214	-0.712294111	-1.784273727	
F	1.096364490	0.002552905	0.250305765	
F	3.111417697	1.034295647	1.735079553	
F	3.479715394	-0.921047323	0.881770028	
F	5.134054942	0.386256219	1.341329649	
С	-0.897556893	-0.653045098	-1.468676591	
Η	-0.602759055	-1.675037711	-1.232921720	
Η	-0.843372247	-0.361533030	-2.516645630	
С	-1.757725207	0.047330348	-0.590540697	
С	-2.005365601	-0.426436188	0.720317328	
С	-2.345442587	1.277443847	-0.973434348	
С	-2.802489940	0.289462585	1.594182307	
С	-3.143408634	1.985568488	-0.093767006	
С	-3.375904571	1.497779722	1.193930745	
Η	-1.555724906	-1.369329859	1.029193728	
Н	-2.163499989	1.653455064	-1.979300276	
Η	-2.982918862	-0.090215584	2.597256805	
Η	-3.590388589	2.926763948	-0.405364595	
Н	-4.001697008	2.058789332	1.884347042	

Outer Sphere Cu(II) Transition State

Cu	-0.278203066	0.652505010	1.685521394
Ν	-0.041770268	-0.802706434	-0.028843187
С	-0.347649838	-2.096040348	-0.037102246
Н	-0.948120483	-2.437742777	0.806180728
С	0.072845227	-2.948197642	-1.054127877
Η	-0.197587955	-3.999857812	-1.038994430
С	0.847161981	-2.417943507	-2.078269942
Η	1.204788700	-3.052793614	-2.885145584
С	1.169339827	-1.066215717	-2.064558626
Η	1.789184037	-0.644255152	-2.850457333
С	0.694664102	-0.281189970	-1.015439967
Ν	0.651993532	1.748667715	0.278515352
С	0.945398153	1.177196643	-0.906501365
С	1.419076132	1.937565860	-1.973286605
Н	1.631570935	1.468457786	-2.929691480

С	1.582099287	3.306337400	-1.813407254
Н	1.941990703	3.913450157	-2.640086821
С	1.266906337	3.889109555	-0.592768512
Η	1.371764139	4.956969282	-0.428316944
С	0.804496927	3.068146989	0.425583268
Н	0.544017915	3.469439347	1.403216068
С	-2.596005279	1.204104933	0.301649761
С	-1.179821521	-0.080009935	3.205940497
F	-2.803221181	2.211808892	1.109519960
F	-2.052708838	1.435112540	-0.870945669
F	-3.084760134	0.023255335	0.561555728
F	-2.358608141	0.514810454	3.548134019
F	-1.532157798	-1.392936294	2.944441429
F	-0.478791534	-0.152754549	4.368842183
С	-4.806869944	1.034702348	-1.907716961
С	-5.282124212	-0.300769401	-1.920943114
С	-4.267424922	1.548387660	-3.114124985
С	-5.233853567	-1.062495286	-3.074045934
С	-4.224121412	0.779341789	-4.262298123
С	-4.710498045	-0.529795250	-4.254411036
Н	-5.690379506	-0.718100306	-1.001322689
Η	-3.889607607	2.570714141	-3.121111924
Н	-5.611166081	-2.083297518	-3.062233481
Η	-3.813324003	1.199392189	-5.178514037
Η	-4.680928284	-1.130503180	-5.160708483
С	-4.823057036	1.810127801	-0.730695397
Η	-4.542116546	2.860566635	-0.761339544
Η	-5.327521229	1.453602604	0.164381399

Reductive Elimination (primary) Transition State 1

Cu	-0.617287728	-0.433493346	0.264686230
Ν	1.295244770	-1.241582816	0.349753339
С	1.518229984	-2.443872786	0.882480591
Η	0.631105967	-2.969581436	1.235833376
С	2.794641661	-2.979148519	0.984586875
Н	2.940703728	-3.968242142	1.407527814
С	3.867516597	-2.210593674	0.547904594
Н	4.884269822	-2.587983575	0.624750791
С	3.635000150	-0.943811395	0.031941304

Η	4.467565293	-0.316035382	-0.272055599
С	2.321796670	-0.484283592	-0.064081518
Ν	0.715134105	1.266526197	-0.374532033
С	1.973199768	0.853643070	-0.598214488
С	2.890972559	1.643510122	-1.291196862
Η	3.890975984	1.276546340	-1.503780450
С	2.497638031	2.898702288	-1.732101265
Η	3.196493741	3.530847410	-2.274446082
С	1.202219136	3.330432835	-1.478252359
Н	0.856082579	4.306895414	-1.804063191
С	0.342595589	2.471495909	-0.804719736
Н	-0.690111729	2.749515060	-0.600120740
С	-2.375436331	0.346823585	-0.516653725
С	-1.315581886	-1.110276017	2.015215392
F	-2.650312421	1.056287490	-1.637757417
F	-3.440843902	-0.384815748	-0.223541354
F	-2.293001320	1.328019558	0.421829616
F	-0.409947191	-1.140932972	3.039164197
F	-2.464741884	-0.681439807	2.581167444
F	-1.547675404	-2.472459335	1.762132519
С	-1.368451002	-1.089350922	-1.634484974
Η	-1.245961603	-2.038257404	-1.090433371
Η	-2.351977126	-1.093928015	-2.097803306
С	-0.278891579	-0.773645886	-2.577065349
С	0.836020890	-1.620441631	-2.665848545
С	-0.335694481	0.331316329	-3.439082826
С	1.862002061	-1.366824013	-3.566768917
С	0.697831275	0.592458546	-4.328404790
С	1.803736116	-0.251172200	-4.396098410
Н	0.890552879	-2.495103658	-2.018187068
Н	-1.195300458	0.994717344	-3.397061125
Η	2.712148064	-2.044529872	-3.617932029
Н	0.636445612	1.461440074	-4.980688581
Н	2.608077777	-0.046360579	-5.099302674

Reductive Elimination (primary) Transition State 2

Cu	-0.957413025	-0.428262541	0.097747769
Ν	1.044889512	-1.201117063	-0.044573437
С	1.257003745	-2.503145899	0.145273718

Η	0.373056275	-3.137820281	0.111399547	
С	2.517022351	-3.034852907	0.381257356	
Н	2.642576313	-4.103011830	0.528373516	
С	3.595794500	-2.162562872	0.440734512	
Η	4.598549563	-2.531478373	0.642098407	
С	3.378106071	-0.805696202	0.257538845	
Н	4.204134831	-0.106233244	0.337802770	
С	2.082072236	-0.351260915	0.008082698	
Ν	0.493770795	1.449079947	-0.053796068	
С	1.779892538	1.089238628	-0.167456542	
С	2.787514342	2.023515594	-0.416059837	
Η	3.818848123	1.710007927	-0.545132684	
С	2.453929785	3.365906958	-0.517936199	
Η	3.223895428	4.108756089	-0.713004678	
С	1.126683278	3.738678063	-0.366927208	
Η	0.817074322	4.778131841	-0.427846659	
С	0.183844065	2.741128343	-0.142694338	
Η	-0.867819632	2.992574412	-0.020326826	
С	-1.457693447	-0.653248954	-1.976401734	
С	-1.176675577	-0.675680999	2.066462642	
F	-2.316099073	-0.459662449	-2.995403264	
F	-0.349246907	-0.002204079	-2.372713142	
F	-1.200748855	-1.972892523	-1.965495087	
F	-2.482371825	-0.778234705	2.517007560	
F	-0.565435455	-1.784281382	2.582249584	
F	-0.664848655	0.362869760	2.791821638	
С	-2.916338026	-0.133287544	-0.574916386	
Η	-3.132582804	-0.666381243	0.356646213	
Η	-3.539915892	-0.547101495	-1.363007972	
С	-3.025284558	1.339950545	-0.443006972	
С	-3.093919319	2.172097481	-1.567725116	
С	-3.098328958	1.921206540	0.830568521	
С	-3.240984823	3.546420098	-1.423339627	
С	-3.257544218	3.294626682	0.970632834	
С	-3.327521429	4.112790348	-0.154309674	
Η	-3.032045062	1.734115935	-2.561402956	
Η	-3.021340111	1.281766775	1.707458440	
Η	-3.292578216	4.178818626	-2.307184464	
Η	-3.318504825	3.728742940	1.966005853	
Η	-3.447086425	5.188444215	-0.042466239	

Reductive Elimination (primary) Water Ligand Transition State

Cu	-1.132572145	-0.338682768	0.224607746
С	-0.025773674	-1.916773661	-0.274653225
С	-1.608775529	-0.043709560	2.263830899
F	-0.363320313	-2.371226527	-1.549582209
F	1.292817883	-1.505347020	-0.458704114
F	0.070252234	-3.034095637	0.461401316
F	-1.375110389	1.092854754	2.923674549
F	-2.658478715	-0.662030794	2.809543921
F	-0.540898072	-0.823451348	2.559754998
0	0.833204557	1.067595233	0.632895616
Η	1.248501741	0.506733975	-0.038796092
Н	1.125903006	0.670818680	1.460970110
0	-0.769490039	0.319955301	-1.983216218
Η	-1.635359679	0.342820938	-2.410122174
Н	-0.424071728	-0.561551874	-2.199524666
С	-2.616730968	0.918235278	0.800408159
Η	-2.036518554	1.777426392	0.437935358
Η	-3.190242274	1.221083509	1.672872060
С	-3.468305349	0.247769085	-0.226048994
С	-3.693723472	0.881378827	-1.457517203
С	-4.076700657	-0.991115468	0.014105697
С	-4.508672751	0.294567146	-2.418467652
С	-4.875928794	-1.582239024	-0.957449612
С	-5.095684665	-0.944211614	-2.173279768
Н	-3.233030004	1.851005181	-1.648264354
Н	-3.908144865	-1.496528078	0.961854333
Н	-4.686154162	0.805133955	-3.362390863
Н	-5.328399892	-2.551224166	-0.761676771
Н	-5.722881223	-1.410187723	-2.929304405

Reductive Elimination (primary) Unligated Transition State

Cu	-0.833783778	0.372705001	0.204075699
С	-2.331491954	1.551631923	0.343334507
С	-0.347181856	-1.227049674	1.493050629

F	-1.928605005	2.851935178	0.229586783
F	-3.241386272	1.378094349	-0.654978934
F	-3.040447598	1.493945969	1.493141315
F	-1.612192368	-1.335734009	1.911520094
F	0.095544616	-2.478863615	1.373812443
F	0.354871171	-0.617999101	2.452927897
С	0.844652600	-0.726825634	-0.216377760
Η	1.621161345	-1.097616329	0.447053054
Н	0.485557397	-1.487702864	-0.912140665
С	1.114215528	0.603515252	-0.772278415
С	1.847610545	1.542490478	-0.017055004
С	0.518559980	1.020260310	-1.980896525
С	2.013773082	2.835292420	-0.480093089
С	0.695090882	2.321208305	-2.438871618
С	1.441030315	3.224348386	-1.692370447
Η	2.274325109	1.233632726	0.936299168
Η	-0.060582354	0.305204941	-2.564048041
Η	2.585212443	3.551389523	0.104668391
Н	0.237925548	2.631490311	-3.374257971
Н	1.570266255	4.243607764	-2.047555978

Reduc	tive Eliminatior	n (secondary) Tr	ansition State 1
Cu	-0.700045013	-0.046739924	0.142133345
Ν	1.184345503	-1.208972790	0.374764790
С	1.285528702	-2.498703251	0.698476924
Η	0.402219105	-2.946067633	1.147520576
С	2.436257748	-3.244216333	0.477615146
Н	2.469944783	-4.292410304	0.759476675
С	3.523672319	-2.615497380	-0.114467437
Н	4.438614700	-3.165437756	-0.320883012
С	3.428143072	-1.272033919	-0.443916901
Н	4.260258855	-0.769103223	-0.927239663
С	2.240811687	-0.590547870	-0.176937429
Ν	0.828585663	1.339524880	-0.349012159
С	2.071735142	0.852646466	-0.473127443
С	3.134617530	1.677287897	-0.840837963
Н	4.144702271	1.286404869	-0.915177594
С	2.888708771	3.017800375	-1.100004224
Н	3.703130326	3.672767854	-1.399981854

