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Supplementary Materials and Methods  34 

Study subjects, sample collection, and sample processing  35 

All study subjects were members of a long-term study population of yellow baboons 36 

(Papio cynocephalus, with some admixture from a closely related species, the anubis baboon, P. 37 

anubis [1]) that has been monitored by the Amboseli Baboon Research Project (ABRP) since 38 

1971 [2]. Animals in the study population are individually recognized and observed on a near 39 

daily basis from birth onwards. Thus, the ages of individuals born in the study population were 40 

known to within a few days’ error. For study subjects that immigrated into the study population 41 

as adults (n = 10 males in our data set), ages were estimated by trained observers based on 42 

morphological features and comparison to known-age animals [3]. Dominance hierarchies were 43 

constructed monthly for every social group in the study population based on the outcomes of 44 

dyadic aggressive encounters. Ordinal dominance ranks were assigned to every adult based on 45 

these hierarchies, such that low numbers signify high rank/social status and high numbers signify 46 

low rank/social status [4]. 47 

Blood samples were collected from each study subject (n = 61) in May through August of 48 

2012-2016 following well-established procedures [5–8]. Briefly, animals were immobilized by 49 

an anesthetic-bearing dart delivered through a hand-held blow gun, and, following 50 

immobilization, were quickly transferred to a processing site for blood sample collection. At the 51 

processing site, we collected two types of samples for each individual:  52 

  (i) 2 – 4 mL whole blood in a CPT vacutainer tube (Becton, Dickinson, and Company) to 53 

isolate peripheral blood mononuclear cells (PBMCs). CPT tubes were stored overnight at the 54 

field site and shipped the next day to the Institute of Primate Research (IPR) in Nairobi. At IPR, 55 

PBMCs were purified, antibody stained for cell surface markers that discriminate monocytes 56 
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(CD3-, CD20-, CD14+), Natural Killer cells (CD3-, CD20-, CD16+), B cells (CD3-, CD20+), 57 

helper T cells (CD3+, CD8-, CD4+), and cytotoxic T cells (CD3+, CD8+, CD4-), and profiled for 58 

PBMC composition using flow cytometry on a BD FacsCalibur machine. To distinguish T and B 59 

cells, we stained 0.5 million purified PBMCs with 3 ul anti-CD3-APC-Cy7 (clone SP34-2, BD 60 

Biosciences #557757), 5 ul anti-CD4-FITC (clone L200, BD Biosciences #550628), 1 ul anti-61 

CD20-PE-Cy7 (clone L27, BD Biosciences #335793), and 5 ul anti-CD8-PE (clone 3B5, 62 

Invitrogen #MHCD0804). To distinguish Natural Killer and monocyte cells, we stained a second 63 

aliquot of 0.5 million purified PBMCs with 3 ul anti-CD3-APC-Cy7, 5 ul anti-CD16-PE (clone 64 

3G8, BD Biosciences #560995), and 5 ul anti-CD14-FITC (clone 322A-1 MY4, Beckman 65 

Coulter #6603262). 66 

(ii) 1 mL of whole blood in each of two TruCulture tubes (Myriad RBM) to assess the 67 

cytokine and gene expression response to lipopolysaccharide (LPS). For each animal, blood was 68 

collected into one tube that contained cell culture media alone (the ‘NULL’ tube) and a second 69 

tube that contained culture media plus 0.1 ug/mL lipopolysaccharide (the ‘LPS’ tube). NULL 70 

and LPS tubes were then incubated in parallel at 37 ºC for 10 hours. Following incubation, we 71 

collected serum for cytokine profiling, lysed the red blood cell fraction (PureGene Red Cell 72 

Lysis Buffer, QIAGEN), and collected white blood cells for gene expression profiling. Serum 73 

samples and RNAlater-preserved white blood cells (ThermoFisher Scientific) were stored at -20 74 

ºC until transport to the United States. 75 

Following sample collection, study subjects were allowed to regain consciousness in a 76 

covered holding cage until they were fully recovered from the effects of the anesthetic, and then 77 

released near their social group. 78 

 79 
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Generation and processing of cytokine data  80 

For a subset of individuals (n=29; n=18 males and 11 females), we measured circulating 81 

levels of 23 cytokines involved in the immune response (Dataset S1). Specifically, we used 82 

serum isolated from both the LPS and NULL condition TruCulture tubes to perform cytokine 83 

profiling with the MILLIPLEX MAP Non-Human Primate Cytokine Magnetic Bead Panel 84 

(EMD Millipore) following the manufacturer’s instructions. All samples were assayed in 85 

duplicate, and all cytokine work was performed by the Immunology Unit of the Duke University 86 

