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Detailed Methods 

Patient Population 

Our convenience sample included 13 severe TBI patients (21-77 years old; see eTable 1). 

Inclusion criteria were: (1) admission to the UCLA Ronald Reagan Medical Center 

Neurointensive Care Unit (NICU) with a TBI diagnosis, (2) an initial Glasgow Coma Scale 

(GCS)
1
 score ≤ 8 or 9-14 with computerized tomography (CT) brain scans demonstrating 

intracranial bleeding, (3) ≥18 years old. Patients were excluded if the admission neurological 

examination demonstrated brain death or if the patient’s GCS improved to above 14 within 8 h of 

admission. Other exclusion criteria included epileptic seizures, pre-existing neurological 

disorder, overwhelming concurrent hepatic, metabolic encephalopathy, or burst-suppressing 

sedation. We note that there is no overlap between the present cohort and those analyzed in our 

previous MR-based work.
2,3

 Patients’ responsiveness level was assessed hourly using the GCS; 

outcome was assessed, at 6 months, using the Glasgow Outcome Scale – Extended (henceforth, 

GOS-E6m).
4
  

This study was approved by the University of California at Los Angeles Institutional 

Review Board. As per approved procedures, informed consent was obtained from the patient’s 

legal representative. 

 

EEG recording and analysis 

Data acquisition. EEG data acquisition has been described in detail previously.
5,6

 In 

brief, ICU Continuous 24-hour EEG monitoring was acquired beginning within 12 hours of 

injury and continued for up to two weeks post-injury. The International 10-20 System was used 



SUPPLEMENTARY INFORMATION                                              SCHNAKERS & LUTKENHOFF, ET AL 4 

to configure a montage that incorporated 10 electrodes/channels (F3, F4, C3, C4, P3, P4, T3, T4, 

O3 and O4) of CZ-referenced activity
5
. 

 Data analysis. EEG data were analyzed using the GUI (graphic user interface) of 

EEGLAB (version 13.2.2b). In order to avoid periods of sleep or lower vigilance, for each 

patient we selected, within 24 hours of the MRI, the 1 hour of data corresponding to the best 

GCS. Indeed, it has previously been shown that there is a significant relationship between 

relative EEG power spectra in different frequencies and GCS, with faster frequencies (i.e., alpha, 

beta) correlating positively, and slower frequencies (i.e., delta, theta) correlating negatively
7
, as 

well as a relationship between the rate and magnitude of change in EEG power spectra and the 

rate and magnitude of change in clinical measures of depth of coma over time
8
. Preprocessing 

included down sampling of the data to 128 Hz, band-pass filtered between 1 and 40 Hz (FIR 

filter; default setting), automatic artifact rejection (threshold at 100 μV) and Independent 

Component Analyses (runica ICA; default setting [i.e., with jader decomposition algorithm]) to 

identify and exclude ocular and motor artifacts related components (the number of components 

were not pre-specified), and a final visual inspection of the EEG data in order to manually 

remove any residual artifacts. If after artefact rejection the remaining duration of the EEG data 

was inferior to 30 minutes, the recording was not considered for further analyses. 

For the spectral analysis, the continuous signal of each recording was segmented into 1s 

epochs. Each epoch was fast Fourier transformed (FFT) with a Hanning-tapered window. 

Subsequently, all epochs were averaged, and both mean and variance of the power spectral 

density in different frequency bands were exported for statistical analysis. Frequency bands were 

chosen at target electrode sites based on previous literature pinpointing sites of maximal 

amplitude for each band
9–11

: alpha (8-13 Hz) at the occipital (O) electrodes, theta (4-7 Hz) at the 
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frontal (F) electrodes, and delta (1-3 Hz) at the frontal (F) and central (C) electrodes. The 

averaged power spectral density extracted for each site (F, C, O) was expressed in absolute 

power (μV
2
). 