С	1.600654893	3.514968226	-0.947983576
Η	1.372486175	4.562513308	-1.120287813
С	0.600154825	2.637940509	-0.549917167
Η	-0.422134548	2.965285314	-0.364971123
С	-1.920323077	-1.770737618	0.033897015
С	-1.880433042	1.061863045	1.362787500
F	-3.244165862	-1.725769133	-0.068865726
F	-1.503473308	-2.955394702	-0.485192519
F	-1.669202775	-1.931821943	1.363417594
F	-2.142168785	2.309129829	0.783342943
F	-3.125517295	0.595240726	1.663732610
F	-1.331927845	1.383630705	2.567141321
С	-1.631645970	-0.749254245	-1.799123217
С	-0.346555373	-0.747439580	-2.539238592
С	0.374578770	-1.940371646	-2.711159009
С	0.144664046	0.408855233	-3.164283597
С	1.553065802	-1.965567740	-3.442502550
С	1.320334442	0.379822140	-3.904121384
С	2.039764807	-0.803838492	-4.039169265
Η	0.000912024	-2.852095311	-2.250996361
Η	-0.404408080	1.343924158	-3.077367244
Η	2.094751411	-2.903290291	-3.552181259
Η	1.674586801	1.292499447	-4.380144456
Η	2.958961579	-0.826414315	-4.620271625
С	-2.511740999	0.470926339	-1.842703075
Η	-2.886921160	0.602175053	-2.868690025
Η	-3.371773625	0.346972756	-1.180150030
Η	-2.013057903	1.396785705	-1.541411196
Н	-2.198129205	-1.637261328	-2.073917772

Reductive Elimination (secondary) Transition State 2 -0.940957921 Cu -0.632447699 0.122280315 Ν 1.072235248 -1.454401081 -0.081344522С 1.301409384 -2.690154770 0.365188931 Η 0.424223892-3.2373092960.704831473С 2.575847908 -3.240783709 0.418745750

Η	2.717574258	-4.253041332	0.784952709
С	3.650785670	-2.460881468	0.013720608
Η	4.665738536	-2.849112726	0.054724502

С	3.417840910	-1.164512730	-0.422046323
Н	4.247510372	-0.519215686	-0.697004929
С	2.106326104	-0.691168505	-0.458972339
Ν	0.604689348	1.172512099	-0.455796021
С	1.782784849	0.692198271	-0.878097144
С	2.650437440	1.446567727	-1.670789763
Н	3.578276709	1.018232367	-2.040238372
С	2.292603047	2.745110403	-2.005674034
Н	2.946252794	3.349940946	-2.629355115
С	1.088257645	3.254018981	-1.537945610
Н	0.774105432	4.267832569	-1.769587371
С	0.277420444	2.424511375	-0.770072515
Н	-0.687131063	2.769578539	-0.398884091
С	-2.635680541	0.611709741	-0.247505334
С	-1.196131038	-1.156132597	2.017622256
F	-2.204431502	1.403695370	0.762732861
F	-3.098678030	1.517574188	-1.141797574
F	-3.697096648	-0.068312605	0.187019812
F	-2.282180541	-0.735743755	2.712603461
F	-1.214041913	-2.535310356	2.168497527
F	-0.124178035	-0.766816136	2.777580494
С	-1.960625972	-0.556813138	-1.848719110
С	-1.597885729	-1.998510045	-1.741058104
С	-0.567323962	-2.566551462	-2.506330401
С	-2.339035805	-2.837661249	-0.892370453
С	-0.298249679	-3.925343341	-2.433914517
С	-2.045810765	-4.193494869	-0.802135427
С	-1.030145223	-4.744271099	-1.575686282
Н	0.027146129	-1.939557669	-3.167704492
Н	-3.139207193	-2.410406063	-0.291122550
Н	0.493821024	-4.348499509	-3.048500442
Н	-2.617514176	-4.818303514	-0.120685681
Н	-0.809413410	-5.807407207	-1.514149177
С	-1.214140329	0.278871097	-2.852767653
Н	-1.499890068	1.330469847	-2.782680292
Н	-0.126768189	0.211225265	-2.744095457
Н	-1.471367108	-0.060520568	-3.866978410
Н	-3.036843794	-0.490788560	-2.012414521

Reductive Elimination (secondary) Transition State 3

Cu	-0.494724550	-0.298852547	0.002850065
Ν	0.689359281	-2.047248021	-0.709474559
С	0.352533160	-3.335365009	-0.714081091
Η	-0.668085581	-3.565756536	-0.407109481
С	1.236480188	-4.343813978	-1.078807412
Η	0.917579010	-5.381811678	-1.067462071
С	2.522009479	-3.983746349	-1.459890966
Η	3.243876697	-4.738515005	-1.762300392
С	2.874121974	-2.642252040	-1.464341345
Η	3.864865138	-2.337912808	-1.788907471
С	1.929681021	-1.691522140	-1.076903897
Ν	1.179135591	0.588364279	-1.045365797
С	2.234679583	-0.239256487	-1.074886289
С	3.539334156	0.252160690	-1.086340628
Η	4.387777680	-0.425336097	-1.064746125
С	3.742858518	1.625017256	-1.086370626
Н	4.752995567	2.026890444	-1.085887503
С	2.644165261	2.473644551	-1.072827668
Н	2.760212742	3.553233215	-1.067552875
С	1.379458621	1.903868550	-1.038590180
Н	0.482378362	2.520051478	-0.993567775
С	-1.968553582	-0.081447889	-1.522566541
С	0.390968548	0.022374473	1.795080329
F	-1.834341416	1.249786992	-1.686436517
F	-1.135289015	-0.682130079	-2.400194907
F	-3.181722301	-0.401162672	-2.001491544
F	1.148105327	1.156269535	1.899061394
F	-0.472135348	0.102006676	2.877751846
F	1.252653544	-0.984417183	2.148454563
С	-2.600569541	-0.400891672	0.516082367
С	-2.774499751	-1.867301349	0.673778897
С	-3.665444870	-2.618665235	-0.102366732
С	-2.046532494	-2.522813448	1.679429762
С	-3.812894975	-3.984056225	0.111439380
С	-2.204162706	-3.885126039	1.897199977
С	-3.085977434	-4.622739841	1.111600163
Η	-4.239022667	-2.135426805	-0.887500920
Η	-1.350529831	-1.948282245	2.288421885
Η	-4.506750024	-4.551950753	-0.504675639
Η	-1.634154336	-4.371411224	2.685701507
Η	-3.208079961	-5.690709301	1.279148006
С	-3.831171371	0.466199693	0.384380933
Η	-3.563936124	1.501678905	0.154509552

Η	-4.561566712	0.121693956	-0.347643120
Н	-4.315919250	0.467170217	1.370010560
Η	-2.045436983	-0.003096720	1.371548334

Me Ý--⊂CF₃ Cu^{íli} |CF₃

Redu	ctive Eliminatio	n (secondary) Ti	ansition State 4
Cu	-0.551514317	-0.688805044	0.178558953
Ν	1.499757126	-1.558293355	-0.200522684
С	1.890370057	-2.737443199	0.269405030
Н	1.204368178	-3.218195913	0.964799697
С	3.103696413	-3.317737290	-0.080274621
Η	3.382939753	-4.288210522	0.319051223
С	3.932917863	-2.624862036	-0.951984753
Η	4.885965193	-3.046189287	-1.262115077
С	3.533157795	-1.384202181	-1.428241032
Η	4.166220168	-0.837733700	-2.120956594
С	2.299054097	-0.872704168	-1.022641042
Ν	0.499818666	0.716231381	-1.247138660
С	1.796134810	0.447247497	-1.477278683
С	2.632761261	1.371123527	-2.105841297
Н	3.686642898	1.154177029	-2.249657647
С	2.110200814	2.585680130	-2.523280660
Η	2.749264432	3.318175716	-3.010494082
С	0.765825083	2.849524773	-2.304316892
Η	0.309506345	3.784368397	-2.616255575
С	0.004572687	1.884662631	-1.656802170
Η	-1.053613929	2.052073274	-1.460866672
С	-1.695703664	-1.638664381	-1.458400930
С	0.017476422	-0.516798188	2.109465406
F	-2.068276603	-0.845732628	-2.472583942
F	-0.506226671	-2.161287641	-1.837932295
F	-2.510021377	-2.709489104	-1.439956566
F	-0.736649958	0.060940585	3.117320344
F	0.237420402	-1.791931397	2.601618145
F	1.230295213	0.097537379	2.231839052
С	-2.748126601	-0.682716009	0.025023083
С	-2.842010027	0.805634804	0.000200901
С	-2.421536930	1.628478181	1.055232608
С	-3.479577971	1.407342880	-1.096187794
С	-2.624339818	3.001723165	1.000324680

С	-3.677326080	2.781641553	-1.150066707
С	-3.245957103	3.585954670	-0.100117218
Н	-1.927252650	1.195773094	1.919096594
Η	-3.823000174	0.782886978	-1.918261280
Н	-2.293390948	3.621357423	1.830649399
Η	-4.177432826	3.222577544	-2.009752758
Η	-3.402209308	4.662197850	-0.134149351
С	-2.984098575	-1.435606535	1.315056086
Η	-2.429904757	-1.042813768	2.167148778
Η	-4.059946775	-1.386827832	1.542274391
Η	-2.726753572	-2.492720434	1.192310834
Η	-3.487888002	-1.038326558	-0.690871583

		5	
Redu	ctive Elimination	n (secondary) Ti	ransition State 5
Cu	-0.551514317	-0.688805044	0.178558953
Ν	1.499757126	-1.558293355	-0.200522684
С	1.890370057	-2.737443199	0.269405030
Н	1.204368178	-3.218195913	0.964799697
С	3.103696413	-3.317737290	-0.080274621
Н	3.382939753	-4.288210522	0.319051223
С	3.932917863	-2.624862036	-0.951984753
Н	4.885965193	-3.046189287	-1.262115077
С	3.533157795	-1.384202181	-1.428241032
Н	4.166220168	-0.837733700	-2.120956594
С	2.299054097	-0.872704168	-1.022641042
Ν	0.499818666	0.716231381	-1.247138660
С	1.796134810	0.447247497	-1.477278683
С	2.632761261	1.371123527	-2.105841297
Н	3.686642898	1.154177029	-2.249657647
С	2.110200814	2.585680130	-2.523280660
Н	2.749264432	3.318175716	-3.010494082
С	0.765825083	2.849524773	-2.304316892
Н	0.309506345	3.784368397	-2.616255575
С	0.004572687	1.884662631	-1.656802170
Н	-1.053613929	2.052073274	-1.460866672
С	-1.695703664	-1.638664381	-1.458400930
С	0.017476422	-0.516798188	2.109465406
F	-2.068276603	-0.845732628	-2.472583942

F	-0.506226671	-2.161287641	-1.837932295
F	-2.510021377	-2.709489104	-1.439956566
F	-0.736649958	0.060940585	3.117320344
F	0.237420402	-1.791931397	2.601618145
F	1.230295213	0.097537379	2.231839052
С	-2.748126601	-0.682716009	0.025023083
С	-2.842010027	0.805634804	0.000200901
С	-2.421536930	1.628478181	1.055232608
С	-3.479577971	1.407342880	-1.096187794
С	-2.624339818	3.001723165	1.000324680
С	-3.677326080	2.781641553	-1.150066707
С	-3.245957103	3.585954670	-0.100117218
Η	-1.927252650	1.195773094	1.919096594
Η	-3.823000174	0.782886978	-1.918261280
Н	-2.293390948	3.621357423	1.830649399
Η	-4.177432826	3.222577544	-2.009752758
Η	-3.402209308	4.662197850	-0.134149351
С	-2.984098575	-1.435606535	1.315056086
Η	-2.429904757	-1.042813768	2.167148778
Η	-4.059946775	-1.386827832	1.542274391
Η	-2.726753572	-2.492720434	1.192310834
Н	-3.487888002	-1.038326558	-0.690871583