Regional Biocontainment Laboratory.  87 

We excluded a given cytokine from downstream analyses if more than half of our 88 

samples did not exceed the lower limit of quantification for that cytokine. Further, we computed 89 

the correlation between normalized cytokine values for duplicate samples and excluded measures 90 

with R2<0.8 between replicates. We did not exclude any individual samples from analyses. For 91 

the remaining 15 cytokines that passed our filters, we tested for differences between LPS and 92 

NULL condition samples using linear mixed effects models implemented in the R package 93 

‘nlme’ [9] . Specifically, we modeled each set of normalized cytokine values as a function of 94 

condition (NULL or LPS), age of the donor, sex of the donor, and individual identity (as a 95 

random effect). We extracted the p-values associated with the condition effects and corrected for 96 

multiple hypothesis testing using an FDR approach [10,11] (Figure S1). 97 

 98 

Generation and low level processing of mRNA-seq data  99 

For each TruCulture sample, we extracted RNA from white blood cells stored in 100 

RNAlater (ThermoFisher Scientific) using the RNeasy mini kit (QIAGEN) following the 101 

manufacturers’ instructions. RNA quality was assessed for a random subset of samples (n=36) 102 
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using an Agilent RNA 6000 Nano kit and an Agilent 2100 Bioanalyzer (mean ± SD of RIN 103 

values = 8.56 ± 0.86).  104 

For each sample, we used 200 ng of total RNA as the input for mRNA isolation using the 105 

NEBNext Poly(A) mRNA Isolation Module (New England BioLabs). We generated mRNA-seq 106 

libraries for high-throughput sequencing from the isolated mRNA using the NEBNextUltra RNA 107 

Library Prep Kit for Illumina (New England BioLabs), following the manufacturers’ 108 

instructions. We pooled 10-12 samples per lane of sequencing (100 bp paired-end) on an 109 

Illumina HiSeq 2500. We recovered a mean of 18.03 ± 9.94 (SD) million reads per individual 110 

(Dataset S2). 111 

Following sequencing, we trimmed Illumina adapter sequence and low quality bases from 112 

the ends of the reads using the default settings in Trimmomatic [12]. We mapped trimmed reads 113 

to the anubis baboon genome (Panu 2.0) using the STAR aligner and the recommended two-pass 114 

method [13]. For each gene, we collated the number of reads that overlapped any annotated exon 115 

using the program HTSeq [14] and NCBI’s Panu 2.0 RefSeq exon annotations [15]. In 116 

downstream analyses, we only included genes with mean RPKM values > 1 in both the NULL or 117 

LPS condition. We retained 7576 genes after applying these filters. At this stage, we also 118 

removed the LPS condition sample from one individual who appeared not to respond to 119 

stimulation (RPKM value for the IL6 gene was <1 in the LPS condition). This filtering left us 120 

with n=121 total samples, 61 from the NULL condition and 60 from the LPS condition. 121 

Prior to analysis, we normalized the read count data using the function 122 

‘voomWithQualityWeights’ in the R package limma [16]. Further, we removed known batch 123 

effects (i.e., the year of sample collection) as well as effects of cell type composition using linear 124 

models implemented in limma. To do so, we first performed PCA on the relative abundance data 125 
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for each of 5 cell types described above, and used the loadings from the first two principal 126 

components (which together explained 84.44% of the total variance) as covariates in linear 127 

models (see Figure S3 for analyses of rank effects on cell type composition). Finally, to obtain 128 

the PCA projection shown in Figure 2, we computed the covariance matrix of normalized, batch- 129 

and cell type-corrected gene expression values for our set of filtered genes and used this matrix 130 

as the input for the ‘prcomp’ function in R.  131 

 132 

Genotyping 133 

We used genotype data to confirm that paired LPS and NULL samples were matched to 134 

the same individual, to estimate pairwise genetic relatedness, and to perform Mendelian 135 

randomization. To do so, we called variants across all regions within 200 kb of an annotated 136 

gene (i.e., within the gene body or within 200 kb of the transcription start or end site) using 137 

HaplotypeCaller from the Genome Analysis Toolkit (GATK v3.3.0). For all steps, we followed 138 

the Best Practices for variant calling using RNA-seq data 139 

(https://www.broadinstitute.org/gatk/guide/article?id=3891). After genotyping, we retained sites 140 

that passed the following filters: variant quality score ≥100; QD < 2.0; MQ < 35.0; FS > 60.0; 141 

HaplotypeScore >13.0; MQRankSum < −12.5; and ReadPosRankSum < −8.0. Additionally, we 142 

used the program vcftools [17] to remove variant calls with quality scores < 10, as well as sites 143 

that had a mean depth of coverage < 5x or that were not in Hardy-Weinberg equilibrium 144 

(p<0.05). This filtering left us with 99,760 SNPs. We imputed data for missing genotype values 145 