         

MRI acquisition and analyses 

Data acquisition. In parallel to the EEG recording, each patient underwent a 

conventional structural MRI T1-weighted 3-dimensional magnetic-preparation rapid gradient 

echo scan (MPRAGE
12

) within 2 weeks post-injury and at 6 months. Due to the constraints 

imposed by the NICU context, patient MR data were acquired across multiple Siemens 

Magnetom devices (Sonata, Allegra, Tim Trio) available at the UCLA Ronald Reagan University 

Medical Center with comparable, but varying, parameters (TR: 1,900–1,970ms; TE: 3.52–

4.40ms; FA: 9–15º). (See Limitations section for further discussion.) Prior to analysis, all data 

were resampled to the lowest common acquisition resolution (1 mm
3
). 

MRI Vertex Analysis. To assess local brain change over time we employed a technique 

referred to as shape analysis 
13,14

. This technique allows estimating local tissue displacement – 

conventionally interpreted as atrophy or growth (though, see the limitations section for 

discussion of the interpretation of this technique) – across a number of subcortical regions of 

interest (ROIs). As in our previous work,
3
 local tissue displacement was estimated after 

separating brain from non-brain tissue (using optiBET
15

) and segmenting subcortical ROIs (i.e., 

thalamus, caudate, putamen, globus pallidus, hippocampus, and brainstem), for each patient, 

time-point, and hemisphere separately (using FSL FIRST
13

). In addition, the percent brain 

volume change (PBVC) over time was calculated for each patient (using FSL SIENA
16

). For the 

purposes of estimating PBVC calculation, each patient’s two brain-extracted images ware first 
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aligned (with FSL FLIRT
17,18

) and resampled into a space halfway between the acute and the 

follow-up time-points. (All other aspects of the MR analysis, except for group analysis, were 

performed in each image’s native space.) PBVC was included, as a covariate, in all analyses in 

order for the tissue displacement calculation to reflect localized subcortical shape changes over 

time independent of overall brain volume changes. (We note that while we did not make use of 

any additional option beyond the obligatory arguments required by each software mentioned 

above, we have modified the code of both FIRST and SIENA to make use optiBET for brain 

extraction, as opposed to standard BET, since we have previously shown that the optiBET 

pipeline performs more accurate segmentation of brain and non-brain tissue
15

.) 

 

Statistical analyses 

The main body of this report describes three analyses. First, we assessed the predictive 

value of acute bedside neurophysiological variables (i.e., EEG spectra variables) on long-term 

clinical outcome measures (i.e., GOS-E6m) [henceforth, EEG analysis]. Second, we assessed the 

secondary damage taking place over the first six-months post-injury, as measured with MRI 

shape change, and its relation to long-term outcome (i.e., GOS-E6m) and acute bedside 

neurophysiological measurements (i.e., EEG spectra variables) [henceforth, MRI shape analysis]. 

Third, we employed a graphical causal approach
19–21

 to jointly model the relationships tying 

covariates (e.g., demographic variables, days post-injury of the MRI assessment, days between 

MRI and EEG recording, among others; see below for details), acute bedside neurophysiological 

measurements (i.e., EEG spectra variables), acute-to-chronic brain shape change (i.e., MRI shape 

change), and long-term clinical outcome (i.e., GOS-E6m) [henceforth, graphical causal model].  
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 EEG analysis. Because of significant correlations, prior to analysis, EEG spectra 

variables (i.e., average and variance of delta, theta and alpha frequencies) were submitted to a 

principal component analysis (PCA). The procedure, implemented in SAS using a varimax 

rotation, returned three components with eigenvalue greater than 1, cumulatively explaining 80% 

of the variance. The first component (henceforth, alpha power component) was mainly loaded 

upon by positively by alpha power average and negatively by alpha power variance. The second 

EEG component (henceforth, delta power average component) was positively loaded upon by the 

average delta power. Finally, the third EEG component was positively loaded upon by delta 

power variance. The only variables not to load substantially on any of the three components (i.e., 

at the conventional .7 threshold as implemented in SAS) were theta power average and variance. 

The GOS-E6m was then regressed on the three EEG components.  

