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SUMMARY

Hippocampal sharp-wave ripples (SPW-Rs) support
consolidation of recently acquired episodic mem-
ories and planning future actions by generating
ordered neuronal sequences of previous or future
experiences. SPW-Rs are characterized by several
spectral components: a slow (5–15 Hz) sharp-wave,
a high-frequency ‘‘ripple’’ oscillation (150–200 Hz),
and a slow ‘‘gamma’’ oscillation (20–40 Hz). Using
laminar hippocampal recordings and optogenetic
manipulations, we dissected the origin of these
spectral components. We show that increased po-
wer in the 20–40 Hz band does not reflect an entrain-
ment of CA1 and CA3 neurons at gamma frequency
but the power envelope of overlapping ripples.
Spike-local field potential coupling between unit
firing in CA1 and CA3 regions during SPW-Rs is
lowest in the gamma band. Longer SPW-Rs are pre-
ceded by increased firing in the entorhinal cortex.
Thus, fusion of SPW-Rs leads to lengthening of their
duration associated with increased power in the slow
gammabandwithout the presence of true oscillation.
INTRODUCTION

Hippocampal sharp-wave ripples (SPW-Rs) are one of the

most synchronous spontaneous population patterns in the

mammalian brain. They represent a complex event, composed

of the sharp wave, a large-amplitude negative polarity deflection

(40–-120ms) in CA1 apical dendrites, and a short-lived fast oscil-

latory pattern (120–250 Hz) of the local field potential in the CA1

pyramidal layer, known as ‘‘ripples’’ (Buzsáki, 1986, 2015; Buz-

sáki et al., 1983, 1992; O’Keefe and Nadel, 1978; Suzuki and

Smith, 1987). SPWs and ripples most often occur together,

although they involve different physiological mechanisms.

SPW-Rs serve as a mechanism to replay previous experiences

for memory consolidation or plan future actions and influence

decisions (Buzsáki, 2015; Foster, 2017).

SPW-Rs emerge when the brain is disengaged from the envi-

ronment, most prominently during consummatory behaviors and
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non-rapid eye movement (REM) sleep (Buzsáki et al., 1983).

Such brain state changes are associated with a decrease of

subcortical neuromodulators and, consequently, the increasing

efficacy of the excitatory interactions in the recurrent CA3 sys-

tem (Buzsáki et al., 1983; Hasselmo and Sarter, 2011). More

recent findings suggest that the population bursts underlying

the SPW emerge in the CA2-CA3a recurrent collaterals and

spread to the CA3b and CA3c regions (Oliva et al., 2016a). How-

ever, other factors, such as various network patterns in the

neocortex, entorhinal cortex, and dentate gyrus, can also bias

the exact occurrence and probability of SPW-Rs (Battaglia

et al., 2004; Isomura et al., 2006; Headley et al., 2017; Sirota

et al., 2003; Sullivan et al., 2011).

Recent reports described that SPW-Rs are phase-coupled

with a power spectral peak in the slow gamma band

(20–40 Hz). From this relationship, the authors assumed that rip-

ple power is modulated by the phase of a genuine gamma oscil-

lation and associated with a higher fidelity replay of past experi-

ences and of place cell trajectories (Carr et al., 2012; Pfeiffer and

Foster, 2015). The main source of slow gamma oscillation in the

hippocampus is the CA3 region (Csicsvari et al., 2003; Fernán-

dez-Ruiz et al., 2012; Schomburg et al., 2014), which also en-

trains the CA1 region. However, it is not clear how the same

CA1 circuit can be simultaneously engaged in both ripple and

slow gamma oscillations. Alternatively, the slow gamma power

increase, coincidental with SPW-Rs, may be a spurious oscilla-

tion because of the merging of adjacent ripples into longer

events, resulting in an artificial increase of power in the gamma

band. The present study provides support in favor of the latter

alternative by demonstrating that slow gamma power is specif-

ically associated with longer SPW-Rs produced by the overlap

of multiple ripple events.
RESULTS

Spectral Components of SPW-Rs
SPW-Rs recorded in the CA1 pyramidal layer during waking

quiescence are heterogeneous, ranging from short Gaussian-

shaped events to longer irregular patterns (Figure 1A). Spectro-

gram of waking SPW-Rs (Figure 1B) revealed two slower-fre-

quency components in addition to the well-characterized ripple

oscillation (120–200 Hz). One of these slower components in

the 2–15 Hz frequency band most likely corresponded to the
ts 25, 1693–1700, November 13, 2018 ª 2018 The Author(s). 1693
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Nature of Different Spectral Components of SPW-R Complexes

(A) Examples of different length SWP-Rs. Wide-band (1 Hz to 20 kHz) LFP traces from the CA1 pyramidal layer and str. radiatum. Orange traces are 20–50 Hz

filtered LFPs. Gray traces are power envelope in the 100–300 Hz band.

(B) Average peri-SPW-R wavelet spectrogram (n = 12 animals) during waking immobility. In addition to the ripple (�150 Hz), two other spectral components

appear in lower-frequency bands, one around �30 Hz and other below 10 Hz (arrows).

(C) Derivative of peri-SPW-R wavelet spectrogram at the SPW-R peak from 5 to 300 Hz identifies three spectral peaks: 120–250 Hz (ripple band), 17–40 Hz

(gamma band), and 5–15 Hz (sharp-wave band).

(D) Average spectrograms of all SPW-R events detected during waking immobility (54 sessions in 12 rats) divided according to their durations: 30–50, 50–80,

80–100, and 100–300ms. Note that spectrograms for the shorter events display only two frequency components, while for longer ones the slow frequency activity

is segregated in two separate components. Black dots correspond to the maximal power in the ‘‘gamma’’ and SPW bands.