Redu	ctive Elimination	n (secondary) Ti	ansition State 6
Cu	-0.499695001	-1.144474536	0.286382732
Ν	1.074807587	-1.734385211	-1.104193966
С	1.125364861	-2.890073660	-1.759699949
н	0 285596173	-3 565465901	-1 599131348

С	1.125364861	-2.890073660	-1.759699949
Н	0.285596173	-3.565465901	-1.599131348
С	2.170179927	-3.227565725	-2.609435446
Н	2.171342927	-4.181664010	-3.128046764
С	3.194584961	-2.305499595	-2.779484837
Н	4.024726486	-2.517843253	-3.448738570
С	3.148831181	-1.104057357	-2.087467273
Н	3.936284629	-0.368504111	-2.222835090
С	2.072000826	-0.849029310	-1.236790517
Ν	0.792041148	0.643003075	0.155327961
С	1.974472296	0.392318724	-0.425994369
С	3.067762283	1.238350195	-0.237645418
Н	4.031375670	1.011955432	-0.683890323

С	2.920843527	2.361358231	0.563336073	
Η	3.763678982	3.029226540	0.725034241	
С	1.695401374	2.607660864	1.167214066	
Η	1.543981172	3.468013650	1.812054149	
С	0.660195689	1.709285182	0.941757555	
Η	-0.316804793	1.840134368	1.409376801	
С	-1.884865221	-0.890082299	-1.415500543	
С	0.413794106	-1.726412448	2.009121815	
F	-3.035422791	-0.311147335	-1.828012532	
F	-0.948732951	-0.135381303	-2.023858378	
F	-1.851790033	-2.108755873	-1.980583910	
F	0.611671854	-0.670223679	2.865528944	
F	-0.114835960	-2.701031505	2.833804874	
F	1.682704118	-2.174810169	1.755977769	
С	-2.641637276	-1.298190679	0.483567262	
С	-2.624476600	-0.169000065	1.458307694	
С	-2.970214840	1.114769560	1.010455082	
С	-2.336009026	-0.350241974	2.814885647	
С	-3.014793501	2.187276555	1.890299810	
С	-2.393062194	0.722921563	3.694355773	
С	-2.727121042	1.994520137	3.239269639	
Н	-3.202769836	1.264475897	-0.042312108	

Reductive Elimination (tertiary) Transition State 1Cu-1.020475406-0.6495670680.281111370

Cu	-1.0204/5406	-0.64956/068	0.2811113/0
Ν	0.996514964	-1.489837094	0.414807023
С	1.165718417	-2.657631076	1.031161405
Η	0.275707341	-3.072022135	1.502840665
С	2.397308496	-3.302681140	1.081056273
Н	2.492742479	-4.257915367	1.588395806
С	3.487210758	-2.689674718	0.481210778
Н	4.469634734	-3.155080411	0.506303547
С	3.318561163	-1.453544323	-0.129429271
Η	4.170493605	-0.930560688	-0.554703033
С	2.049584750	-0.878758574	-0.144485615
Ν	0.671705765	1.068395473	-0.324671549
С	1.798137030	0.462472350	-0.725365423
С	2.684283547	1.064164775	-1.622455459
Н	3.564191449	0.533673314	-1.976075230

С	2.411575787	2.349417164	-2.072118184
Η	3.083032743	2.838123195	-2.774022566
С	1.270215848	2.995609574	-1.615910876
Η	1.025104674	4.004840317	-1.934485851
С	0.425851614	2.305950432	-0.751441351
Η	-0.501454576	2.753317279	-0.396152601
С	-2.543528468	0.776908390	-0.228379925
С	-1.653703136	-1.185716245	2.091296023
F	-2.823170166	1.753895393	-1.132105562
F	-3.716071276	0.248247213	0.123601050
F	-2.098220185	1.510387131	0.830699388
F	-0.701342383	-0.857469791	3.017060890
F	-2.811295748	-0.708681232	2.600255387
F	-1.771313803	-2.563828603	2.217882874
С	-1.899367831	-0.537606878	-2.043089353
С	-1.274931513	-1.861446535	-1.813840399
С	-0.078289322	-2.241481732	-2.451201412
С	-1.916466892	-2.811210274	-0.992180189
С	0.445623140	-3.512324782	-2.279372686
С	-1.372047065	-4.076535083	-0.806645487
С	-0.195663870	-4.434918256	-1.453341856
Н	0.441086977	-1.537619343	-3.097582785
Η	-2.835663120	-2.542917314	-0.474801746
Η	1.365699360	-3.786703127	-2.791912506
Η	-1.873217187	-4.777287093	-0.143215025
Η	0.225655009	-5.428023725	-1.313500327
С	-3.350306693	-0.658546231	-2.451959307
Η	-3.362018998	-1.211298821	-3.404563185
Η	-3.960372069	-1.221040503	-1.743257335
Η	-3.817166572	0.313982920	-2.617860883
С	-1.142523475	0.407750552	-2.931308421
Η	-1.588482225	1.403609838	-2.921515134
Η	-0.084554279	0.495413666	-2.674716132
Η	-1.206472206	0.034010301	-3.966736469

Reductive Elimination (tertiary) Transition State 2

Cu	-0.792217893	-0.184376770	-0.168529691
Ν	1.021662247	-1.359928054	0.468048640
С	1.006186223	-2.456858990	1.223335563

Н	0.022373956	-2.865203279	1.458239951
С	2.152259774	-3.075556639	1.702242434
Н	2.080015703	-3.971362533	2.311427958
С	3.377501956	-2.512475616	1.373617044
Η	4.306380748	-2.961331229	1.716494884
С	3.403713213	-1.360293099	0.603934884
Η	4.356807470	-0.909266801	0.346975909
С	2.203209318	-0.794926057	0.167313815
N	0.963802802	0.893041446	-1.012094381
С	2.169766937	0.463487441	-0.624270382
С	3.325566394	1.184646102	-0.933431964
Η	4.305714304	0.838541466	-0.620586975
С	3.211736122	2.369475510	-1.645177534
Η	4.101385975	2.941824206	-1.896258589
С	1.952276162	2.816375784	-2.020984106
Н	1.818746594	3.744407065	-2.568770750
С	0.854760736	2.040676608	-1.674525854
Н	-0.157477729	2.344580226	-1.934575478
С	-1.265532891	-0.981946305	-2.119513554
С	-1.098394099	1.151725412	1.305991037
F	-1.305008748	0.288807940	-2.573092363
F	-0.034046834	-1.486603539	-2.323499025
F	-2.041130980	-1.649006965	-2.984413518
F	-2.357086944	1.701762638	1.475727193
F	-0.814746722	0.622673566	2.542570031
F	-0.281923860	2.247298012	1.222677746
С	-2.551538703	-1.655332086	-0.453683704
С	-3.787558634	-1.118059865	-1.099864657
С	-4.676793154	-1.945848926	-1.787762521
С	-4.098943228	0.239686292	-0.962476226
С	-5.850313398	-1.431003156	-2.326770445
С	-5.264266793	0.753236691	-1.511597414
С	-6.145237811	-0.079645429	-2.196076620
Н	-4.452244618	-3.003341960	-1.911526540
Η	-3.413337946	0.892177861	-0.421821586
Н	-6.532541591	-2.090452159	-2.858832083
Н	-5.486276471	1.812396999	-1.403184218
Η	-7.058769291	0.324661918	-2.626006402
С	-2.669061879	-1.474410459	1.066041178
Η	-3.445468786	-2.194648441	1.378822263
Η	-1.753962047	-1.715222534	1.617486650
Η	-2.995399456	-0.481178330	1.368958659
С	-2.176476688	-3.103395753	-0.710432573

Η	-2.875683583	-3.752561943	-0.164751265
Η	-2.191972999	-3.398169207	-1.758686993
Η	-1.174815498	-3.306313033	-0.316959017

Me ↓___CF₃ ÍII ĊF₃

Red	uctive Eliminati	on (tertiary) Tra	nsition State 3
Cu	-0.596649113	-0.375033245	0.148255195
Ν	1.357500845	-1.241078748	0.163005372
С	1.609840690	-2.509158936	0.488231301
Н	0.750202194	-3.086649506	0.823583586
С	2.885998846	-3.053535396	0.431662793
Н	3.048006533	-4.095120629	0.692581290
С	3.935914059	-2.227936555	0.051580628
Н	4.952374590	-2.610875884	0.001713307
С	3.679289867	-0.897277994	-0.244631941
Н	4.497741115	-0.234952356	-0.508867536
С	2.366523898	-0.429413343	-0.183557023
Ν	0.727603507	1.323870964	-0.228378597
С	2.002362466	0.979562363	-0.470267817
С	2.926819841	1.906786430	-0.951257130
Н	3.949516315	1.612133183	-1.166393044
С	2.519369632	3.213212987	-1.174158216
Н	3.225002039	3.948641412	-1.552857150
С	1.202919471	3.565727004	-0.906427231
Н	0.843420262	4.578981098	-1.058828881
С	0.341708658	2.583680767	-0.435685107
Н	-0.700179996	2.802887469	-0.215718977
С	-2.380546853	0.574379856	-0.408989881
С	-1.345568761	-1.241770142	1.835314656
F	-2.447713927	1.514708445	-1.390594476
F	-3.591510936	0.038046540	-0.268444216
F	-2.225889783	1.357904107	0.708732764
F	-0.741295445	-0.779764650	2.966767162
F	-2.676197731	-1.174295905	2.099398450
F	-1.082990784	-2.613440627	1.863849233
С	-1.746891361	-1.044231413	-1.900694408
С	-0.421400120	-0.884554455	-2.555611316
С	0.458502298	-1.968099316	-2.698909311
С	-0.056504586	0.336682503	-3.147197384
С	1.661925534	-1.828915482	-3.380270906

С	1.148221372	0.476141135	-3.818675454
С	2.018523400	-0.605921141	-3.938365179
Η	0.198128620	-2.935101304	-2.273760584
Η	-0.717814534	1.193661720	-3.039031851
Η	2.324550429	-2.687288140	-3.475809994
Η	1.412254083	1.440125973	-4.250179246
Η	2.960721861	-0.498104380	-4.471379482
С	-2.867173524	-0.693666711	-2.857612913
Η	-2.826324545	-1.452021690	-3.656367372
Н	-3.852251088	-0.751553796	-2.391065146
Η	-2.752413669	0.279953283	-3.334657002
С	-2.039721366	-2.337025581	-1.189622375
Η	-2.244987121	-3.121097278	-1.936906860
Η	-1.241046197	-2.690179787	-0.532443185
Η	-2.934655463	-2.229776306	-0.568959795

Synthesis and Characterization of Substrates.