MRI shape analysis. The vertex analysis meshes obtained as described above were 

entered, as the dependent variable, in three analyses. First, we compared chronic to acute meshes 

to establish the overall pattern of brain atrophy over time. Following, we regressed brain atrophy 

over time on clinical outcome (i.e., GOS-E6m) and on EEG spectra components. The latter 

analysis, in particular, was aimed at assessing whether acute spectra variables are informative of 

the brain damage that will unfold over the following six months post injury.
2
 Significance was 

assessed with a criterion of p<0.05 corrected for multiple comparisons using a non-parametric 

permutation approach as implemented in FSL-randomize (using the 2-dimensional TFCE option 

[-T2], the de-meaning option [-D], and setting it to run 5,000 permutations [-n 5,000] as opposed 

to the standard 500).
22,23

 In all 3 analyses covariates were included to parcel out the effect of 

demographic (gender, age at injury), experimental (days post-injury of MRI; days between acute 

and 6-months follow-up MRI data acquisition; days between acute MRI and acute EEG data 
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acquisition), and other (sedation level, PBVC) variables. Because of the significant correlation 

between these variables, they were also entered into a PCA (implemented as the previous one). 

The data reduction returned three components with eigenvalue greater than 1, collectively 

explaining 83% of the total variance. COVAR component 1 (henceforth, “age/sex” component) 

was loaded upon positively by both demographic factors (i.e., age at injury and gender). COVAR 

component 2 (henceforth, “experimental variables” component) was loaded upon positively by 

the time post-injury of the acute MRI data acquisition and days between acute MRI and acute 

EEG acquisition, and was loaded upon negatively by PBVC. COVAR component 3 (henceforth, 

“sedation” component) was loaded upon positively by patient sedation level only. We note that 

the level of sedation was assessed, on the basis of the medications each patient was receiving, on 

a 3-point scale (deep, mild, no sedation) following the published guidelines of the American 

College of Critical Care Medicine/Society of Critical Care Medicine (ACCM/SCCM)
24

. 

Graphical causal modeling. Finally, we employed a graphical causal model approach,
19

 

implemented in the TETRAD IV platform,
20,21

 to jointly model the interactions among 

background variables (e.g., demographics, sedation), acute EEG spectra characteristics, acute-to-

chronic MRI shape atrophy, and their ability to predict clinical outcome. For this analysis, the 

MRI data was reduced from several hundred values (one per voxel) to a smaller number which 

could be included in the graphical model. Given our previous results demonstrating atrophy in 

thalamic nuclei in both (sub)acute
2
 and chronic

3
 populations after severe brain injury, as well as 

neuropathological studies demonstrating preferential atrophy and cell death in this region in 

patients who died in a chronic disorder of consciousness,
25,26

 we focused on the bilateral 

thalamus and segmented each in 7 subareas, on the basis of the Harvard-Oxford thalamic 

connectivity atlas.
27,28

 The average shape change within each subregion was then entered into a 
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PCA (implemented identically to the previous ones). The analysis returned two components with 

eigenvalue greater than 1, explaining 93% of the total variance. The first MRI component was 

loaded upon (positively) by thalamic areas connecting to frontal and parietal cortices (namely, 

posterior parietal, somatosensory, primary motor, premotor, and prefrontal cortices, bilaterally), 

while the second MRI component was loaded upon (positively) by thalamic areas connecting to 

temporal and occipital cortices.  

As shown in eFigure 2, all components (3 COVAR, 3 EEG, and 2 MRI) were entered in a 

temporally informed graphical causal framework whereby background variables (i.e., COVAR 

components) were modeled as influencing directly both EEG and MRI components, and EEG 

components were modeled as influencing outcome (GOS-E6m) both directly and through acute-

to-chronic MRI shape changes. 