(E and F) Distribution of the (E) mean frequency and (F) power for the SPW and ‘‘gamma’’ bands for events of different duration. Shorter events only have SPW, no

‘‘gamma’’ component. *p < 0.05, ***p < 0.001, post hoc Tukey’s test for all SPW-R events in the different duration categories.

(G) Wide-band peri-SPW-R pyramidal layer LFP averages for events of different duration. Note the presence of two or three ‘‘bumps’’ for longer events.

(H) Average peri-SPW-R wavelet spectrogram (n = 54 sessions in 12 animals) during non-REM sleep.

(I) Ratio of awake versus sleep power of SPW and gamma bands for events of different duration. **p < 0.01, ***p < 0.001, signed rank test.

(J) Averaged phase-amplitude comodulogram for CA1 pyramidal layer LFP revealed cross-frequency coupling between SPW phase and ‘‘gamma’’ (arrow) and

ripple amplitudes (double arrow), and between ‘‘gamma’’ phase and ripple amplitude (star).
sharp wave. The other component was between 20 and 40 Hz

(Figures 1B and 1C), in line with the report by Carr et al. (2012).

To understand the origin and mechanisms of these segre-

gated frequency components, we separated SPW-Rs during

awake immobility periods (n = 15,564 events in 12 rats) by dura-

tion and divided them into four groups: 30–50, 50–80, 80–100,

and >100 ms. Wavelet spectrograms for these four groups

revealed that the gamma frequency component appeared only

in SPW-Rs longer than 50 ms in duration (Figure 1D). Note that
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previous studies discarded these short-duration SPW-Rs (Carr

et al., 2012; Pfeiffer and Foster, 2015). The spectral peak of the

2–15 Hz component gradually decreased in frequency with

SPW-R duration and corresponded to the median duration of

the corresponding SPW-Rs (Figure 1E; p < 0.001; one-way

ANOVA for all events of the four duration categories, followed

by Tukey’s post hoc test; linear correlation with r = �0.78,

p < 0.001, Student’s t). We suggest that it reflects the passive re-

turn currents in the pyramidal layer from the SPW sink in the CA1



stratum radiatum (Fernández-Ruiz et al., 2012; Sullivan et al.,

2011). In agreement with this interpretation, the power of the

2–15 Hz component was larger in the stratum (str.) radiatum,

where the CA3 to CA1 synapses are located (Figure S1). In

contrast, the frequency and power of the ‘‘gamma’’ component

increasedwith SPW-R duration (Figure 1F; p < 0.05 for frequency

and power, Tukey’s post hoc test; r = 0.6/0.47, p < 0.001, Stu-

dent’s t test), even though ripple frequency remained constant

(p > 0.05, Tukey’s post hoc test; p > 0.05, Student’s t test).

The relationship between the slow ‘‘gamma’’ and SPW-R dura-

tion led us to hypothesize that they are related. The wide-band

peri-SPW-R local field potential (LFP) averages from the pyrami-

dal layer offered support to this hypothesis (Figure 1G). Although

shorter events typically had a smooth Gaussian shape (black

trace; p > 0.05, Hartigan’s dip test of unimodality followed by

bootstrap for all events in the first two duration categories),

longer events had several ‘‘bumps,’’ whose duration corre-

sponded to the 20–40 Hz band (p < 0.01, bootstrap). Inspection

of the wide-band traces suggested that longer SPW-Rs were

composed of multiple shorter events and that the observed

slow gamma power in the peri-SPW-R spectrograms reflected

LFP fluctuations due to the partially overlapping SPW-Rs. Anal-

ysis of the CA3 pyramidal layer LFP revealed the presence of a

lower-frequency ripple compared with CA1 (117 ± 9 Hz; Oliva

et al., 2016a) and an increase in low-frequency power around

SPW-R occurrence, but not two distinct spectrally segregated

components as in CA1 (Figure S1).

SPW-Rs during non-REM sleep share both similarities and

differences with waking SPW-Rs (Figure 1H; Figure S1; n = 54

sessions in 12 animals). During sleep the frequency of ripple,

‘‘gamma,’’ and SPW was similar to awake (p > 0.05, signed

rank test), but the power of the gamma component was signifi-

cantly lower (Figure 1I; Figure S1; p < 0.001, one-way ANOVA

followed by Tukey’s post hoc test), in agreement with previous

observations (Carr et al., 2012).

To assess the interaction between all spectral components

during SPW-Rs, we performed phase-amplitude cross-fre-

quency coupling LFP analysis (Figure 1J). We found the stron-

gest modulation between the phase of the SPW (5–10 Hz) and

the amplitude of ‘‘gamma’’ (20–40 Hz; 0.020 ± 0.004 modulation

index [MI]; p < 0.001, surrogate test; n = 54 sessions). In addition,

ripple amplitude was phase-modulated by both the 2–10 Hz

(0.011 ± 0.002 MI; p < 0.001, surrogate test) and gamma fre-

quency band (0.0040 ± 0.001 MI; p < 0.001, surrogate test), sug-

gesting that ‘‘gamma’’ phase-ripple amplitude coupling may be

the consequence of the modulation of both ‘‘gamma’’ and ripple

by SPW phase.