(10.93%) using default settings in Beagle [18].  146 

To obtain our final call set, we averaged the filtered, imputed genotype calls from the 147 

LPS and NULL conditions for each individual at each locus (resulting in a numeric value 148 
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between 0 and 2 for each; note that for all individuals, genotype calls from the two conditions 149 

were identical at >99% of genotyped sites). To estimate pairwise relatedness between 150 

individuals, we used the ‘relatedness2’ option in vcftools [17,19]. 151 

 152 

Testing for associations between rank and gene expression 153 

To identify genes for which gene expression was significantly predicted by dominance 154 

rank, we used linear mixed effects models implemented in the R package ‘EMMREML’ [20]. 155 

Specifically, for each gene in our dataset, we ran the following model: 156 

 𝑦! = 𝜇 + 𝑟!𝛽"# ∗ 𝐼(𝑠! = 0) + 𝑟!𝛽"$ ∗ 𝐼(𝑠! = 1) + 𝑎!𝛽%# ∗ 𝐼(𝑠! = 0)

+ 𝑎!𝛽%$ ∗ 𝐼(𝑠! = 1) +	𝑐!𝛽& + 𝑔! + 𝑒! , 
(1) 

𝑔! ∼ 𝑀𝑉𝑁80, 𝜎'$𝑲;, 157 

𝑒! ∼ 𝑀𝑉𝑁(0, 𝜎($𝑰) 158 

where 𝑦! is the gene expression level estimate for sample 𝑖, 𝜇 is the intercept, 𝑐! is a binary 159 

variable indicating whether sample 𝑖 is from the control or LPS condition (1=control and 160 

0=LPS), and 𝛽& is the corresponding estimate of the condition effect. 𝐼 is an indicator variable 161 

for sex (𝑠!; 0=female and 1=male). 𝑎! and 𝑟! represent the age and dominance rank, respectively, 162 

of the focal individual at the time of sample collection. 𝑒! is a random effects term to control for 163 

environmental noise, and 𝑔! is a random effects term to control for kinship and other sources of 164 

genetic structure. 𝑲 is an n x n matrix that contains estimates of pairwise genetic relatedness 165 

derived from genotype data. 𝜎'$ and 𝜎($ are the genetic and environmental variance components, 166 

respectively. 𝑰 is the identity matrix, and MVN denotes the multivariate normal distribution. We 167 

chose to use a mixed effects model of this type in order to exclude false positive associations 168 

between dominance rank and gene expression that could emerge if ranks are more similar 169 



 8 

between related individuals (as we know to be true in female baboons) and gene expression 170 

patterns are also more similar between related individuals (which is often the case for gene 171 

expression because gene expression levels are partially heritable in this and other populations: 172 

[5,21]). Mixed models that fit a random effect to account for genetic non-independence therefore 173 

test for associations between predictor and response variables of interest (here, dominance rank 174 

and gene expression), beyond that explained by genetic covariance between the study subjects 175 

[22,23]. 176 

 We also tested for interactions between dominance rank and condition (NULL or LPS), 177 

as previous work has shown that rank effects on gene expression are more pronounced after LPS 178 

stimulation [24]. To do so, we ran the following model using data from males only (the sex 179 

where additive effects of dominance rank were common; n=70 samples from 31 individuals): 180 

 𝑦! = 𝜇 + 𝑟!𝛽" + 𝑎!𝛽% +	𝑐!𝛽& + (𝑟! ∗ 𝑐!)𝛽")& +	𝑔! + 𝑒! (2) 

 where (𝑟! ∗ 𝑐!) represents the interaction between dominance rank and condition, and 181 

	𝛽")& is the effect size of the interaction term. All other terms are as described above. 182 

As an alternative approach to testing for interactions, we tested for effects of male 183 

dominance rank on the magnitude of the gene expression response to LPS, using the fold change 184 

in gene expression levels between LPS and NULL conditions as the outcome variable. 185 

Specifically, for each individual, we subtracted the voom normalized gene expression values 186 

estimated for the NULL sample from the normalized values for the LPS sample (voom 187 

normalized values are already log2-transformed, so subtraction in this case is equivalent to fold 188 

change). Using these values, we ran the following model where all predictor variables are as 189 

described above except 𝑦!, which in equation 3 denotes the log2 fold-change response to LPS: 190 

 𝑦! = 𝜇 + 𝑟!𝛽" + 𝑎!𝛽% +	𝑔! + 𝑒! (3) 
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For each gene, we extracted the p-value associated with the rank effect (nested within sex 191 

from equation 1, or without nesting from equation 3, for males only) or the rank interaction with 192 

condition (from equation 2). We corrected these distributions for multiple hypothesis testing 193 

using an FDR approach, and considered genes to be rank-associated if they passed a 5% FDR 194 