Copper complexes (bpy)Cu(CF₃)₃⁸⁻⁹ and $[(Ph_3P)_3Cu(CF_3)]^{10}$ were synthesized followed by the reported procedures. The following compounds were synthesized according to the literature procedures: *N*-(*tert*-butyl)-2-methylbenzamide (**1k**),¹¹ *N*-butyl-2-methylbenzamide (**1l**),¹² *N*-benzyl-2-methylbenzamide (**1n**),¹³ *N*-(pyridin-2-ylmethyl)-2-methylbenzamide (**1q**),¹⁴ 5-phenylhexanenitrile (**1x**),¹⁵ 1-(4-Chlorophenyl)-3-phenylpropan-1-one (**1cc**),¹⁶ and *N*-(*tert*-butyl)-3-phenylbutanamide (**1dd**)¹⁷

N-(tert-Butyl)-5-chloro-2-methylbenzamide (10)

To a round-bottom flask with a stir bar was added 5-chloro-2-methylbenzoic acid (0.853 g, 5.00 mmol, 1.0 equiv) and DCM (17 mL, 0.3 M). *N*, *N*-Dimethylformamide (19.4 μ L; 0.25 mmol, 0.05 equiv) was added at rt. Oxalyl chloride (643 μ L; 7.5 mmol, 1.50 equiv) was added dropwise. The reaction was stirred at room temperature until bubbling stopped. Without transferring from the reaction flask, volatile components were removed by rotary evaporation and high vacuum. The crude reaction product, a yellow oily solid, was dissolved in DCM (17 mL, 0.3 M). *tert*-Butylamine (788 μ L; 7.5 mmol, 1.5 equiv), followed by triethylamine (1.39 mL, 10 mmol, 2.0 equiv), were added at room temperature, and the reaction was stirred for 3 hours. The reaction mixture was diluted with EtOAc and the organic layer was washed with water. The organic layer was concentrated under vacuum. The amide was purified by silica column chromatography (10% EtOAc in hexanes) to provide *N*-(*tert*-butyl)-5-chloro-2-methylbenzamide **10** (1.050 g, 93% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.19 (m, 2H), 7.12 (d, *J* = 8.2 Hz, 1H), 5.52 (br, 1H), 2.38 (s, 3H), 1.46 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 168.3, 139.3, 134.1, 132.3, 131.4, 129.39, 126.6, 52.1, 28.9, 19.1.

HRMS (ESI): Calcd. for $C_{12}H_{16}ONCINa [M+Na]^+$, 248.0813. Found: 248.0812. TLC: $R_f = 0.28$, 15% EtOAc in hexanes.

N-1-Adamantyl-2-methylbenzamide (1p)

To a round-bottom flask with a stir bar was added *o*-Toluoyl chloride (0.853 g, 5.00 mmol, 1.0 equiv) and DCM (17.0 mL, 0.3 M). 1-Adamantylamine (1.13 mg; 7.5 mmol, 1.5 equiv), followed by triethylamine (1.39 mL, 10 mmol, 2.0 equiv), were added at room temperature, and the reaction was stirred for 5 hours. The reaction mixture was then diluted with EtOAc

and washed with water. Thereafter the organic layer was concentrated under vacuum. The amide was purified by silica column chromatography (10% EtOAc in hexanes) to provide *N*-1-Adamantyl-2-methylbenzamide (1p) (1.27 g, 94% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (d, J = 7.6 Hz, 1H), 7.30 – 7.13 (m, 3H), 5.40 (br, 1H), 2.43 (s, 3H), 2.12 (s, 9H), 1.81 – 1.66 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 169.5, 138.0, 135.5, 130.8, 129.4, 126.5, 125.7, 52.5, 41.8, 36.4, 29.6, 19.7.

HRMS (ESI): Calcd. for C₁₈H₂₃ONNa [M+Na]⁺, 292.1672. Found: 292.1672.

TLC: $R_f = 0.30$, 20% EtOAc in hexanes.

(S)-2-Methyl-N-(1-phenylethyl)benzamide (1r)

To a round-bottom flask with a stir bar was added o-Toluoyl chloride (0.853 g, 5.00 mmol, 1.0 equiv) and DCM (17.0 mL, 0.3 M). (S)-1-phenylethan-1-amine (909 mg; 7.5 mmol, 1.5 equiv), followed by triethylamine (1.39 mL, 10 mmol, 2.0 equiv), were added at room temperature, and the reaction was stirred for 5 hours. The reaction mixture was then diluted with EtOAc and washed with water. The organic layer was concentrated under vacuum. The amide was purified by silica column chromatography (20% EtOAc in hexanes) to provide (S)-2-methyl-N-(1-phenylethyl)benzamide (1r) (0.972 g, 81% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.10 (m, 9H), 5.96 (br, *J* = 6.0 Hz, 1H), 5.44 – 5.19 (m, 1H), 2.43 (s, 3H), 1.60 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 169.2, 143.2, 136.6, 136.2, 131.1, 129.9, 128.8, 127.5, 126.7, 126.3, 125.8, 49.2, 21.9, 19.9.

HRMS (ESI): Calcd. for $C_{16}H_{17}ONNa [M+Na]^+$, 262.1202. Found: 262.1202. TLC: $R_f = 0.23$, 20% EtOAc in hexanes.

N-Phthaloyl-5-phenylhexan-1-amine (1v)¹⁸

(5-Bromopentyl)benzene (0.681 g, 3 mmol) and potassium phthalimide (0.556 g, 3 mmol) were then dissolved in 20 mL DMF. The stirred solution was heated for 15 hours. After filtration, the mixture was washed with 50 mL brine and was extracted with 50 mL Et₂O. The solution was dried over Na₂SO₄ and the solvent was removed by evaporation under vacuum. The product was purified by silica column chromatography (20% EtOAc in hexanes) or Biotage flash chromatography to afford *N*-Phthaloyl-5-phenylhexan-1-amine **1v** (0.671g, 76% yield) as an off-white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.90 – 7.80 (m, 2H), 7.76 – 7.68 (m, 2H), 7.29 – 7.21 (m, 2H), 7.21 – 7.08 (m, 3H), 3.68 (t, J = 7.3 Hz, 2H), 2.60 (t, J = 7.7 Hz, 2H), 1.79 – 1.59 (m, 4H), 1.46 – 1.29 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 142.5, 133.9, 132.3, 128.5, 128.3, 125.7, 123.2, 38.0, 35.8, 31.1, 28.5, 26.6. TLC: $R_f = 0.25$, 30% EtOAc in hexanes.

N-Phthaloyl-4-phenylpentan-1-amine (1w)¹⁹

(4-Bromopentyl)benzene (0.639 g, 3 mmol) and potassium phthalimide (0.556 g, 3 mmol) were then dissolved in 20 mL DMF. With stirring, the solution was heated for 15 hours. After filtration, the mixture was washed with 50 mL brine and was extracted with 50 mL Et₂O. The solution was dried over Na₂SO₄ and removal of the solvent with evaporation. The product was purified by silica column chromatography (20% EtOAc in hexanes) or Biotage flash chromatography to afford *N*-Phthaloyl-4-phenylpentan-1-amine **1w** (0.604 g, 72% yield) as an off-white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.95 – 7.78 (m, 2H), 7.76 – 7.60 (m, 2H), 7.30 – 7.21 (m, 2H), 7.21 – 7.09 (m, 3H), 3.71 (t, J = 6.9 Hz, 2H), 2.66 (t, J = 7.3 Hz, 2H), 1.86 – 1.59 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 142.1, 134.0, 132.3, 128.5, 128.4, 125.9, 123.3, 37.9, 35.5, 28.8, 28.3.

TLC: $R_f = 0.25$, 30% EtOAc in hexanes.

3-Phenyl-*N***-(2,2,2-trifluoroethyl)butanamide (1z)**

To a round-bottom flask with a stir bar was added 3-Phenylpropanoic acid (0.751 g, 5.00 mmol, 1.0 equiv) and DCM (17 mL, 0.3 M). *N*, *N*-Dimethylformamide (19.4 μ L; 0.25 mmol, 0.05 equiv) was added at rt. Oxalyl chloride (643 μ L; 7.5 mmol, 1.50 equiv) was added dropwise. The reaction was stirred at room temperature until bubbling stopped. Without transferring from the reaction flask, volatile components were removed by rotary evaporation and high vacuum. The crude reaction product was dissolved in DCM (17 mL, 0.3 M) and stirred. 2,2,2-Trifluoroethylamine hydrochloride (1.02 g, 7.5 mmol, 1.5 equiv), followed by triethylamine (1.39 mL, 10 mmol, 2.0 equiv), were added at room temperature, and the reaction was stirred for 3 hours. The reaction mixture was then diluted with EtOAc and washed with water. Thre organic layer was concentrated under vacuum. The amide was purified by silica column chromatography (20% EtOAc in hexanes) to provide 3-Phenyl-*N*-(2,2,2-trifluoroethyl)-butanamide **1y** (1.09 g, 94% yield) as a white solid.
¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 2H), 7.25 – 7.14 (m, 3H), 5.53 (br, 1H), 3.88 (qd, J = 9.1, 6.6 Hz, 2H), 2.99 (t, J = 7.6 Hz, 2H), 2.56 (t, J = 7.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 172.8, 140.4, 128.7, 128.3, 126.5, 124.1 (q, J = 278.5 Hz), 40.6 (q, J = 34.7 Hz), 38.0, 31.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -72.59 (t, J = 9.1 Hz). HRMS (ESI): Calcd. for C₁₁H₁₃ONF₃ [M+H]⁺, 232.0944. Found: 232.0941. TLC: R_f = 0.15, 30% EtOAc in hexanes.

Methyl-4-(3-phenylbutanoyl)benzoate (1bb)²⁰

In a glovebox, to a stirred solution of methyl-4-(1-hydroxyallyl)benzoate (721 mg, 3.75 mmol, 1.25 equiv) in CH₃CN (1.88 mL, 2 M) were added the iodobenzene (334 μ L, 3 mmol, 1 equiv), triethylamine (523 μ L, 3.75 mmol, 1.25 equiv), and Pd(OAc)₂ (6.7 mg, 0.03 mmol, 0.01 equiv). The reaction was capped and removed from the glovebox. The mixture was heated at 100 °C After 24 hours, the mixture was diluted with diethyl ether, passed through a small plug of silica gel and eluted with diethyl ether. The solvent was removed *in vacuo*, and the residue was purified by column chromatography (20% EtOAc in hexanes) to provide methyl-4-(3-phenylbutanoyl)benzoate (**1bb**) (0.635 g, 79% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, J = 8.5 Hz, 2H), 8.00 (d, J = 8.5 Hz, 2H), 7.42 – 7.07 (m, 5H), 3.95 (s, 3H), 3.33 (t, J = 7.6 Hz, 2H), 3.08 (t, J = 7.6 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 198.8, 166.3, 141.1, 140.2, 134.0, 121.0, 128.7, 128.5, 128.1, 126.4, 52.6, 41.0, 30.1. **TLC:** R_f = 0.20, 20% EtOAc in hexanes.

2-Acetamido-2-(p-tolyl)acetate methylester $(7-_{SM})^{21}$

To a round-bottom flask with a stir bar was added 4-methyl-DL-phenylalanine (1.98 g, 12.0 mmol, 1.0 equiv) and methanol (40 mL) was added. Thionyl chloride (1.31 mL, 18.0 mmol, 1.5 equiv) was added dropwise at 0 °C. After 10 min, the reaction mixture was heated to 75 °C for 2 h. After completion (monitored by TLC), the solvent was removed *in vacuo*. Then the white solid was formed 4-methyl-DL-phenylglycine methylester hydrochloride (2.41 g, 93% yield). To a solution of 4-methyl-DL-phenylglycine methylester hydrochloride (1.0 equiv, 2.16 g, 10 mmol) and NaHCO₃ (2.5 equiv, 2.10 g, 25 mmol) in H₂O (20 mL) was added Ac₂O (1.0 equiv, 0.95 mL, 10 mmol) dropwise at 0 °C. After stirring for 3 h at room temperature, the resulting mixture was filtrated. The filtrate was concentrated *in vacuo* and the residue was purified by column chromatography (30% EtOAc in hexanes) to provide 2-acetamido-2-(*p*-tolyl)acetate methylester (**7**-sm) (1.83 g, 83% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 6.38 (s, 1H), 5.55 (d, J = 7.2 Hz, 1H), 3.72 (s, 3H), 2.34 (s, 3H), 2.03 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 171.8, 169.4, 138.6, 133.7, 129.8, 127.3, 56.3, 52.9, 23.2, 21.3.