To test the hypothesis that the slow ‘‘gamma’’ component

during SPW-Rs reflects concatenated SPW-Rs, we virally ex-

pressed ChR2 in CA1 pyramidal neurons and optogenetically

induced concatenated synthetic ‘‘ripples’’ (Stark et al., 2014) us-

ing brief blue light pulses delivered through three optic fibers

placed above the pyramidal layer (Figure 2A). These manipula-

tions induced ripple-like oscillations in the pyramidal layer that

had similar frequency and shape to spontaneously occurring

SPW-Rs (Figures 2B and 2C; 153 ± 14 and 131 ± 11 Hz for

spontaneous and induced ripples, respectively; n = 10 sessions

in 4 rats). Induced ripples also elicited strong CA1 pyramidal cell
and interneuron firing rate increases, similarly to spontaneous

events (Figure S2). In contrast with spontaneous SPW-Rs that

are typically accompanied by SPW current sinks in the CA1

str. radiatum, the optogenetically induced ripples were not asso-

ciated with a str. radiatum sink (Figure 2D). Instead, ripples were

superimposed on a negative LFP component in str. oriens and a

corresponding positive wave in str. radiatum, implying that they

were generated locally by the CA1 network, independent of the

CA3 input (Figures 2B and 2D).

Wavelet spectrograms of optogenetically induced ripples re-

vealed a strong power increase in the ripple band (120–200 Hz)

but lacked the slow gamma component characteristic of some

spontaneous events (Figure 2E). This result illustrates that slow

gamma is not necessary for the local generation of ripples in

CA1 and the two phenomena can be effectively decoupled.

However, when we delivered two light pulses within a short

time interval (any pulse interval between 5 and �30 ms), we

induced two partially overlapping ripples that were associated

with a prominent gamma component in the wavelet spectrum.

The frequency of the induced gamma component negatively

correlated with the duration of ripple separation (Figure 2H;

r = �0.84, p < 0.01, Student’s t), whereas ripple frequency was

not affected (Figure 2H; p > 0.05, Student’s t test; n = 10 sessions

in 4 rats). This gamma component faded when the separation

between pulses was increased above�30–50ms and two sepa-

rate ripple events were induced (Figures 2E and 2F; p < 0.01,

rank sum test for <30 versus >50mspulse separation). To explic-

itly verify that the slow gamma component reflects the fusion of

ripple events, we progressively increased the duration of the

induced ripples by applying longer stimulation pulses (Figure S2).

Single longer light pulses induced ripples of varying lengths, but

not a distinct slow gamma component, in contrast with the over-

lapping ripple events (Figure S2; p > 0.05, rank sum test for single

long pulses versus double pulses).

In a further demonstration of the spurious nature of gamma

‘‘oscillation’’ underlying SPW-Rs, we used simulated wave-

forms, mimicking the combination of SPW and ripple, and

concatenated two such ripples with varying intervals. These sim-

ulations revealed that the gamma component can be induced

when neighboring ripple events partially overlapped in time (Fig-

ures 3A and 3C), closely resembling the results of our optoge-

netic experiments. We repeated these simulations using only

the slow envelopes of the concatenated ripples. Even though

these waveforms lacked the high-frequency ripple component

and consisted of only overlapping envelopes, gamma band po-

wer was similarly induced (Figures 3B and 3D). Similar to the op-

togenetic experiments, gamma frequency power negatively

correlated with the inter-event separation (Figure 3D).

Single-Unit Responses during SPW-Rs of Different
Durations
To examine further that the slow gamma band arises from

concatenated SPW-Rs, we examined whether single units in

the CA1 and CA3 regions were similarly modulated as the LFP

events. Peri-SPW-R firing rate histograms for short events

(<80 ms; black and blue curves in Figure 4) revealed a sharp, un-

imodal activation for both CA1 (Figure 4A; n = 1,052 pyramidal

cells, n = 171 putative interneurons; p > 0.05, Hartigan’s dip
Cell Reports 25, 1693–1700, November 13, 2018 1695
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Figure 2. Spectral Features of Optogenetically Induced Ripples

(A) Schema of optogenetic experiments showing three optic fibers and one linear silicone probe implanted in dorsal CA1.

(B) Example of spontaneous and induced ripples from the same session. Note that spontaneous, but not optogenetically induced, ripples are accompanied by a

sharp-wave in the CA1 stratum radiatum.

(C) Average wavelet spectrogram for spontaneous and induced ripples (n = 10 sessions in 4 animals).

(D) Example LFP (black traces) and CSD depth profiles for spontaneous and induced ripples in one session.

(E) Averaged wavelet spectrograms for an example rat, generated with different types of light pulses (black traces): single pulse 70-ms duration, single pulse

140-ms duration, two 70-ms pulses spaced 5, 10, 15, 20, and 70 ms. Black dots mark the largest power of the ‘‘gamma’’ component.

(F and G) Power in the (G) ripple and (F) ‘‘gamma’’ bands for single pulses and double pulses of separation <30 ms and >50 ms. ***p < 0.001, **p < 0.01, rank sum

test.

(H) Frequency in the ‘‘gamma,’’ but not in the ripple, band was correlated with pulse separation (**p < 0.01, Student’s t).

pyr, pyramidal layer; st. l-m, stratum lacunosum-moleculare; st. ori., stratum oriens; st. rad., stratum radiatum.
test of unimodality followed by bootstrap; n = 54 sessions in

12 rats) and CA3 pyramidal cells and interneurons (Figure 4B;

n = 646 pyramidal cells, n = 77 putative interneurons; p > 0.05,

bootstrap). In contrast, both CA1 and CA3 neurons displayed

several bumps at approximately slow gamma frequency during

longer events (>80 ms; green and red curves in Figure 4;

p < 0.001, bootstrap), resembling the shape of LFP envelope

of SPW-Rs (compare with Figure 1G). These results suggest

that longer waking SPW-Rs correspond to the concatenation

of shorter events (Figure S3 shows non-REM data).