[10,11]. As described in the main text, we identified few rank x condition interactions or effects 195 

of rank on fold-change gene expression. Rather, genes that were more highly expressed in high-196 

ranking (low-ranking) individuals at baseline tended to remain so after LPS stimulation, 197 

including those in innate immune defense and inflammation-related pathways (see also Figure 198 

S8). 199 

 200 

Annotation of rank-associated genes 201 

We performed Gene Ontology (GO) enrichment analyses using the Cytoscape module 202 

ClueGO [25], using one-sided Fisher’s Exact Tests and a Benjamini-Hochberg FDR approach to 203 

correct for multiple hypothesis testing [26]. To reduce our multiple testing burden and to account 204 

for the nested nature of GO terms, we focused our analyses on terms that: (i) were within levels 205 

3-8 of the Biological Process GO set; (ii) included at least 10 expressed genes from our data set; 206 

and (iii) included > 5% of all genes in the GO term in the test gene set. We report significant 207 

terms as those that were enriched in the test gene set at a 5% FDR (full results are provided in 208 

Dataset S4-5).  209 

To investigate rank-related polarization of the TLR4 signaling pathway, we used 210 

previously compiled lists of genes associated with a MyD88- or TRIF-dependent response 211 

(obtained from antigen stimulation experiments in MyD88 or TRIF knock-out mice [27]). 212 

234/542 of the MyD88-dependent genes and 165/400 of the TRIF-dependent genes identified by 213 
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[27] had expressed orthologs in our dataset. Using these gene sets, we performed two analyses. 214 

First, we asked whether the distribution of dominance rank effect sizes differed between MyD88- 215 

versus TRIF-induced genes (Mann-Whitney U test). To do so, we focused on those genes that 216 

were significantly associated with rank in males and also upregulated in response to LPS. 217 

Second, we asked whether male social status predicted composite expression variation across all 218 

genes in the MyD88 or TRIF-dependent sets. To do so, we extracted, for each individual, the 219 

median normalized, batch- and cell type composition-corrected gene expression level for all 220 

genes measured in the LPS condition that were dependent on MyD88 or TRIF for antigen-221 

stimulated up-regulation. Using these median values, we used Spearman’s rank correlations to 222 

ask whether dominance rank predicted median gene expression levels for the set of MyD88 223 

versus TRIF-induced genes. 224 

 225 

Comparison of rank-associated genes in female macaques and male baboons 226 

 Previous work [24] reported strong, causal effects of dominance rank on gene expression 227 

in captive rhesus macaques. Specifically, Snyder-Mackler et al. manipulated female social status 228 

(n=45) and profiled gene expression in sorted cell populations, as well as in leukocytes at 229 

baseline and following immune stimulation with LPS. They found that genes associated with 230 

innate immune function and a pro-inflammatory phenotype were upregulated in low-ranking 231 

animals, who also mounted a stronger response to LPS. To compare our results with theirs, we 232 

compared our estimates of standardized rank effects in males (𝛽"$) to female macaque 233 

standardized rank effect estimates from leukocytes unexposed or exposed to LPS (Table S13 234 

from [24]). In the macaque study, social status was measured using Elo scores, such that higher 235 

numbers indicated higher social status; in our study, social status was measured using ordinal 236 
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ranks, such that higher numbers indicated lower social status. Therefore, for visualization (Figure 237 

3 and Figure S9), we polarized effect sizes from both studies so that a negative beta was 238 

equivalent to higher expression of a given gene in high status individuals. We used Spearman’s 239 

rank correlations to estimate the consistency of effect size estimates between datasets, and a 240 

binomial test to understand whether effect size estimates were directionally consistent more often 241 

than expected by chance. 242 

 243 

Behavioral mediation analyses 244 

To ask whether behaviors associated with high or low social status in males mediate the 245 

relationship between dominance rank and gene expression, we first created an index of received 246 

and initiated harassment for each individual. To do so, we extracted observations of dyadic 247 

agonistic encounters from the Amboseli Baboon Research Project’s long-term database, BABASE. 248 

Data on these encounters are collected in the context of random-order focal sampling [28], where 249 

observers move through the group to locate and follow known individuals according to a 250 

predetermined list. Hence, records of agonisms are sampled in an unbiased, representative 251 

manner. 252 

We summed the number of initiated or received agonisms involving each individual for 253 

the six month period prior to sample collection, and corrected this value for observer effort [29]. 254 

Specifically, we regressed the sum of initiated agonisms or sum of received agonisms 255 