HRMS (ESI): Calcd. for $C_{12}H_{15}O_3NNa [M+Na]^+$, 244.0944. Found: 244.0945.

TLC: $R_f = 0.18$, 40% EtOAc in hexanes.

Experimental Procedures and Characterization.

Benzylic C-H Trifluoromethylation. General Procedure A

In a N₂ glovebox, to a 6.0 mL screw-cap test tube equipped with a stir bar was added $(NH_4)_2S_2O_8$ (205 mg, 0.900 mmol, 3.0 equiv), bpyCu(CF₃)₃ (128 mg, 0.300 mmol, 1.0 equiv) and the reaction substrate (0.600 mmol, 2.0 equiv) (if solid). Acetone (1.50 mL) and the reaction substrate (0.600 mmol, 2.0 equiv) (if liquid) were added via syringe, followed by *i*-Pr₃SiH (185 µL, 0.900 mmol, 3.0 equiv). The tube was sealed with a PTFE lined screw cap, brought outside the glovebox. Degassed H₂O (1.50 mL) and trifluoroacetic acid (184 µL, 2.40 mmol, 8.0 equiv) were added under N₂ atmosphere. Then the reaction mixture was irradiated with a 5 W LED lamp (centered at 365 nm and placed 15-20 cm away from the reaction vial) at room temperature for 18 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ (8 mL) and extracted 3 times with EtOAc (15.0 mL) or dichloromethane (15.0 mL). The combined organic layer was dried over MgSO₄. The filtrate was concentrated *in vacuo* and the residue was purified by column chromatography on silica gel to give the desired product.

Benzylic C-H Trifluoromethylation. General Procedure B

Procedure A wherein *t*-butyldimethylsilane (99.4 μ L, 0.600 mmol, 2.0 equiv) was used instead of *i*-Pr₃SiH. (NH₄)₂S₂O₈ (273 mg, 1.200 mmol, 4.0 equiv) was used.

Toluene **1a** (64 μ L, 0.600 mmol) was subjected to General Procedure A. After the reaction mixture was quenched with saturated aqueous NaHCO₃ (30 mL), 1-bromo-4-fluorobenzene (20.0 μ L, 0.197 mmol) and acetone- d_6 (4.0 mL) were added. The yield of (2,2,2-trifluoroethyl)benzene **3a** was determined by comparing the integration of the ¹⁹F NMR (2,2,2-trifluoroethyl)benzene **3a** with that of 1-bromo-4-fluorobenzene (99% ¹⁹F NMR yield).

¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.27 (m, 5H), 3.37 (q, J = 10.8 Hz, 2H).
¹³C NMR (126 MHz, CDCl₃) δ 130.3, 128.8, 128.2, 125.9 (q, J = 276.7 Hz), 40.4 (q, J = 29.6 Hz).
¹⁹F NMR (376 MHz, CDCl₃) δ -66.00 (t, J = 10.8 Hz).
HRMS (EI): Calcd. for C₈H₇F₃ [M], 160.0500. Found: 160.0492.
TLC: R_f = 0.75, hexanes.

4-(2,2,2-Trifluoroethyl)phenyl methanesulfonate (3b)²³

p-Tolylmethanesulfonate **1b** (90.11 μ L, 0.600 mmol) was subjected to General Procedure. Silica gel chromatography (Gradient: 30%-80% dichloromethane in hexanes) provided **3b** (36.7 mg, 48% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 3.39 (q, J = 10.7 Hz, 2H), 3.16 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 149.2, 132.0, 129.7 (q, J = 2.9 Hz), 125.6 (q, J = 276.9 Hz), 122.4, 39.7 (q, J = 30.1 Hz), 37.6. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -65.97 (t, J = 10.6 Hz). HRMS (ESI): Calcd. for C₉H₁₀O₃F₃S [M+H]⁺, 255.0297. Found: 255.0297. TLC: R_f = 0.20, 40% dichloromethane in hexanes.

1-Chloro-4-(2,2,2-trifluoroethyl)benzene (3c)²⁴

1-Chloro-4-methylbenzene **1c** (70.98 μ L, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (*n*-pentane) provided **3c** (42.0 mg, 72% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 3.34 (q, J = 10.7 Hz, 2H). ¹³**C** NMR (126 MHz, CDCl₃) δ 134.4, 131.6, 129.1, 128.7, 125.6 (q, J = 276.7 Hz), 39.8 (q, J = 10.7 H

= 30.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -66.11 (t, *J* = 10.7 Hz).

HRMS (EI): Calcd. for C₈H₆ClF₃ [M], 194.0110. Found: 194.0102.

TLC: $R_f = 0.60$, hexanes.

1-(Tert-butyl)-4-(2,2,2-trifluoroethyl)benzene (3d)²⁵

3d

1-(*t*-Butyl)-4-methylbenzene **1d** (103.43 μ L, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (*n*-pentane) provided **3d** (57.3 mg, 88% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 3.95 – 2.37 (m, 2H), 1.32 (s, 9H). ¹³**C NMR** (126 MHz, CDCl₃) δ 151.2, 130.0, 127.3 (q, J = 2.9 Hz), 126.0 (q, J = 276.8 Hz), 125.8, 39.9 (q, J = 29.6 Hz), 34.7, 31.5. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -66.01 (t, J = 10.9 Hz). **TLC**: R_f = 0.60, hexanes.

Trimethyl(4-(2,2,2-trifluoroethyl)phenyl)silane (3e)

Trimethyl(*p*-tolyl)silane **1e** (113.32 μ L, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (*n*-pentane) provided **3e** (28.1 mg, 40% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 7.6 Hz, 2H), 3.36 (q, J = 10.8 Hz, 2H), 0.27 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 140.6, 133.8, 130.7 (q, *J* = 2.9 Hz), 129.6, 125.9 (q, *J* = 276.9 Hz), 40.4 (q, *J* = 29.6 Hz), -1.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.84 (t, J = 10.9 Hz).

HRMS (EI): Calcd. for C₁₁H₁₅F₃Si [M], 232.0895. Found: 232.0887.

TLC: $R_f = 0.70$, hexanes.

1-Methyl-4-(2,2,2-trifluoroethyl)benzene (3f)²⁴

p-Xylene **1f** (73.9 μ L, 0.600 mmol) was subjected to General Procedure A. After the reaction mixture was quenched with saturated aqueous NaHCO₃ (30 mL), 1-bromo-4-fluorobenzene (20.0 μ L, 0.197 mmol) and acetone-d₆ (4.0 mL) were added. The yield of 1-methyl-4-(2,2,2-trifluoroethyl)benzene **3f** was determined by comparing the integration of the ¹⁹F NMR 1-methyl-4-(2,2,2-trifluoroethyl)benzene **3f** with that of 1-bromo-4-fluorobenzene (99% ¹⁹F NMR yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.24 – 7.06 (m, 4H), 3.32 (q, J = 10.9 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 138.0, 130.2, 129.5, 127.3 (q, J = 2.9 Hz), 126.0 (q, J = 276.7Hz), 39.98 (q, J = 29.6 Hz), 21.24. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.17 (t, J = 10.9 Hz). HRMS (EI): Calcd. for C₉H₉F₃ [M], 174.0656. Found: 174.0648. TLC: R_f = 0.70, hexanes.

1-Methyl-3-(2,2,2-trifluoroethyl)benzene (3g)

m-Xylene **1g** (73.9 μ L, 0.600 mmol) was subjected to General Procedure A. After the reaction mixture was quenched with saturated aqueous NaHCO₃ (30 mL), 1-bromo-4-fluorobenzene (20.0 μ L, 0.197 mmol) and acetone-*d*₆ (4.0 mL) were added. The yield of 1-methyl-3-(2,2,2-trifluoroethyl)benzene **3g** was determined by comparing the integration of the ¹⁹F NMR 1-methyl-3-(2,2,2-trifluoroethyl)benzene **3g** with that of 1-bromo-4-fluorobenzene (99% ¹⁹F NMR yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.20 (m, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 7.12 – 7.05 (m, 2H), 3.33 (q, *J* = 10.9 Hz, 2H), 2.36 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 138.5, 131.0, 130.2, 129.0, 128.7, 127.3, 126.0 (q, *J* = 276.8 Hz), 40.3 (q, *J* = 29.6 Hz), 21.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -65.93 (t, J = 10.9 Hz).

HRMS (EI): Calcd. for C₉H₉F₃ [M], 174.0656. Found: 174.0655.

TLC: $R_f = 0.70$, hexanes.

1-Methyl-2-(2,2,2-trifluoroethyl)benzene (3h)

o-Xylene **1h** (73 μL, 0.600 mmol) was subjected to General Procedure A. After the reaction mixture was quenched with saturated aqueous NaHCO₃ (30 mL), 1-bromo-4-fluorobenzene (20.0 μL, 0.197 mmol) and acetone-*d*₆ (4.0 mL) were added. The yield of 1-methyl-2-(2,2,2-trifluoroethyl)benzene **3h** was determined by comparing the integration of the ¹⁹F NMR 1-methyl-2-(2,2,2-trifluoroethyl)benzene **3h** with that of 1-bromo-4-fluorobenzene (93% ¹⁹F NMR yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.15 (m, 4H), 3.41 (q, J = 10.8 Hz, 2H), 2.37 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 137.7, 131.3, 130.8, 128.8 (q, J = 2.7 Hz), 128.4, 126.3 (q, J = 277.2 Hz), 126.3, 37.3 (q, J = 29.6 Hz), 19.8. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -65.33 (t, J = 10.8 Hz). HRMS (EI): Calcd. for C₉H₉F₃ [M], 174.0656. Found: 174.0649. TLC: R_f = 0.50, hexanes.

Phenyl(2-(2,2,2-trifluoroethyl)phenyl)methanone (3i)²⁶

Phenyl(*o*-tolyl)methanone **1i** (106.1 μ L, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (8% EtOAc in hexanes) provided **3i** (44.7 mg, 56% yield) as a colorless solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 – 7.75 (m, 2H), 7.67 – 7.56 (m, 1H), 7.55 – 7.42 (m, 4H), 7.43 – 7.33 (m, 2H), 3.74 (q, J = 10.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 197.9, 139.7, 137.6, 133.5, 132.6, 130.9, 130.5, 129.9, 129.7, 128.5, 127.5, 125.9 (q, J = 277.2 Hz), 36.2 (q, J = 29.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.19 (t, J = 10.8 Hz). HRMS (ESI): Calcd. for C₁₅H₁₂OF₃ [M+H]⁺, 265.0835. Found: 265.0835. TLC: R_f = 0.35, 10% EtOAc in hexanes.

N-methyl-2-(2,2,2-trifluoroethyl)benzamide (3j)²⁷

N-methyl-2-methylbenzamide **1j** (89.5 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (20% EtOAc in hexanes) provided **3j** (44.9 mg, 69% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 – 7.30 (m, 4H), 5.88 (s, 1H), 3.79 (q, *J* = 11.0 Hz, 2H), 2.99 (d, *J* = 4.9 Hz, 3H).

¹³**C** NMR (126 MHz, CDCl₃) δ 170.3, 137.7, 132.4, 130.3, 128.9 (q, *J* = 2.9 Hz), 128.3, 127.2, 126.0 (q, *J* = 277.1 Hz), 36.4 (q, *J* = 29.7 Hz), 26.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.38 (t, *J* = 11.0 Hz).

HRMS (ESI): Calcd. for C₁₀H₁₀ONF₃Na [M+Na]⁺, 240.0607. Found: 240.0608.

TLC: $R_f = 0.20$, 30% EtOAc in hexanes.