We also analyzed the strength of spike-LFP coupling during

SPW-Rs. We performed a wide-band analysis by calculating

wavelet phases from the CA1 pyramidal layer LFP at the times
1696 Cell Reports 25, 1693–1700, November 13, 2018
of spike occurrence from 5 to 300 Hz. Thismethod enabled unbi-

ased identificationof frequencybandswithpreferred spikephase

modulation (Fernández-Ruiz et al., 2017; Schomburg et al.,

2014). As expected, discharges of both CA1 pyramidal cells

and interneurons were strongly coupled to the SPW (2–10 Hz;

0.17 ± 0.02/0.15 ± 0.02 mean ± SEMmodulation strength for py-

ramidal cells and interneurons) and ripple (110–240 Hz; 0.13 ±

0.01/0.06 ± 0.01 modulation strength) bands (Figure 4C). In

contrast, coupling to the slow gamma band was weak (0.07 ±

0.01/0.04 ± 0.01 modulation strength; p < 0.001/0.05 for pyrami-

dal cells and interneurons, one-way ANOVA followed by Tukey’s

post hoc test). Similar resultswere also observed forCA3pyrami-

dal cells and interneurons, although ripple frequency modulation
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Figure 3. Synthetic Ripple Pairs Induce Slow Gamma Power
(A) Averagewavelet spectrograms for synthetic ripple pairs with progressively longer inter-ripple interval. Note emerging ‘‘gamma’’ bandwith concatenated ripple

doublets. Upper traces illustrate examples of simulated ripples.

(B) Same as in (A), but in this case similar events were simulated but without the high-frequency ‘‘ripple’’ component, i.e., only the slow envelope. Note that in this

case similar slow gamma band power appeared.

(C) Power in the ‘‘gamma’’ and ripple bands for single pulses and double pulses of <30 and >50 ms separation. ***p < 0.001, rank sum test.

(D) Same as in (C) but for events without ripple component. ***p < 0.001, rank sum test.

(E) Frequency in the ‘‘gamma’’ (red and green curves for events with and without ripple oscillation respectively), but not in the ripple (blue), band was correlated

with pulse separation (**p < 0.01, Student’s t test).
in CA3 was largely absent (Figure 4D; 0.01 ± 0.001/0.01 ± 0.002

modulation strength; Buzsáki et al., 1983; Sullivan et al., 2011).

Finally, we examined the SPW-Rmodulation of unit firing in the

main upstream region of the hippocampus, layers 2/3 of the en-

torhinal cortex (EC). EC excitatory (Figure 4E; n = 455 units in 37

sessions from 9 rats) and putative inhibitory (Figure S3; n = 111)

units were activated by SPW-Rs, but their response was weaker

and delayed compared with the CA1 and CA3 regions (p < 0.001

for peak firing rate time lags; Tukey’s post hoc test). This likely

reflects the multi-synaptic activation of EC layer 2/3 neurons in

response to the CA1 drive (Chrobak and Buzsáki, 1996; Sullivan

et al., 2011). Surprisingly, for the longest duration events, the

main peak appeared at approximately 50 ms prior to CA1

SPW-R onset during waking state (arrow in Figure 4E; �55 ±

9 ms), but not during sleep. This suggests that entorhinal input

can trigger SPW-Rs in the hippocampus during awake state

and contribute to the longer-duration events. In further support

of this hypothesis, neurons in layer 5 of the EC, the main target
of the CA1 output, did not show this earlier peak but, instead,

fired only after the CA1 SPW-R (Figure S3).

DISCUSSION

Employing laminar recordings, spanning all layers of dorsal CA1

and CA3, we identified three spectral components that compose

SPW-R complexes: (a) a slow component, or sharp-wave

(�5–15 Hz), elicited by a depolarizing volley from CA3 to CA1

apical dendrites and is most prominent in the str. radiatum (Fer-

nández-Ruiz et al., 2012; Sullivan et al., 2011); (b) the second

component is the ripple event (130–200 Hz) with the largest po-

wer in the CA1 pyramidal layer; and (c) a third component is the

slow gamma band (�20–40 Hz). Both the frequency and power

of the gamma component were correlated with SPW-R duration

(Figure 1). The phase of the sharp-wave modulated both ripple

and gamma amplitude, and the latter two were nested. Using

optogenetic induction of CA1 ripples, we were able to decouple
Cell Reports 25, 1693–1700, November 13, 2018 1697
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Figure 4. Single-Unit Response to SPW-Rs of Different Duration

(A) Discharge patterns of CA1 pyramidal cells (pyr) and interneurons (int) firing during awake SPW-Rs of different durations (black, blue, green, and red traces for

progressively longer events). Note several ‘‘bumps’’ in the firing pattern of neurons during the longer-duration events (arrows).

(B) Same as in (A) but for CA3 pyramidal cells and interneurons.

(C and D) Distribution of the modulation strengths of (C) CA1 and (D) CA3 pyramidal cells and interneuron spikes by the CA1 pyramidal layer LFP phase in different

frequency bands (5–300 Hz). Vertical dashed lines indicate boundaries of SPW, gamma, and ripple bands. Note that the unit-LFPmodulation strength is lowest in

the ‘‘gamma’’ band.

(E) Peri-SPW-R discharge patterns of entorhinal layer 2/3 excitatory cells (ECexc) during awake and sleep states. Note the additional firing rate peak prior to

SPW-R onset appearing only for longest duration events during awake immobility (arrow).
ripples from the CA3 input (Figure 2). When a single ripple was

induced, regardless of its duration, no ‘‘gamma’’ component

was present. However, when two overlapping ripples with short

peak intervals were induced, a gamma frequency component

appeared in the spectrum and its frequency decreased with rip-

ple separation. Similar results were obtained by simulation of

overlapping ripple events. These results suggest that the slow

gamma power observed during SPW-Rs is not a true oscillatory

entrainment of CA3 and CA1 assemblies but rather reflects the

fusion of two or more SPW-Rs.