(separately) against a measure of observer intensity, calculated as the number of focal animal 256 

samples performed on adult females in a given social group and month, divided by the total 257 

number of adult females in the group (following [29]; focal samples are concentrated periods of 258 

observation focused on a single individual and collected in randomized order for target animals 259 
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in each social group [28]). Observer intensity estimates were calculated separately for each of the 260 

6 months spanning the period prior to sample collection, and then averaged to obtain a single 261 

value for linear regression. Finally, we extracted the residuals from the linear regression of 262 

initiated or received agonisms on observer effort and used these values in downstream analyses. 263 

 Next, we asked whether our indices of initiated or received harassment could explain the 264 

observed rank-gene expression associations, focusing specifically on genes for which this 265 

relationship was significant in males. For each gene, we were interested in estimating the indirect 266 

effect of male dominance rank on gene expression levels through the mediating variable 267 

(initiated or received agonisms). The strength of the indirect effect was estimated as the 268 

difference between the effect of rank in two models: the ‘unadjusted’ model that did not account 269 

for the mediator, and the effect of rank in an ‘adjusted’ model that incorporated the mediator, 𝑚!. 270 

The unadjusted model, including only data from males, was as follows:  271 

 𝑦! = 𝜇 + 𝑟!𝛽" + 𝑎!𝛽% +	𝑐!𝛽& +	𝑔! + 𝑒! (3) 

Notations are consistent with equations 1 and 2. The adjusted model was: 272 

 𝑦! = 𝜇 + 𝑟!𝛽" + 𝑎!𝛽% +	𝑐!𝛽& +	𝑚!𝛽* +	𝑔! + 𝑒! (4) 

where 𝑚! was observer effort-corrected rates of initiated or received agonisms, respectively. To 273 

assess the significance of each indirect effect, we performed 1000 iterations of bootstrap 274 

resampling to calculate 95% confidence intervals for each mediator. We considered an indirect 275 

effect to be significant if (i) the lower bound of the 95% confidence interval did not overlap with 276 

0 and (ii) the absolute effect size of the rank effect decreased when the mediating variable was 277 

included in the model. 278 

 279 
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Mendelian randomization analysis: selection of intermediate phenotype and instrumental 280 

variables 281 

Mendelian randomization (MR) is a form of instrumental variable analysis that uses a 282 

genetic variant (the instrument) to test whether an intermediate phenotype (in our case, PC2 of 283 

gene expression variation) is causal to a hypothesized outcome (in our case, dominance rank) 284 

[30]. Intuitively, MR can be thought of as analogous to a randomized controlled trial, where 285 

study participants are randomly allocated to a treatment or control group. This design avoids 286 

confounding between the treatment and outcome of interest, such that causal inference is 287 

unambiguous. In MR, genotypes are assumed to be randomly distributed with respect to potential 288 

confounding variables, and also are assumed to “randomize” each study subject into higher or 289 

lower values of the intermediate phenotype under genetic control. MR has been widely used in 290 

biomedical analyses [31], for example to test for a causal relationship between HDL cholesterol 291 

and myocardial infarction [32]. More recently, genetic effects on molecular phenotypes (e.g., 292 

expression or methylation quantitative trait loci) have also been leveraged in an MR framework 293 

[33], for example to test the causal relationship between DNA methylation levels and traits 294 

related to cardiovascular disease [34]. 295 

Valid MR instruments must meet three criteria: 296 

First, they must be robustly associated with the intermediate phenotype. In our analysis, 297 

we used projections onto PC2 of the overall gene expression data for males alone as the 298 

intermediate phenotype (n=36 unique individuals, n=70 samples). PC2 was strongly associated 299 

with male rank (rho=0.44, p=1.26x10-4), and explained 6.7% of the overall variance in male gene 300 

expression levels. Gene Ontology categories that contributed strongly to PC2 (primarily gene 301 

sets involved in the innate/TLR4-mediated immune response) are shown in Figure 5 and Dataset 302 
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S6, based on mean loading across constituent genes for each category (excluding GO categories 303 

with < 10 genes; significance was assessed by comparison to an empirical null distribution 304 

calculated from permuting PC2 loadings across all genes). To identify potential instruments 305 

associated with PC2, we refiltered our initial genotype dataset (n = 99,760 SNPs) to only include 306 

variants with a MAF>5% in the dataset of male baboons, and, in cases where a SNP was in  307 

linkage disequilibrium with one or more nearby (<10 kb) candidate SNPs, we randomly retained 308 

one of the linked SNPs. This filtering left us with 39,461 SNPs. We then used a linear mixed 309 

effects model [20] to test for an association between SNP genotype and PC2 (controlling for 310 

genetic relatedness in the sample), and retained only those that passed a 5% FDR [10] (Figure 5) 311 

(n = 51 SNPs). To avoid redundancy among our instruments, we associated each of these 51 312 