 

Limitations 

Interpretation of these data should be mindful of a number of factors. First, data were 

aggregated across different Siemens MR systems (including a Magnetom Sonata [1.5T], 

Magnetom TimTrio [3T], and Magnetom Allegra [3T]). Nonetheless, previous large multi-centric 

studies have shown that variance in MR system has little impact on results in the context of 

conventional MPRAGE sequences.
3,29

 This issue was specifically addressed in a large cohort 

study of 137 subjects by the Alzheimer's disease neuroimaging initiative (ADNI)
30

. The report 

concluded that T1-weighted MPRAGE sequences, such as the one we acquired, were the best 

suited for aggregating data across different systems (including different field strength [i.e., 1.5T, 

3T] and different vendors) due to a number of factors including the favorable white-matter to 

gray-matter SNR, which is crucial for the segmentations that are at the basis of our analysis.  
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Second, while our interpretation of (inwards) shape change over time as atrophy is 

conventional, it is an indirect measure based on displacement of tissue boundaries.
13

 

Nonetheless, there is converging evidence from other techniques suggesting that shape change is 

indeed sensitive to tissue atrophy, as assessed in post-mortem studies, in both Alzheimer’s
13,31,32

 

and Huntington’s
33–35

 disease, as well as in severe brain injury
3,36,37

 patients. The exact degree to 

which other mechanisms (e.g., compression, shift) also play into the results of shape analyses, 

remains to be fully specified. 

Third, in our data theta frequencies did not emerge as an independent component, rather, 

being loaded upon (weakly) by all three EEG components. Whether this is due to our relatively 

small sample or reflects a small predictive value of theta oscillations in this context remains to be 

determined.  

Fourth, in the present work we make use of the GCS and GOS-E6m to characterize the 

level of consciousness and responsiveness of patients at the acute and follow-up time-points, 

respectively. While both these measures are standard in the ICU context, they are very coarse and 

do not provides a nuanced characterization of patients. Other scales, such as the Coma Recovery 

Scale–Revised
38

, although longer to administer, might have been preferable in order to get a 

more detailed clinical characterization of the patient’s level of consciousness, particularly in light 

of its correlation with EEG spectral features at rest
39–41

. 

Fifth, only 1 hour of EEG data, corresponding to the best GCS, was used in our analyses 

to ensure we analyzed cerebral activity associated to the highest responsiveness level (and avoid 

sleep). Indeed, as discussed above, there is a known relationship between the depth (and rate and 

magnitude of change) of coma, as clinically measured with the GCS, and the EEG power 

spectrum (and its rate and magnitude of change)
7,42

. Nonetheless, future research should compare 



SUPPLEMENTARY INFORMATION                                              SCHNAKERS & LUTKENHOFF, ET AL 11 

our results to existing approaches based on longer EEG samples, such as the PAV,
43

 which has 

been shown to be a sensitive predictor of six-month recovery and is known to be related to acute 

thalamic lesions.
6
 

Finally, it should also be pointed out that we cannot, in the present work, disentangle 

higher-order interactions between non-strictly TBI effects (e.g., pain, stress) and exclusively TBI 

effects. For example, it is possible that patients with worse GCS and worse outcomes also 

suffered more form these non-directly TBI factors which might, in turn, affect the EEG 

recordings. Nonetheless, both the individual EEG results (i.e., the relationship between EEG 

power spectra and outcome) and MRI results (i.e., the atrophy over time) are consistent with 

previous findings in the EEG
8,40,44

 and MRI
2
 literatures, thus moderating this potential concern.  
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eFigure Legends 

eFigure 1. MRI shape analysis results: (a) regions undergoing significant atrophy over the first 

six months post injury. (b) regions in which the degree of atrophy over time is significantly 

(negatively) associated with the six-month clinical outcome measure (i.e., GOS-E6m). 

 

eFigure 2. Graphical causal model specification. Depiction of the causal model assessed (for 

image clarity, each arrow stands for a set of arrows uniting, with the shown directionality, each of 

the variables at the beginning of the arrow to each of the variables at the end of the arrow). No 

arrow was placed between COVAR components and outcome since the relationship was found to 

be not significant (see text). (Abbreviations: COVAR comp, covariate components; exp vars, 

experimental variables component; sed, sedation component; A  C, acute to chronic change; 

frnt-par, fronto-parietal component; tmp-occ, temporo-occipital component;  pow, alpha power 

component;  avg, delta power average component;  var, delta power variance component). 

 

eFigure 3. Scatterplot of the components derived from the 3 PCA analyses. (Abbreviations are 

the same as in eFigure 2.) 

 