Several potential mechanisms can generate longer-duration

SPW-Rs. First, the CA3 recurrent circuit recruits a population

discharge of variable duration (Traub andWong, 1982). The sec-

ond potential mechanism is that SPW bursts emerge stochasti-

cally at multiple CA3 locations and fuse together when traveling

toward each other in the septo-temporal or fimbrio-subicular

axis (Patel et al., 2013). These traveling events then can fuse

together, resulting in longer SPW-Rs with variable diversity of

neuronal content in CA1 (Figure S4). The third possibility is that

an extrahippocampal input, such as the entorhinal input, leads

to a prolongation of SPW-R events (Figure 4E). Each of these

different mechanisms may give rise to gamma power in the

20–40 Hz band. Previous studies assumed that such increased

gamma power reflects a true oscillation in the CA3 region, which

in turn entrains both CA3 and CA1 circuits and phase-modulates

ripple power in CA1 (Carr et al., 2012; Gillespie et al., 2016;

Pfeiffer and Foster, 2015).
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While phenomenologically the distinction between these op-

tions appears subtle (both can elicit SPW-R-associated gamma

power), viewed from neuronal mechanisms, they are quite

different. Our findings suggest that SPW-Rs do not require the

presence of gamma oscillations. First, short-duration SPW-Rs

were not associated with gamma power. Second, optogeneti-

cally induced single ripples did not generate slow gamma power

either even when the duration of the optogenetic stimulation was

prolonged (Figures 2 and S2). Third, entrainment of pyramidal

cells and interneurons in the gamma band was the weakest of

all frequencies in both CA3 and CA1 regions (Figure 3). In

contrast, gamma oscillations in the absence of SPW-Rs during

both theta and non-theta states occupy a higher frequency

band (30–60 Hz) and strongly entrain neuronal populations within

and across CA1 and CA3 regions (Colgin et al., 2009; Csicsvari

et al., 2003; Fernández-Ruiz et al., 2017; Lasztóczi and Klaus-

berger, 2017; Montgomery and Buzsáki, 2007; Schomburg

et al., 2014). Lastly, only longer-duration SPW-Rs (>50ms), natu-

rally occurring or optogenetically induced, were associated with

gamma power. However, power increase in the gamma band

cannot be taken for evidence of the presence of an oscillation.

Instead, we hypothesized that increased power in the gamma

band is brought about by overlapping SPW-Rs.

Partially Overlapping SPW-Rs Induce Gamma Power
We observed that during longer SPW-Rs CA1 and CA3 pyra-

midal cells and interneurons fired in successive clusters,



concurrent with the LFP ‘‘bumps,’’ instead of displaying a

smooth unimodal rate increase as during short events (Figure 4).

This observation suggested that slow gamma power during

SPW-Rs occurs spuriously rather than physiologically, resulting

from the overlap of two ormore SPW-R events. Our observations

that the lengthening duration of SPW-Rs and the increasing

temporal offset of the bumps correlated with the decreasing

frequency of slow gamma power supports this hypothesis

(Figure 1). Furthermore, the weakest modulation of pyramidal

neurons occurred in this LFP band.

To provide independent support for the concatenation hy-

pothesis, we mimicked the physiological observations by opto-

genetic induction of ripples in the CA1 region, independent of

its upstream inputs and by a computational model of SPW-Rs.

By changing the intervals between the peaks of the individual

events, we demonstrate that the slow gamma power can be

induced by fusing successive ripple events (Figures 2 and 3).

Overall, these findings are most compatible with the idea that

SPW-Rs are a ‘‘quantal’’ phenomenon, i.e., occur in discrete

packets (Pfeiffer and Foster, 2015), possibly aided by GABAB-

mediated hyperpolarization of pyramidal cells during the post-

SPW-R period (English et al., 2014), and this process can

generate prolonged events with power in the 20–40 Hz or clus-

ters of successive SPW-R events. Because the individual

SPW-Rs likely emerge from different CA3 subpopulations (Patel

et al., 2013), the spike content of such overlapping SPW-Rs is a

long unique event (Pfeiffer and Foster, 2015). Our results extend

previous reports demonstrating that the features of ripple-band

LFPs correlate with the spike content of SPW-Rs (Taxidis

et al., 2015; Valero et al., 2017) and show that the wide-band

LFP spectrum also carries information about the dynamics of

CA1 and CA3 ensemble activation.

Entorhinal Input Contributes to Long-Duration SPW-Rs
Yamamoto and Tonegawa (2017) recently demonstrated that

medial entorhinal input is necessary for the generation of ripple

clusters and long-duration replay in CA1 neurons specifically

during the awake state, even though replay in the EC and hippo-

campus can occur independently (O’Neill et al., 2017). Therefore,

we examined whether the EC contributes to the long-duration

SPW-Rs in our experiments. Both SPW-R-associated slow

gamma power andmulti-peaked activation of CA1 and CA3 cells

were reduced during sleep (Figure S1). Importantly, we found

that entorhinal layer 2/3 neurons were robustly active approxi-

mately 50 ms prior to the onset of longest CA1 SPW-Rs in the

waking animal. In contrast, during non-REM sleep the firing

probability of layer 2/3 entorhinal principal cells was inversely

correlated with the duration of CA1 SPW-Rs (Figure 3). Overall,

these findings establish that the entorhinal input plays a critical

role in long-duration and clustered SPW-Rs, selectively in the

waking brain, although it remains to be investigated whether

the duration of SPW-R decreases with elapsed time after reward

(Ólafsdóttir et al., 2016).
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and datasets should be directed to and will be fulfilled by the Lead Contact, György

Buzsáki (gyorgy.buzsaki@nyumc.org). All data will be available at CRCNS.org after publication.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 17 adult male Long-Evans rats (300-450 g, 3-6 months old) were used in this study. Most of these animals were used

in previous studies and detailed description and experimental procedures can be found there (Oliva et al., 2016a, 2016b;

Fernández-Ruiz et al., 2017; Mizuseki et al., 2009). Four new animals were operated and recorded for this study, as detailed below.