N-(*tert*-butyl)-2-(2,2,2-trifluoroethyl)benzamide (3k)²⁷

N-(*tert*-butyl)-2-methylbenzamide **1k** (114.8 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (15% EtOAc in hexanes) provided **3k** (66.3 mg, 85% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.27 (m, 4H), 5.68 (br, 1H), 3.77 (q, *J* = 11.0 Hz, 2H), 1.45 (s, 9H).

¹³**C** NMR (126 MHz, CDCl₃) δ 169.1, 139.0, 132.3, 129.9, 128.4 (q, J = 3.0 Hz), 128.3, 127.1, 126.1 (q, J = 277.1 Hz), 52.1, 36.2 (q, J = 29.7 Hz), 28.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.18 (t, J = 11.0 Hz).

HRMS (ESI): Calcd. for C₁₃H₁₇ONF₃ [M+H]⁺, 260.1257. Found: 260.1259.

TLC: $R_f = 0.25$, 15% EtOAc in hexanes.

N-butyl-2-(2,2,2-trifluoroethyl)benzamide (31)²⁷

N-butyl-2-methylbenzamide **11** (114.8 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (15% EtOAc in hexanes) provided **31** (59.1 mg, 76% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.30 (m, 4H), 5.85 (br, 1H), 3.81 (q, *J* = 11.0 Hz, 2H), 3.45 (dd, *J* = 13.1, 7.1 Hz, 2H), 1.69 – 1.53 (m, 2H), 1.50 – 1.33 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 169.6, 138.0, 132.4, 130.2, 128.8, 128.3, 127.2, 126.0 (q, *J* = 277.1 Hz), 39.8, 36.3 (q, *J* = 29.6 Hz), 31.7, 20.2, 13.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.30 (t, *J* = 11.0 Hz).

HRMS (ESI): Calcd. for $C_{13}H_{16}ONF_3Na [M+Na]^+$, 282.1076. Found: 282.1078. TLC: $R_f = 0.25$, 15% EtOAc in hexanes.

N-cyclohexyl-2-(2,2,2-trifluoroethyl)benzamide (3m)²⁷

N-cyclohexyl-2-methylbenzamide **1m** (130.4 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (15% EtOAc in hexanes) provided **3m** (76.9 mg, 90% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 2H), 7.36 (d, J = 6.5 Hz, 2H), 5.71 (br, 1H), 4.04 – 3.88 (m, 1H), 3.78 (q, J = 11.0 Hz, 2H), 2.03 (d, J = 9.9 Hz, 2H), 1.83 – 1.69 (m, 2H), 1.71 – 1.60 (m, 1H), 1.51 – 1.34 (m, 2H), 1.33 – 1.09 (m, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 168.7, 138.2, 132.4, 130.1, 128.7 (q, J = 2.9 Hz), 128.3, 127.2, 126.1 (q, J = 277.1 Hz), 48.8, 36.4 (q, J = 29.7 Hz), 33.1, 25.6, 25.0. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -65.20 (t, J = 11.0 Hz). HRMS (ESI): Calcd. for C₁₅H₁₈ONF₃Na [M+Na]⁺, 308.1233. Found: 308.1236. **TLC**: R_f = 0.25, 20% EtOAc in hexanes.

N-benzyl-2-(2,2,2-trifluoroethyl)benzamide (3n)²⁷

N-benzyl-2-methylbenzamide **1n** (135.2 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (Gradient: 5%-30% EtOAc in hexanes) provided **3n** (42.1 mg, 48% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.28 (m, 9H), 6.14 (br, 1H), 4.62 (d, *J* = 5.7 Hz, 2H), 3.84 (q, *J* = 11.0 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 169.3, 137.9, 137.4, 132.6, 130.5, 129.1, 129.0, 128.4, 128.1, 127.9, 127.3, 126.1 (q, *J* = 276.8 Hz), 44.3, 36.4 (q, *J* = 29.7 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -65.24 (t, J = 11.0 Hz).

HRMS (ESI): Calcd. for $C_{16}H_{14}ONF_{3}Na \ [M+Na]^{+}$, 316.0920. Found: 316.0922.

TLC: $R_f = 0.35$, 30% EtOAc in hexanes.

*N-(tert-*butyl)-5-chloro-2-(2,2,2-trifluoroethyl)benzamide (30)

N-(*tert*-butyl)-5-chloro-2-methylbenzamide **10** (135.4 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (10% EtOAc in hexanes) provided **30** (52.9 mg, 60% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.37 – 7.26 (m, 2H), 5.67 (br, 1H), 3.72 (q, J = 10.9 Hz, 2H), 1.45 (s, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 167.6, 140.3, 134.3, 133.6, 129.9, 127.4, 126.9 (q, *J* = 3.0 Hz), 125.8 (q, *J* = 277.2 Hz), 52.4, 35.7 (q, *J* = 30.0 Hz), 28.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.28 (t, J = 10.9 Hz).

HRMS (ESI): Calcd. for C₁₃H₁₆ONClF₃ [M+H]⁺, 294.0867. Found: 294.0874.

TLC: $R_f = 0.30$, 15% EtOAc in hexanes.

N-1-adamantyl-2-methylbenzamide **1p** (161.6 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (3% EtOAc/30% dichloromethane in hexanes)provided **3p** (57.9 mg, 57% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.28 (m, 4H), 5.52 (br, 1H), 3.77 (q, *J* = 11.0 Hz, 2H), 2.11 (s, 9H), 1.81 – 1.63 (m, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 168.9, 139.1, 132.3, 129.9, 128.4 (q, J = 2.8 Hz), 128.3, 127.2, 126.1 (q, J = 277.3 Hz), 52.9, 41.6, 36.5, 36.3 (q, J = 29.7 Hz), 29.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.02 (t, J = 11.0 Hz).

HRMS (ESI): Calcd. for $C_{19}H_{23}ONF_3 [M+H]^+$, 338.1726. Found: 338.1730.

TLC: $R_f = 0.18$, 40% dichloromethane in hexanes.

N-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoroethyl)benzamide (3q)

2-Methyl-*N*-(pyridin-2-ylmethyl)benzamide 1q (135.8 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (30% EtOAc in hexanes) provided 3q (33.7 mg, 38% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 4.5 Hz, 1H), 7.82 – 7.63 (m, 1H), 7.59 – 7.54 (m, 1H), 7.49 – 7.35 (m, 3H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.26 – 7.17 (m, 2H), 4.74 (d, *J* = 4.9 Hz, 2H), 3.86 (q, *J* = 11.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 169.5, 156.0, 149.2, 137.4, 137.00, 132.4, 130.4, 129.2 (q, J = 3.0 Hz), 128.4, 127.6, 126.1 (q, J = 277.3 Hz), 122.6, 122.3, 44.9, 36.4 (q, J = 29.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -65.24 (t, J = 11.0 Hz).

HRMS (ESI): Calcd. for $C_{15}H_{13}ON_2F_3Na [M+Na]^+$, 317.0872. Found: 317.0875. TLC: $R_f = 0.20$, 40% EtOAc in hexanes.

(S)-N-(1-phenylethyl)-2-(2,2,2-trifluoroethyl)benzamide (3r)²⁷

н 3r

(S)-2-methyl-N-(1-phenylethyl)benzamide 1r (143.6 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (20% EtOAc in hexanes) provided 3r (59.8 mg, 65% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.27 (m, 9H), 6.09 (d, J = 7.4 Hz, 1H), 5.44 – 5.21 (m, 1H), 4.02 – 3.79 (m, 1H), 3.77 – 3.56 (m, 1H), 1.60 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 142.8, 137.6, 132.4, 130.3, 128.9, 128.3, 127.7, 127.3, 126.3, 126.0 (q, J = 277.2 Hz), 49.4, 36.3 (q, J = 29.7 Hz), 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.20 (t, J = 11.0 Hz). HRMS (ESI): Calcd. for C₁₇H₁₆ONF₃Na [M+Na]⁺, 330.1076. Found: 330.1079. TLC: R_f = 0.25, 20% EtOAc in hexanes.

1-Chloro-2-methyl-4-(2,2,2-trifluoroethyl)benzene (3s)

1-Chloro-2,4-dimethylbenzene **1s** (84.4 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (*n*-pentane) provided **3s** (28.1 mg, 45% yield) as a colorless oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.1 Hz, 1H), 7.15 (s, 1H), 7.06 (d, J = 8.1 Hz, 1H), 3.31 (q, J = 10.7 Hz, 2H), 2.38 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 136.6, 134.5, 132.8, 129.5, 128.9, 128.7 (q, J = 2.9 Hz), 125.7 (q, J = 276.7 Hz), 39.8 (q, J = 29.9 Hz), 20.2. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -66.04 (t, J = 10.7 Hz). HRMS (EI): Calcd. for C₉H₈ClF₃ [M], 208.0267. Found: 208.0260. **TLC**: R_f = 0.5, hexanes.

2-(4-(2,2,2-Trifluoroethyl)phenyl)pyridine (3t)

2-(*p*-Tolyl)pyridine **1t** (101.5 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (20% EtOAc in hexanes) provided **3t** (17.3 mg, 24% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 8.70 (d, J = 4.7 Hz, 1H), 7.99 (d, J = 8.3 Hz, 2H), 7.84 – 7.67 (m, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.27 – 7.17 (m, 1H), 3.43 (q, J = 10.8 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 157.0, 149.9, 139.4, 136.9, 131.0 (q, J = 2.9 Hz), 130.7, 127.3, 125.9 (q, J = 276.9 Hz), 122.5, 120.7, 40.2 (q, J = 29.8 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.83 (t, J = 10.8 Hz). **HRMS** (ESI): Calcd. for C₁₃H₁₁F₃N [M+H]⁺, 238.0838. Found: 238.0840. **TLC**: R_f = 0.25, 30% EtOAc in hexanes.

$$N$$

N
 $3u$

2-(*p*-Tolyl)pyrimidine 1u (102.1 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (25% EtOAc in hexanes) provided 3u (40.7 mg, 57% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 4.8 Hz, 2H), 8.44 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H), 7.21 (t, J = 4.8 Hz, 1H), 3.45 (q, J = 10.8 Hz, 2H). ¹³**C** NMR (126 MHz, CDCl₃) δ 164.4, 157.4, 137.6, 132.9 (q, J = 2.9 Hz), 130.6, 128.6, 125.8 (q, J = 276.9 Hz), 119.4, 40.3 (q, J = 29.8 Hz). ¹⁹**F** NMR (376 MHz, CDCl₃) δ -65.70 (t, J = 10.8 Hz). **HRMS** (EI): Calcd. for C₁₂H₉F₃N₂ [M], 238.0718. Found: 238.0714. **TLC**: R_f = 0.30, 30% EtOAc in hexanes.

N-Phthaloyl-6,6,6-trifluoro-5-phenylhexan-1-amine (3v)

N-Phthaloyl-5-phenylhexan-1-amine 1v (88.3 mg, 0.600 mmol) was subjected to General Procedure B. Silica gel chromatography (15% EtOAc in hexanes) provided 3v (32.4 mg, 50% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.77 (m, 2H), 7.73 – 7.64 (m, 2H), 7.33 – 7.20 (m, 5H), 3.59 (t, *J* = 7.3 Hz, 2H), 3.32 – 3.09 (m, 1H), 2.11 – 1.96 (m, 1H), 1.96 – 1.79 (m, 1H), 1.78 – 1.55 (m, 2H), 1.30 – 1.13 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.5, 134.7, 134.0, 132.2, 129.1, 128.8, 128.3, 127.0 (q, J = 279.9 Hz), 123.3, 50.1 (q, J = 26.5 Hz), 37.6, 28.3 (q, J = 2.0 Hz), 28.2, 24.1.
¹⁹F NMR (376 MHz, CDCl₃) δ -69.81 (d, J = 9.3 Hz).

HRMS (ESI): Calcd. for C₂₀H₁₉O₂NF₃ [M+H]⁺, 362.1362. Found: 362.1361.