SNPs with its closest gene and retained the SNP with the lowest p-value for each gene (n=47 313 

SNPs). Finally, we retained only SNPs close to genes that loaded highly on PC2 (i.e., that had 314 

loading scores in the highest or lowest decile). This filtering left us with 20 candidate SNP 315 

instruments.  316 

Second, valid MR instruments must be related to the outcome variable only through an 317 

association with the intermediate phenotype, and not through any direct effect of the instrument 318 

on the outcome.  In other words, in our analysis, genotype cannot be directly associated with 319 

dominance rank. To test for this requirement, we used linear models to estimate the relationship 320 

between SNP genotype for each of the 20 candidate SNP instruments and dominance rank, 321 

controlling for PC2. We removed SNPs that showed any evidence of a relationship with 322 

dominance rank after controlling for PC2 (p<0.05), leaving us with 16 strong instruments (mean 323 

PVE for the correlation between a given SNP and PC2 (± SD) = 27.28 ± 6.64%). The 324 
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distribution of candidate instruments in gene bodies, coding sequences, exons, and 5’ and 3’ 325 

UTRs is shown in Figure S12. 326 

Third, valid MR instruments should be unrelated to confounding factors that could bias 327 

the relationship between the intermediate phenotype and the outcome. This requirement is the 328 

most difficult to formally prove. However, we are unable to propose any plausible third variable 329 

that both predicts genotype at the 16 variants we analyzed and affects the relationship between 330 

gene expression and dominance rank. Genetic background/population structure is a candidate, as 331 

this population is affected by admixture between anubis and yellow baboons, and ancestry could 332 

potentially affect dominance rank. Body size is a second candidate, as larger size does predict 333 

rank, and it could conceivably influence immune cell gene expression captured by PC2. 334 

However, when we tested for associations between each of the 16 instruments and hybrid score 335 

(a measure of anubis baboon ancestry [35]) or body mass index at the time of sampling, we 336 

found no evidence for either relationship (linear model: all p>0.05 after FDR correction). We 337 

further tested for bias in our instruments as a result of population structure by including the 338 

following components in our linear mixed models to identify SNP-PC2 associations: (i) the top 5 339 

PCs from a principal components analysis of the genotype data, incorporated as fixed effects, or 340 

(ii) the covariance matrix derived from the genotype data (using the ‘cov’ function in R) as the K 341 

matrix. In both cases, we saw minimal effects on the estimate of the SNP-PC2 relationship for 342 

our 16 instruments, suggesting that population structure does not impact our results (correlation 343 

between SNP-PC2 effect sizes estimated from the model in the main text versus a model that 344 

included PCs as fixed effects: p=1.42x10-12, r2=0.973, or a model that substitutes the kinship 345 

matrix with the genetic covariance matrix: p=1.16x10-10, r2=0.949). 346 
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Finally, we note that because our MR analysis specifically tests whether genotype effects 347 

on immune gene expression (PC2) are positively correlated with genotype effects on dominance 348 

rank (for cases in which genotype does not independently predict rank), it does not require 349 

dominance rank to be a stable individual characteristic. Positive correlations indicate that males 350 

who are “genetically randomized” into lower values of PC2 are more likely to be higher ranking 351 

than otherwise expected. This interpretation allows MR analysis to be applied to dynamic 352 

phenotypes (e.g., HDL and LDL cholesterol levels [32,36]).  353 

 354 

Implementation of Mendelian randomization analysis 355 

Using the 16 instrumental variables (SNP genotypes) that passed our filters above and 356 

were robust to potential confounding variables, we compared effect sizes estimated from the 357 

following models: (i) a linear model testing for an effect of genotype on dominance rank and (ii) 358 

a linear mixed model testing for an effect of genotype on PC2. Intuitively, if gene expression is 359 

causal to dominance rank, individuals with genotypes that predispose them toward low PC2 gene 360 

expression values should tend to also be high rank (low PC2 values are associated with high 361 

social status; Figure 1). Consequently, the effect sizes from the two sets of linear models should 362 

be positively correlated. To test this prediction, we used the MR Egger method [37] implemented 363 

in the R package ‘MendelianRandomization’ [38]. MR Egger accounts for horizontal pleiotropy, 364 

in which a genetic variant affects the outcome via a biological pathway other than the 365 

intermediate phenotype. However, we obtain very similar results using more traditional 366 

approaches such as the weighted median (beta=1.26; p=4.04x10-16) and inverse-variance 367 

weighted methods (beta=1.513; p=8.53x10-5) [38]. Further, we obtain very similar results when 368 

rerunning the MR Egger analysis after iteratively removing each one of the 16 instruments, 369 
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suggesting that outlier instruments do not impact our conclusions (beta>0 when 16/16 370 

instruments were iteratively removed and p<0.05 when 15/16 instruments were iteratively 371 

removed; for the last instrument, p=0.105). An overview of our MR pipeline is provided in 372 