Rats were kept in the vivarium on a 12-hour light/ dark cycle and were housed 2-3 per cage before surgery and individually after it. All

experiments were approved by the Institutional Animal Care and Use Committee at New York University Medical Center.
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METHOD DETAILS

Surgical Procedures
Animals were anesthetized with isoflurane anesthesia and craniotomies were performed under stereotaxic guidance. Different types

of silicon probes (NeuroNexus, Ann-Arbor) were implanted in the dorsal hippocampus and in some cases (n = 9), also in the entorhinal

cortex. High-density silicon probes were mounted on custom-made micro-drives to allow their precise vertical movement after im-

plantation. The probes were inserted above the target region and the micro-drives were attached to the skull with dental cement. The

craniotomies were sealed with sterile wax. Two stainless steel screws were drilled bilaterally over the cerebellum served as ground

and reference for the recordings. Several additional screws were driven into the skull and covered with dental cement to strengthen

the implant. Finally, a copper mesh was attached to the skull with dental cement and connected to the ground screw to act as a

Faraday cage, attenuating the contamination of the recordings by environmental electric noise. After post-surgery recovery, the

probes were moved gradually in 75 to 150 mm steps per day until the desired position was reached. The pyramidal layer in the

CA1, 2 and 3 regions was identified physiologically by increased unit activity and characteristic LFP patterns (Ylinen et al., 1995; Oliva

et al., 2016a; 2016b). The identification of dendritic sublayers in CA1, DG and CA3 was achieved by the application of CSD and ICA

analysis to the LFPs (Fernández-Ruiz et al., 2012; Fernández-Ruiz and Herreras, 2013) and by known physiological markers such as

ripples (140-200 Hz), reversal of sharp-waves (Ylinen et al., 1995) and depth versus amplitude profile of theta oscillations (Buzsáki,

1986; Montgomery and Buzsáki, 2009).

Optogenetic Experiments
For optogenetic experiments, rats were injected with AAV5-CaMKIIa-hChR2(H134R)-EYFP from UNC Vector Core (a gift from

Dr. Karl Deisseroth). Three injections of 150 nL each were performed along the longitudinal axis of the dorsal hippocampi, right above

the CA1 pyramidal layer. After injection, craniotomies were sealed and animals recovered in the vivarium for three weeks. Following

this period, a new surgical procedure for implanting optic fibers and electrodes was performed. 200 mm core optic fibers (Thor Labs)

were implanted in the same craniotomies used previously for virus injection, right above CA1 pyramidal layer. Optic fibers were

directly coupled to 460 nm blue light-emitting laser diodes (PL-450, Osram; Stark et al., 2014). A silicon probe was implanted in a

different craniotomy, targeting also the dorsal CA1 region.

To induce ripple generation in CA1 brief pulses (35 to 210 ms) were delivered simultaneously through all fibers. The intensity was

manually adjusted in each animal by gradually increasing light power until a high-frequency oscillation was evoked. To minimize

broad-band artifacts at the onset of the stimulation, trapezoid pulses with a 20 ms ramp were used. Pulses were delivered every

5 s while the rat rested in its home cage.

Behavioral Recordings
After surgery, animals where handled daily and accommodated to the recording room and cables for 1 to 3 weeks before the start of

the experiments. Prior to the start of the experiment animals were water restricted. 30 - 60-minute-long behavior sessions were con-

ducted daily, preceded and followed by 1-3 hours sleep sessions. Data frommultiple navigational tasks was pooled for the analyses,

including running on a linear (190 or 240 cm long with 10-20 cmwalls) or circular track (100 cm diameter) for water reward and explo-

ration in an enclosed open field (120 cm square, 30 cmwalls) or open circular platform (120 cmdiameter ‘cheesboardmaze’) for small

food pellets. In the linear tracks animals received water rewards (�0.2 mL) in both ends each time they traveled from one end to the

other. All animals spontaneously performed this behavior and typically continue doing so until they were satiated, then session

ended. On the circular maze rats were made to run in a clockwise direction by preventing the counter-clockwise movement until

the rats’ behavior became stereotyped (�10 minutes). Water reward was delivered in a predetermined 30 cm reward area only

when the animals had performed a full clockwise run. In the open field and circular platform animals explored to collect cereal crum-

bles that were randomly throwed by the experimenter. All animals spontaneously adopt this behavior and sessions lasted until they

were not longer running. All rooms had different prominent distal cues around the maze, clearly visible for the animals. 2-4 hours’

sleep sessions always followed exploration sessions. Animal position was monitored using video tracking of two LEDs mounted

on the head-stage.

Tissue Processing and Immunohistochemistry
Following the termination of the experiments, animals were deeply anesthetized and perfused transcardially first with 0.9% saline

solution followed by 4% paraformaldehyde solution. Brains were sectioned in 50-70 mm thick slices (Leica Vibratome) parallel

with the plane of the implanted electrodes.