TLC: $R_f = 0.30$, 20% EtOAc in hexanes.

N-Phthaloyl-5,5,5-trifluoro-4-phenylpentan-1-amine (3w)²⁸

N-Phthaloyl-4-phenylpentan-1-amine 1w (79.9 mg, 0.600 mmol) was subjected to General Procedure B. Silica gel chromatography (15% EtOAc in hexanes) provided 3w (24.8 mg, 41% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.80 (m, 2H), 7.74 – 7.68 (m, 2H), 7.39 – 7.26 (m, 5H), 3.65 (t, *J* = 7.1 Hz, 2H), 3.39 – 3.11 (m, 1H), 2.11 – 1.98 (m, 1H), 1.98 – 1.85 (m, 1H), 1.67 – 1.48 (m, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 168.4, 134.4, 134.1, 132.2, 129.1, 128.9, 128.4, 126.9 (q, *J* = 280.0 Hz), 123.4, 49.8 (q, *J* = 26.7 Hz), 37.5, 26.1 (q, *J* = 2.2 Hz), 26.0.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -69.76 (d, J = 9.2 Hz).

HRMS (ESI): Calcd. for C₁₉H₁₇O₂NF₃ [M+H]⁺, 348.1206. Found: 348.1206.

TLC: $R_f = 0.30$, 20% EtOAc in hexanes.

6,6,6-Trifluoro-5-phenylhexanenitrile (3x)

5-Phenylpentanenitrile 1x (96 mg, 0.600 mmol) was subjected to General Procedure B. Silica gel chromatography (10% EtOAc in hexanes) provided 3x (43.3 mg, 64% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.26 (m, 5H), 3.40 – 3.08 (m, 1H), 2.32 (t, J = 7.1 Hz, 2H), 2.23 – 2.11 (m, 1H), 2.10 – 1.98 (m, 1H), 1.70 – 1.46 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 133.9, 129.1, 129.0, 128.7, 126.7 (q, J = 280.0 Hz), 119.0, 49.8 (q, J = 27.0 Hz), 28.0 (q, J = 2.2 Hz), 23.0, 17.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -69.87 (d, J = 9.1 Hz). **HRMS** (EI): Calcd. for C₁₂H₁₂F₃N [M], 227.0924. Found: 227.0919. **TLC**: **R**_f = 0.25, 10% EtOAc in hexanes.

Methyl-6,6,6-trifluoro-5-phenylhexanoate (3y)

Methyl-5-phenylpentanoate **1y** (115.4 mg, 0.600 mmol) was subjected to General Procedure B. Silica gel chromatography (10% EtOAc in hexanes) provided **3y** (33.4 mg, 43% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 5H), 3.64 (s, 3H), 3.34 – 3.12 (m, 1H), 2.29 (td, J = 7.4, 3.2 Hz, 2H), 2.09 – 1.98 (m, 1H), 1.97 – 1.86 (m, 1H), 1.55 – 1.47 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 173.5, 134.5, 129.1, 128.9, 128.4, 126.9 (q, J = 279.9 Hz), 51.7, 50.1 (q, J = 26.6 Hz), 33.7, 28.3 (q, J = 2.2 Hz), 22.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -69.89 (d, J = 9.2 Hz). **HRMS** (EI): Calcd. for C₁₃H₁₄F₂O₂ [M-HF], 240.0962. Found: 240.0959. **TLC**: R_f = 0.15, 20% EtOAc in hexanes.

4,4,4-Trifluoro-3-phenyl-*N*-(2,2,2-trifluoroethyl)butanamide (3z)

3-Phenyl-N-(2,2,2-trifluoroethyl)propanamide **1z** (138 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (25% EtOAc in hexanes) provided **3z** (57.2 mg, 64% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.55 – 7.25 (m, 5H), 5.54 (br, 1H), 4.18 – 3.92 (m, 1H), 3.91 – 3.66 (m, 2H), 2.99 (dd, J = 15.0, 4.9 Hz, 1H), 2.73 (dd, J = 15.0, 9.6 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 169.6, 133.8, 129.0 (q, J = 12.8 Hz), 128.8, 128.8, 126.3 (q, J = 343.8 Hz), 123.9 (q, J = 278.4 Hz), 46.4 (q, J = 27.8 Hz), 40.8 (q, J = 34.9 Hz), 36.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -69.99 (d, J = 9.3 Hz), -72.79 (t, J = 9.0 Hz). **HRMS** (ESI): Calcd. for C₁₂H₁₁ONF₆Na [M+Na]⁺, 322.0637. Found: 322.0638. **TLC**: R_f = 0.18, 30% EtOAc in hexanes.

4,4,4-Trifluoro-1,3-diphenylbutan-1-one (3aa)²⁹

1,3-Diphenylpropan-1-one **1aa** (126.2 mg, 0.600 mmol) was subjected to General Procedure B. Silica gel chromatography (10% toluene in hexanes) provided **3aa** (35.7 mg, 43% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 2H), 7.63 – 7.52 (m, 1H), 7.50 – 7.43 (m, 2H), 7.40 (d, J = 7.2 Hz, 2H), 7.37 – 7.28 (m, 3H), 4.38 – 4.10 (m, 1H), 3.70 (dd, J = 17.8, 9.1 Hz, 1H), 3.60 (dd, J = 17.8, 4.1 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 195.4, 136.5, 134.7, 133.7, 129.2, 128.9, 128.8, 128.4, 128.2, 127.1 (q, *J* = 279.3 Hz), 45.0 (q, *J* = 27.5 Hz), 38.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -69.69 (d, J = 9.7 Hz).

HRMS (ESI): Calcd. for C₁₆H₁₄OF₃ [M+H]⁺, 279.0991. Found: 279.0991.

TLC: $R_f = 0.25$, 10% Toluene in hexanes.

Methyl-4-(4,4,4-trifluoro-3-phenylbutanoyl)benzoate (3bb)

Methyl-4-(3-phenylpropanoyl)benzoate **1bb** (161 mg, 0.600 mmol) was subjected to General Procedure B. Silica gel chromatography (Gradient: 40%-100% dichloromethane in hexanes) provided **3bb** (31.9 mg, 32% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.5 Hz, 2H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.49 – 7.28 (m, 5H), 4.35 – 4.13 (m, 1H), 3.95 (s, 3H), 3.71 (dd, *J* = 17.9, 8.9 Hz, 1H), 3.62 (dd, *J* = 17.9, 4.3 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 195.0, 166.2, 139.6, 134.5, 134.5, 130.1, 129.1, 128.9, 128.6, 128.1, 127.0 (q, *J* = 279.4 Hz), 52.7, 45.0 (q, *J* = 27.7 Hz), 38.9.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -69.71 (d, J = 9.6 Hz).

HRMS (ESI): Calcd. for C₁₈H₁₆O₃F₃ [M+H]⁺, 337.1046. Found: 337.1047.

TLC: $R_f = 0.15$, 50% Dichloromethane in hexanes.

1-(4-Chlorophenyl)-4,4,4-trifluoro-3-phenylbutan-1-one (3cc)³⁰

1-(4-Chlorophenyl)-3-phenylpropan-1-one **1cc** (146 mg, 0.600 mmol) was subjected to General Procedure B. Silica gel chromatography (10% toluene in hexanes) provided **3cc** (36.8 mg, 39% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.41 – 7.28 (m, 5H), 4.30 – 4.15 (m, 1H), 3.65 (dd, J = 17.7, 9.0 Hz, 1H), 3.56 (dd, J = 17.8, 4.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 194.3, 140.3, 134.8, 134.5, 129.6 129.2, 129.1, 128.9, 128.5, 127.0 (q, J = 279.7 Hz), 45.0 (q, J = 27.5 Hz), 38.4.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -69.71 (d, J = 9.6 Hz).

HRMS (ESI): Calcd. for C₁₆ H₁₃OClF₃ [M+H]⁺, 313.0602. Found: 313.0603.

TLC: $R_f = 0.20$, 10% Toluene in hexanes.

*N-(tert-*Butyl)-4,4,4-trifluoro-3-phenylbutanamide (3dd)

N-(*tert*-butyl)-3-phenylpropanamide **1dd** (123.1 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (10% EtOAc in hexanes) provided **3dd** (64.1 mg, 78% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.27 (m, 5H), 5.08 (s, 1H), 4.08 – 3.74 (m, 1H), 2.81 (dd, J = 14.3, 5.1 Hz, 1H), 2.51 (dd, J = 14.3, 9.6 Hz, 1H), 1.16 (s, 9H). ¹³**C NMR** (126 MHz, CDCl₃) δ 168.1, 134.4, 129.0, 128.8, 128.5, 126.9 (q, J = 279.7 Hz), 51.6, 46.8 (q, J = 27.5 Hz), 38.1, 28.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -69.76 (d, J = 9.4 Hz). **HRMS** (ESI): Calcd. for C₁₄H₁₈ONF₃Na [M+Na]⁺, 296.1233. Found: 296.1234. **TLC**: R_f = 0.25, 10% EtOAc in hexanes.

5,5,5-Trifluoro-4-phenylpentan-2-one (3ee)³¹

4-Phenylbutan-2-one **1ee** (90 uL, 0.600 mmol) was subjected to General Procedure B. Silica gel chromatography (Gradient: 30%-80% dichloromethane in hexanes) provided **3ee** (41.5 mg, 64% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 4.15 – 3.88 (m, 1H), 3.20 – 2.96 (m, 2H), 2.12 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 203.8, 134.5, 129.1, 128.9, 128.5, 126.8 (q, *J* = 279.4 Hz), 44.7 (q, *J* = 27.6 Hz), 43.1, 30.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -70.03 (d, J = 9.6 Hz).

HRMS (EI): Calcd. for C₁₁H₁₁F₃O [M], 216.0762. Found: 216.0761.

TLC: $R_f = 0.35$, 50% Dichloromethane in hexanes. (visualized with KMnO₄).

Methyl-2-acetamido-2-(4-(2,2,2-trifluoroethyl)phenyl)acetate (7)

2-Acetamido-2-(*p*-tolyl)acetate methylester (132.8 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (30% EtOAc in hexanes) provided **7** (52.9 mg, 61% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 6.47 (d, J = 5.7 Hz, 1H), 5.60 (d, J = 7.2 Hz, 1H), 3.74 (s, 3H), 3.36 (q, J = 10.8 Hz, 2H), 2.05 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 171.4, 169.5, 136.7, 130.9, 130.7 (q, J = 2.9 Hz), 127.7, 125.7 (q, J = 276.8 Hz), 56.2, 53.1, 40.0 (q, J = 29.9 Hz), 23.2. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -65.85 (t, J = 10.8 Hz). **HRMS** (EI): Calcd. for C₁₃H₁₄F₃NO₃ [M], 289.0926. Found: 289.0923. **TLC**: R_f = 0.2, 40% EtOAc in hexanes.

1-((4-Chlorophenyl)(phenyl)methyl)-4-(3-(2,2,2-trifluoroethyl)benzyl)piperazine (8)

Meclizine (117.3 mg, 0.300 mmol, 1.0 equiv), $bpyCu(CF_3)_3$ (192 mg, 0.450 mmol, 15 equiv) and trifluoroacetic acid (230 µL, 3.00 mmol, 10.0 equiv) was subjected to General Procedure A. Silica gel chromatography (15% Acetone in hexanes) provided **8** (35.9 mg, 26% yield) as a

colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 4H), 7.30 – 7.14 (m, 9H), 4.21 (s, 1H), 3.51 (s, 2H), 3.34 (q, *J* = 10.8 Hz, 2H), 2.39 (d, *J* = 53.2 Hz, 8H).