Figure S10. 373 

We also implemented MR analyses at the single gene level, where gene expression levels 374 

for the focal gene are the intermediate variable rather than the composite measure of gene 375 

expression captured by PC2. Specifically, for each gene that was significantly associated with 376 

male rank in our data set and for which we also detected a significant cis-eQTL (FDR < 5%), we 377 

tested for a relationship between effect sizes estimated from the following models: (i) a linear 378 

mixed model testing for an effect of cis genetic variation on gene expression and (ii) a linear 379 

model testing for an effect of genotype on dominance rank. To compare the two effect sizes, we 380 

used the ratio of coefficients method, also known as the Wald method, as described in [39]). In 381 

this analysis, our instruments are consequently eQTL, rather than QTL for a composite measure 382 

of rank-associated gene expression (i.e., PC2). We were interested in implementing this single 383 

gene approach both to understand the robustness of our conclusions to different methodologies, 384 

and also to compare against a “control” data set in which the study design precluded gene 385 

expression effects on dominance rank. Specifically, we implemented the same MR pipeline using 386 

genotype and gene expression data from female rhesus macaques [24], where dominance rank 387 

was experimentally manipulated and must therefore be causal to gene expression (we initially 388 

implemented the MR pipeline described in the main text for this data set, but found few strong 389 

instruments for PC2 of gene expression variation). As expected, we found no evidence for a 390 

relationship between the effect sizes estimated from models (i) and (ii) for the female macaques, 391 

where dominance rank was experimentally imposed, but we do observe a significant relationship 392 
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between the two effect sizes for many rank-associated genes in male baboons. An overview of 393 

the single gene pipeline, as well as results for both the baboon and macaque data sets, are 394 

presented in Figure S11.     395 

396 
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Figure S1. Ex vivo stimulation with lipopolysaccharide (LPS) induces changes in the 397 
abundance of immune signaling molecules. Comparison of levels of serum cytokines and 398 
immune defense molecules in NULL and LPS samples, for all cytokines that met our filtering 399 
criteria (see methods). P-values (uncorrected) represent the effect of treatment controlling for 400 
age, sex, and batch effects in a linear model framework. 401 
 402 

  403 
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Figure S2. Overview of cell phenotyping strategy. Strategy for identifying populations of five 404 
different cell types within each PBMC sample. We gated on live cells and phenotyped these cell 405 
populations using the cell surface markers detailed in the SI Materials and Methods. All analyses 406 
were performed using FlowJo (FlowJo, LLC, Ashland, OR). 407 
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Figure S3. Association between dominance rank and the proportions of five white blood 412 
cell populations. Each plot shows the relationship between dominance rank (stratified by sex) 413 
and the proportion of a given cell population. P-values represent the effect of dominance rank 414 
(nested within sex) controlling for age (also nested within sex) in a linear model framework. 415 
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Figure S4. Gene ontology (GO) term enrichment for genes that are significantly (A) up-419 
regulated or (B) down-regulated in the LPS condition in male and female baboons 420 
(FDR<1%). Each significant GO term is represented by a node, and related GO terms are 421 
colored similarly and connected by edges.422 
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Figure S5. Rank-gene expression relationships in males and females are largely distinct. (A) 427 
Comparison of effect sizes for rank effects estimated in males versus females. Points are colored 428 
by whether the focal gene was significantly rank-associated in neither sex, one sex, or both sexes 429 
(5% FDR). (B) QQ-plot comparing the distribution of p-values associated with the rank effect 430 
estimated in females versus males. Comparison is against the expected null distribution (a 431 
uniform distribution). In both A and B, p-values were derived from a linear mixed effects model 432 
in which rank was nested within sex. 433 
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Figure S6. Sample size does not completely explain the difference in the number of 437 
significant rank-associated genes detected in males and females. Distribution of the number 438 
of rank-associated genes (FDR<5%) detected in (A) males and (B) females, as well as (C) the 439 
difference in the number of rank-associated genes found in each sex (number of rank-associated 440 
genes in males - number of rank-associated genes in females), after randomly subsampling our 441 
dataset 100 times so that the number of samples derived from each sex were matched. Red lines 442 
indicate values for the data set described in the main text. Across all subsamples, we consistently 443 
found far more rank-associated genes in males than in females (an average of 1387 ± 819.09 s.d. 444 
more genes were associated with rank in males compared to females). 445 
 446 
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Figure S7. Social status has weak effects on the strength of the response to LPS stimulation. 449 
(A) QQ-plot comparing the distribution of p-values for a rank x condition interaction effect 450 
estimated from a linear mixed effects model (for males and females separately; all models 451 
controlled for age, dominance rank, and condition as fixed effects) against the expected uniform 452 
distribution. 5 and 0 genes exhibit a significant (FDR<5%) rank x condition interaction in males 453 
and females, respectively, although the QQ-plot for males suggests that detection of interaction 454 
effects is constrained by power. (B) Magnitude of the rank effect estimated in males in the LPS 455 
and NULL conditions (rho=0.619, p<10-10). Effect sizes are derived from a linear mixed effects 456 
model using male data only, in which rank effects were nested within condition. Genes with no 457 
rank effects in either condition (FDR>20% in both LPS and NULL conditions), rank effects in 458 
the LPS or NULL condition only (FDR>20% in one condition and <5% in the other), or rank 459 
effects in both conditions (FDR<5% in both conditions) are highlighted as described in the 460 
legend. 461 
 462 