For virus injected animals, immunohistochemistry was performed to verify the expression of the conjugated YFP-ChR2 construct.

Slices were washed three times PBS (0.1 M), followed by 2 additional 20 minutes’ washes in TBS-T (Triton 0.3%), then blocked with

10% bovine serum albumin in TBS-T for 45 minutes. After that, slices were incubated for 1 hour at room temperature followed by

48 hours at 4�C with the primary antibody solution containing mouse anti-GFP (1:500, Invitrogen A-11120) in TBS-T. After three

washes in TBS, sections were incubated for 2h at room temperature with goat anti-mouse Alexa Fluor 488 (1:300, Invitrogen

A-11001). Sections were finally washed and mounted on glass slides with fluorescence medium (Fluoroshield with DAPI - F6057,

Sigma, USA).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Spike Sorting and Unit Classification
Neuronal spikes were detected from the digitally high-pass filtered LFP (0.5–5 kHz) by a threshold crossing-based algorithm

(Spikedetekt2). Detected spikes were automatically sorted using the masked EM algorithm for Gaussians mixtures implemented

in KlustaKwik2, followed by manual adjustment of the clusters using KlustaViewa software to obtain well-isolated single units.

Multiunit or noise clusters were discarded. Putative pyramidal cells and interneurons were separated on the basis of their autocor-

relograms and waveform characteristics (Stark et al., 2014; Fernández-Ruiz et al., 2017), assisted by monosynaptic excitatory and

inhibitory interactions between simultaneously recorded, well-isolated units (Mizuseki et al., 2009).

SPW-R Detection
Only non-theta states were studied. Theta epochs were detected automatically using the ratio of the power in theta band (5- 11 Hz)

to the power of nearby bands (1-4 Hz, 12-14 Hz) of CA1 pyramidal layer LFP, followed by manual adjustment with the aid of visual

inspection of whitened power spectra. Low theta power and low speed (less than 2 cm/s) epochs during wakefulness were classified

as quiet wakefulness (referred as awake state through the text) and during sleep as non-REM sleep.

To detect ripples, the wide-band signal was band-pass filtered (difference-of-Gaussians; zero-lag, linear phase FIR), and instan-

taneous power was computed by clipping at 4 SD, rectified and low-pass filtered (Oliva et al., 2016a). The low-pass filter cut-off was

at a frequency corresponding to p cycles of the mean band-pass (for 80-250 Hz band-pass, the low-pass was 55 Hz). The mean and

SD of baseline LFP were computed based on the power during non-REM sleep. Subsequently, the power of the non-clipped signal

was computed, and all events exceeding 4 SD from the mean were detected. Events were then expanded until the (non-clipped) po-

wer fell below 2 SD; short events (< 20 ms) were discarded. Sharp-waves were additionally also detected; LFP from str. radiatum

channels was filtered with band-pass filter boundaries (5-40 Hz). LFP events of a minimum duration of 20 ms and maximum

400 ms exceeding 2.5 SD of the background signal were included as candidate SPWs. Only if a SPW was simultaneously detected

with a ripple, a CA1 SPW-R event was retained for further analysis. SPW-R bursts were classified when more than one event was

detected in a 400 ms time window.

Ripple Modulation of Unit Firing
Well-isolated putative units with at least 100 spikes in a given session were included in the analysis. For all individual units, spikes in a

[-200, +200] ms peri-ripple peak window were collected and firing rate histograms (1 ms time bin) were constructed. All histograms

for the same type of units (same region and cell type, i.e., pyramidal or interneuron) were pooled to construct population response

histograms for each session (day). The firing rate histograms were z-scored and smoothed using a Gaussian kernel (SD = 5 ms). The

significance of unit firing modulation by SPW-Rs was assessed performing surrogate tests (n = 1000 samples). Finally, data across

sessions and animals was pooled to calculate grand-averages (across all sessions and animals).

Spectral Analysis, Cross-Frequency Coupling and Spike-LFP Coupling
To analyze high-frequency oscillatory activity in the LFP at a high resolution in time and frequency, the complex wavelet transform

(CWT) of the LFP was calculated using complex Morlet wavelets (MATLAB, The MathWorks, Natick, MA). Wavelet spectrograms

were calculated for each detected SPW-R in a [-200, +200] ms window and for the LFP in the center of the pyramidal layer. Spectro-

grams for individual events were averaged to construct final plots.

The phase-amplitude cross-frequency coupling during SPW-Rs was assessed using a modulation index (MI). Wavelet phase was

calculated at 79 levels from 1-40 Hz, and the amplitude at 236 levels from 15-300 Hz. Phase time-series were binned into phase

intervals and the mean wavelet amplitude was calculated for each of them. The MI was obtained by measuring the divergence of

the observed amplitude distribution from the uniform distribution. The statistical significance of the MI values (p value) was assessed

by a surrogate analysis (n = 1000 surrogates) with random shifts between the phase and amplitude time series (Schomburg et al.,

2014).

The phase-locking of spikes to LFP features at each frequency was measured for individual units using the wavelet phase from

5-300 Hz (50 logarithmically spaced wavelet scales) at the time of each spike. Modulation indices were calculated using the mean

resultant length of the phases, and significance was estimated using the Rayleigh test for non-uniformity.

All LFP analysis were performed with custom-made MATLAB scripts (The MathWorks, Natick, MA).