¹³**C NMR** (126 MHz, CDCl₃) δ 142.3, 141.5, 132.6, 131.0, 130.2, 129.4, 129.1, 129.0, 128.8, 128.7, 128.6, 128.0, 127.3, 125.9 (q, *J* = 276.7 Hz), 75.6, 62.9, 53.4, 51.9, 40.3 (q, *J* = 29.7 Hz).

¹⁹**F** NMR (376 MHz, CDCl₃) δ -65.94 (t, J = 10.9 Hz).

HRMS (ESI): Calcd. for C₂₆H₂₇ClF₃N₂ [M+H]⁺, 459.1809. Found: 459.1814.

TLC: $R_f = 0.25$, 20% Acetone in hexanes.

4-(5-(4-(2,2,2-Trifluoroethyl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide (9)

Celecoxib (228.8 mg, 0.600 mmol) was subjected to General Procedure A. Silica gel chromatography (Gradient: 5%-40% acetone in hexanes) provided **9** (111.0 mg, 82% yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.6 Hz, 2H), 7.94 (d, J = 8.6 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.76 – 7.67 (m, 3H), 5.45 (s, 2H), 3.87 (q, J = 10.7 Hz, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 144.6, 144.4 (q, *J* = 38.7 Hz), 142.4, 141.8, 131.9 (q, *J* = 2.8 Hz), 131.0, 129.2, 128.6, 127.7, 125.7, 125.6 (q, *J* = 276.9 Hz), 121.1 (q, *J* = 269.3 Hz), 106.9, 40.1 (q, *J* = 30.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.53 (s), -65.68 (t, J = 10.7 Hz).

HRMS (ESI): Calcd. for C₁₈H₁₄O₂N₃F₆S [M+H]⁺, 450.0705. Found: 450.0707.

TLC: $R_f = 0.30$, 30% acetone in hexanes.

¹⁹F NMR spectrum of a reaction mixture

Scheme S4. Kinetic Isotope Effect

Intramolecular KIE study

In a N₂ glovebox, to a 2.0 mL screw-cap test tube equipped with a stir bar was added (NH₄)₂S₂O₈ (27.3 mg, 0.12 mmol, 3.0 equiv) and bpyCu(CF₃)₃ (17.1 mg, 0.04 mmol, 1.0 equiv). Acetone (0.20 mL) and *p*-Xylene- α , α , α - d_3 (d_3 -**1f**) (13.1 mg, 0.120 mmol, 3.0 equiv) were added via syringe, followed by *i*-Pr₃SiH (24.7 µL, 0.12 mmol, 3.0 equiv). The tube was sealed with a PTFE lined screw cap, brought outside the glovebox. Degassed H₂O (0.20 mL) and trifluoroacetic acid (24.5 µL, 0.12 mmol, 8.0 equiv) were added under N₂ atmosphere. Then the reaction mixture was irradiated with a 5 W LED lamp (centered at 365 nm and placed 15-20 cm away from the reaction vial) at room temperature for 18 h. After the reaction mixture was quenched with saturated aqueous NaHCO₃ (30 mL), 1-bromo-4-fluorobenzene (6.0 µL, 0.056 mmol) and acetone- d_6 (4.0 mL) was added. The ratio of 1-(methyl- d_3)-4-(2,2,2-trifluoroethyl)benzene (d_3 -**3f**) and 1-methyl-4-(2,2,2-trifluoroethyl-1,1- d_2)benzene (d_2 -**3f**) was determined by comparing with that of 1-bromo-4-fluorobenzene.

Intermolecular KIE study

In a N₂ glovebox, to a 2.0 mL screw-cap test tube equipped with a stir bar was added (NH₄)₂S₂O₈ (27.3 mg, 0.12 mmol, 3.0 equiv) and bpyCu(CF₃)₃ (17.1 mg, 0.04 mmol, 1.0 equiv). Acetone (0.20 mL) and 1:1 mixture of **1a** and d_8 -**1a** (0.04 mmol each) were added via syringe, followed by *i*-Pr₃SiH (24.7 µL, 0.12 mmol, 3.0 equiv). The tube was sealed with a PTFE lined screw cap, brought outside the glovebox. Degassed H₂O (0.20 mL) and trifluoroacetic acid (24.5 µL, 0.12 mmol, 8.0 equiv) were added under N₂ atmosphere. Then the reaction mixture was irradiated with a 5 W LED lamp (centered at 365 nm and placed 15-20 cm away from the reaction vial) at room temperature for 1 hour and 5 hours. After the reaction mixture was quenched with saturated aqueous NaHCO₃ (30 mL), 1-bromo-4-fluorobenzene (6.0 µL, 0.056 mmol) and acetone- d_6 (4.0 mL) was added. The ratio of (2,2,2-trifluoroethyl)benzene (**3a**) and 1-(2,2,2-trifluoroethyl-1,1- d_2)benzene-2,3,4,5,6- d_5 (d_7 -**3a**) was determined by comparing with that of 1-bromo-4-fluorobenzene.

	Time (hour)	Conv (%)	KIE (¹⁹ F NMR)
А	1	3%	2.8
В	5	23%	2.7

Table S8.	The	isotope	labeling	experiments
-----------	-----	---------	----------	-------------

н	f2a (1 equiv) (NH ₄) ₂ S ₂ O ₈ (3 equiv) Et ₃ SiH (3 equiv) TFA (8 equiv)	CF ₃	
1a (2 equiv)	acetone/H ₂ O 1:1 N ₂ , hv (365 nm)	3a H	

Entry	conditions	Ratio (CF ₃ D : CF ₃ H)
1	d ₈ - 1a instead of 1a	0 : 1
2	CD ₃ COOD instead of TFA	0 : 1
3	Et ₃ SiD instead of Et ₃ SiH	21:1
4	D_2O instead of H_2O	0 : 1
5	acetone-d ₆ instead of acetone	0 : 1

References.

- Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A. Int. J. Quantum Chem. 2013, 113, 2110-2142.
- 2. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
- 3. Wadt, W. R.; Hay, P. J. J. Chern. Phys. 1985, 82, 284-298.
- 4. Dunning, T. H. J. Chern. Phys. 1989, 90, 1007-1023.
- Marten, B.; Kim, K.; Cortis, C.; Friesner, R. A.; Murphy, R. B.; Ringnalda, M. N.; Sitkoff, D.; Honig, B. J. Phys. Chem. 1996, 100, 11775-11788.
- Friedrichs, M.; Zhou, R.; Edinger, S. R.; Friesner, R. A. J. Phys. Chem. B 1999, 103, 3057-3061.
- Edinger, S. R.; Cortis, C.; Shenkin, P. S.; Friesner, R. A. J. Phys. Chem. B 1997, 101, 1190-1197.
- Romine, A. M.; Nebra, N.; Konovalov, A. I.; Martin, E.; Benet-Buchholz, J.; Grushin, V. V. Angew. Chem., Int. Ed.. 2015, 54, 2745-2749.
- 9. Zhang, S. L.; Bie, W. F. Rsc Adv 2016, 6, 70902-70906.

- 10. Tomashenko, O. A.; Escudero-Adán, E. C.; Martínez Belmonte, M.; Grushin, V. V. Angew. Chem., Int. Ed. 2011, 50, 7655-7659.
- 11. Groendyke, B. J.; AbuSalim, D. I.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 12771-12774.
- 12. Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298-8301.
- 13. Martinelli, J. R.; Watson, D. A.; Freckmann, D. M. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7102-7107.
- 14. Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2011, 14, 354-357.
- 15. Shukla, P.; Hsu, Y.-C.; Cheng, C.-H. J. Org. Chem. 2006, 71, 655-658.
- Tan, D.-W.; Li, H.-X.; Zhu, D.-L.; Li, H.-Y.; Young, D. J.; Yao, J.-L.; Lang, J.-P. Org. Lett. 2018, 20, 608-611.
- 17. Hanada, S.; Ishida, T.; Motoyama, Y.; Nagashima, H. J. Org. Chem. 2007, 72, 7551-7559.
- 18. Yang, C.-T.; Zhang, Z.-Q.; Liu, Y.-C.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 3904-3907.
- Li, X.; Che, X.; Chen, G.-H.; Zhang, J.; Yan, J.-L.; Zhang, Y.-F.; Zhang, L.-S.; Hsu, C.-P.; Gao, Y. Q.; Shi, Z.-J. Org. Lett. 2016, 18, 1234-1237.
- 20. Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228-234.
- 21. Huang, D.; Jiang, G.-M.; Chen, H.-X.; Gao, W.-D., Synth. Commun. 2009, 40, 229-234.
- 22. Jiang, X.; Qing, F.-L. Beilstein J Org. Chem. 2013, 9, 2862-2865.
- 23. Ambler, B. R.; Zhu, L.; Altman, R. A. J. Org. Chem. 2015, 80, 8449-8457.
- 24. Zhu, L.; Liu, S.; Douglas, J. T.; Altman, R. A. Chem. Eur. J. 2013, 19, 12800-12805.
- 25. Zhao, Y. C.; Hu, J. B. Angew. Chem., Int. Ed. 2012, 51, 1033-1036.
- 26. Ide, T.; Masuda, S.; Kawato, Y.; Egami, H.; Hamashima, Y. Org. Lett. 2017, 19, 4452-4455.
- 27. Maraswami, M.; Pankajakshan, S.; Chen, G.; Loh, T.-P. Org. Lett. 2017, 19, 4223-4226.
- 28. Li, X.; Feng, Z.; Jiang, Z.-X.; Zhang, X. Org. Lett. 2015, 17, 5570-5573.
- 29. Bizet, V.; Pannecoucke, X.; Renaud, J.-L.; Cahard, D. Angew. Chem., Int. Ed. 2012, 51, 6467-6470.
- 30. Xia, X.; Wu, M.; Jin, R.; Cheng, T.; Liu, G. Green Chem. 2015, 17, 3916-3922.
- 31. Bizet, V.; Pannecoucke, X.; Renaud, J. L.; Cahard, D. J. Fluor. Chem. 2013, 152, 56-61.

NMR Spectra.

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 10

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of 10

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of 1r

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of 1v

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 1z

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 1bb

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 7-s_M

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **3a**

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3a**

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3b

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of **3b**

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3c

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of **3c**

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3c

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3e

 $^{19}\!\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3e

 ^{13}C NMR spectrum (126 MHz, CDCl₃, 23 °C) of 3f

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3f**

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3g

 $^{19}\!\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3g

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3h**

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3i

 ^{13}C NMR spectrum (126 MHz, CDCl₃, 23 °C) of 3j

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3j

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3k

 $^{19}\!\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3k

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of **31**

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3l

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3m

 $^{19}\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3m

 $^{19}\!\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3n

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3o

 $^{19}\!\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3o

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of **3p**

 $^{19}\!\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3p

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3q

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3q**

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of **3r**

 $^{19}\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3r

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3s

¹³C NMR spectrum (101 MHz, CDCl₃, 23 °C) of **3s**

 $^{19}\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3s

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3t

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3u

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3u**

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3v**

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3w

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of **3**x

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3x**

¹³C NMR spectrum (126 MHz, CDCl₃, 23 °C) of **3z**

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3y**

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3aa

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3aa**

S143

¹⁹F NMR spectrum (375 MHz, CDCl₃, 23 °C) of **3bb**

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **3cc**

S146

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3dd

¹H NMR spectrum (400 MHz, CDCl₃, 23 °C) of 3ee

 ^{19}F NMR spectrum (375 MHz, CDCl₃, 23 °C) of 3ee

 $^{13}\mathrm{C}$ NMR spectrum (126 MHz, CDCl₃, 23 °C) of 7

 $^{19}\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 7

 ^1H NMR spectrum (400 MHz, CDCl₃, 23 °C) of **8**

 $^{19}\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 8

 $^{13}\mathrm{C}$ NMR spectrum (126 MHz, CDCl₃, 23 °C) of 9

 $^{19}\mathrm{F}$ NMR spectrum (375 MHz, CDCl₃, 23 °C) of 9