 463 
  464 
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Figure S8. High status males exhibit higher expression of pro-inflammatory genes 465 
compared to low status males, in both NULL and LPS condition samples. Each point 466 
represents the median expression level for a given sample, across all genes included in the 467 
following GO annotations: 'regulation of IL6 production’, ‘toll-like receptor signaling pathway’, 468 
and ‘regulation of inflammatory response’ (all three categories are enriched among genes 469 
significantly upregulated in high status males, p<10^-6). Lines connect samples collected from 470 
the same male, and are colored by quartiles of dominance rank. 471 

 472 
  473 

0.0

0.2

0.4

0.6

0.8

CDS exon five_prime_utrgenethree_prime_utrz_no annotation
Annotation category

P
ro

po
rti

on
 o

f S
N

P
s 

in
 th

is
 c

at
eg

or
y

Dataset
all SNPs
MR SNPs

CDS
Exon

5’ U
TR

Gene
3’ U

TR
None

Annotation category

1.0 1.2 1.4 1.6 1.8 2.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

N
or

m
al

iz
ed

 g
en

e 
ex

pr
es

si
on

 le
ve

l

1-3
4-6
7-10
11-19

NULL 
condition

LPS 
condition

Dominance 
rank



 27 

Figure S9. Genes up-regulated in low-ranking captive female macaques are up-regulated in 474 
high-ranking wild male baboons. X-axis: effect of rank on gene expression reported in [24], for 475 
leukocytes incubated in the presence (A; LPS condition, as shown in Figure 3B and repeated 476 
here for comparison to the NULL) or absence (B: NULL condition) of lipopolysaccharide. Effect 477 
sizes were estimated from linear mixed effects models, in which dominance rank was nested 478 
within condition. Y-axis: parallel results from wild male baboons. Effect sizes and p-values are 479 
from Spearman’s rank correlations, and sign-reversed for the macaque data set for easier 480 
comparison to baboons.481 
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Figure S10. Overview of filtering procedures for Mendelian randomization analyses. 484 

 485 
 486 
 487 
  488 

Gene expression data 
for n=36 males (70 total 

samples)

SNP-PC2 associations for 
every gene

Genotype data for n=36 
males (70 total samples; 39461 

variants passing filters)

PC2 loadings for each 
gene and projections for 

each individual

PCA of all 
expressed genes 
(n=7576)

Test for association with 
PC2 (LMM); keep best 
association per gene

Filter for significant associations 
(FDR<5%) and SNPs near genes 
that load highly (top 20%) on PC2 

20 candidate SNP 
instruments

Test for effect of SNP on rank 
independent of gene expression 
(LM); remove SNPs with p<0.05

16 instruments

Mendelian randomization 
(comparison of SNP-PC2 association 

versus SNP-rank association) 

GO enrichment 
analysis for genes that 

load highly on PC2



 29 

Figure S11. Overview of methods and results for single gene Mendelian randomization 489 
analyses. (A) Methodological approach and filtering procedures. The same approach was 490 
applied to both the female rhesus macaque and male baboon data sets. Distribution of p-values 491 
from a Wald test performed using each of the instruments passing filters in the (B) macaque and 492 
(C) baboon data set. 493 
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Figure S12. MR instruments are more likely to occur in genes and regulatory 496 
regions. Barplots show the proportion of SNPs falling into each annotation category, for the 16 497 
MR instruments and for all 39,461 SNPs that were considered as candidate instruments. 498 
Annotations were taken from the Panu2 GTF file (version 0.90), downloaded from Ensembl. 499 
'CDS' refers to the coding portion of a given gene, and 'gene' is defined as all sequence between 500 
the 5' and 3' UTR (and therefore includes all categories except 'none'). SNPs that did not overlap 501 
with any annotated regions from the GTF file were assigned to the annotation category 'none'. 502 
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