SPW-R Simulations
Simulated data consisted in pink noise mixed with synthetic SPW-Rs. SPW-Rs were generated as a sinusoid with amplitude A and

frequency fc following a normal distribution Nðm;sÞwith m= 140 and s= 12 Hz, and lasting for a fixed duration of 70 ms. The obtained

sinusoid is then modulated by mðtÞ = Amsinð2pfmtÞ, where Am = 1 and fm = 1=2trip, being trip the ripple interval. Amplitude was

defined as A = sp10
ðSNR=20Þ, where SNR is the signal-to-noise ratio, set at �20 dB, and the sp is the pink noise standard deviation.

For simulations of sinusoid ‘‘envelopes’’ without ripple component, A was set to 0.
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Statistical Analyses
All statistical analyses were performed with standard MATLAB functions or custom-made scripts. No specific analysis to estimate

minimal population sample or group size was used, but the number of animals, sessions, recorded cells and SPW-R events were

larger or similar to those employed in previous related works (e.g., Carr et al., 2012; Pfeiffer and Foster, 2015; Fernández-Ruiz

et al., 2017; Gillespie et al., 2016; Oliva et al., 2016a). The unit of analysis was typically sessions, for example, when comparing spon-

taneous and induced SPW-R LFP features or convoluted unit response. In some cases, the unit of analysis was SPW-R events, for

example when comparing spectral characteristics of events with different duration, and that is stated through the text. Unless other-

wise noted, for all tests, non-parametric two-tailedWilcoxon rank-sum (equivalent toMann-Whitney U-test), Wilcoxon signed-rank or

Kruskal-Wallis one-way analysis of variance were used. For multiple comparisons, Tukey’s honesty post hoc test was employed, and

the p values reported are always the lower of the post hoc multiple comparisons tests. To assess unimodality of a distribution,

Hartigan’s dip test was used (Hartigan andHartigan, 1985) and its significance assessed by bootstrap (n = 1000). Due to experimental

design constraints, the experimenter was never blind to the manipulation performed during the experiment (i.e., optogenetic

manipulation).

DATA AND SOFTWARE AVAILABILITY

Part of the dataset included in this study is available in the CRCNS database (Hippocampus – entorhinal electrophysiological data:

http://crcns.org [hc-3 dataset], https://doi.org/10.12688/f1000research.3895.2; Hippocampal data from novel environment

sessions: http://crcns.org [hc-11 dataset], https://doi.org/10.6080/K0862DC5). The rest is currently under preparation to be depos-

ited in the same database but will be immediately available upon request.

Custom MATLAB scripts can be downloaded from https://github.com/buzsakilab/buzcode.
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Figure S1 (related to Figure 1): 

A) Example average spectrograms of longer SPW-Rs (duration > 100 ms) from different sessions. B)

Wide-band peri-SPW-R str. radiatum LFP averages for awake events of different duration. C) 

Average spectrograms from str. radiatum of all SPW-R events of different duration detected during 

awake (n = 15,564 in 12 rats). D) Average z-scored spectrogram from CA1 pyramidal layer LFP of all 

awake SPW-Rs. E), F), G) same as in B, C and D but with CA3 pyramidal layer LFP. H) Wide-band 

peri-SPW-R CA1 pyramidal layer LFP averages for events of different duration during non-REM sleep 

(n = 110,414 in 12 rats). I) Average spectrograms of CA1 pyramidal layer LFP for all SPW-R events 

of different duration detected during non-REM sleep. J) Average z-scored spectrogram from str. 

radiatum LFP of all sleep SPW-Rs. 
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Figure S2 (related to Figure 2): 

A) Peri-pulse average firing rate curve for CA1 pyramidal cells (pyr) and interneurons (int) in one

example session (n = 62 / 18 cells). B) Average wavelet spectrograms of responses in CA1 pyramidal 

layer to pulses of longer duration (105, 140 and 175 ms). C) Example raw LFP traces (wide-band, 20 

kHz sampling rate) from the CA1 pyramidal layer of optogenetically induced ripple doublets.  Orange 

traces are 20-50 Hz filtered LFPs 
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Figure S3 (related to Figure 4): 

A) Discharge patterns of CA1 pyramidal cells (pyr) and interneurons (int) firing during non-REM sleep

SPW-Rs of different durations (n = 1052 / 171 cells in 12 rats).  B) Same as in A) but for CA3 

pyramidal cells and interneurons (n = 646 / 77 cells in 8 rats). C) Distribution of the modulation 

strengths of CA1 and CA3 (D) pyramidal cells and interneurons spikes by the LFP phase in different 

frequency bands (5 to 300 Hz) during sleep. Vertical dashed lines indicate boundaries of SPW, 

gamma and ripple bands. E) Discharge patterns of EC interneurons from layers II and III firing during 

awake state and non-REM sleep SPW-Rs of different durations. F) Discharge patterns of EC layer 5 

excitatory (exc) and inhibitory cells (n = 90 / 15 in 9 rats) during sleep and awake SPW-Rs. 
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Figure S4 (related to Figure 4): 

A) Left: example SPW-R in which cells from only one CA3 site fired. Right: example SPW-R in which

CA3 pyramidal cells from 3 different sites fired (color ticks). Upper traces are wide-band LFP and 

gamma filtered LFP (orange) from CA1 pyramidal layer. Color plots are wavelet spectrum from the LFP 

fragment above. Note the presence of a strong gamma power in the first SPW-R (black arrow) but not 

in the second. B) SPW-R associated slow gamma power was quantified separately for short (30-80 

ms) and long (> 80 ms) events that contained spikes from CA3 cells from only one shank (unique CA3, 

red) or more than one (diverse CA3, blue). Long awake SPW-Rs that contained spikes from different 

CA3 recording sites had significantly more associated gamma power than those with only spikes from 

one shank. *** p < 0.001, ranksum test.  
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