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A. Dependency of predicted equilibria on starting conditions 
 
In the main body of the paper, we provided detailed sensitivity analyses on the system’s dependence on 
the different combinations of varying initial values of all parameters (Fig. 4, Table 1). To further 
investigate the dependency of the emergent equilibria on initial conditions, we performed a set of 
targeted simulation experiments where a single variable’s initial value was varied in each simulation run. 
The main system variables converge to the same dynamic equilibria regardless of the starting conditions 
of these system variables (Fig. S1).  
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Figure S1. Dependence of equilibria for the system variables S(t), C(t) and F(t) in the general model (Fig. 
2), for the starting value of S(0):  A, C(0):  B, and F(0): C. All other parameter values were kept at the 
standard values (Δt = 0.125, 4th order Runge-Kutta numerical solver). 
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B. Dependency of predicted equilibria on substance influx and outflux rates 
 
In uncontrolled natural environments, the flux rates of substances in and out of the common stomachs 
are strongly dependent upon the focal animal species, the state and the age of the colonies, as well as 
on frequently changing environmental conditions. We performed a set of targeted simulation 
experiments in which one of those flux rates was varied to investigate how the predicted dynamic 
equilibria are affected by varying the rates of the substance inflows and outflows. In all the analyzed 
cases, the main system variables quickly converge to dynamic equilibria, though the levels of these 
equilibria depend on the flux rates (Fig. S2). These results suggest that the systems are able to adapt to 
colonial and environmental changes by rearranging their workforce to reach steady substance 
processing. 
 

 
 
Figure S2. Dependence of equilibria for the system variables S(t), C(t), and F(t) on A: influx rate (λin) and 
B: outflux rate (λout) of the substance into and out of the common stomach (Fig. 2). All other parameter 
values were kept as the standard values (Δt = 0.125, 4th order Runge-Kutta numerical solver). 
 

 
 



4 
 

 
C. Effect of zero-mean noise on the predicted dynamic equilibria 
 
The environmental influx of the shared substance, along with the colony’s internal usage of the 
substance, can vary throughout the day (1, 2). Thus, it is important to investigate the stability of the 
system with respect to noise. Variations in the influx may stem from the stochasticity of substance 
retrieval (scouting success in honeybees (3). Crop-loads returned by foragers vary individually and 
depend on environmental factors (4, 5), while harvesting success in ants may vary with environmental 
food density (6, 7). 
 
To investigate how the predicted dynamic equilibria are affected by varying levels of noise on substance 
inflows and outflows, we performed a set of targeted simulation experiments where one of the flux 
rates was additively transformed by normal distributed zero-mean noise (non-proportional 
transformation). In each time step, a randomly (normal distribution) generated value (between zero and 
the noise level {0.0, 0.25, 0.5, 0.75} and a standard deviation of 66.6% of the noise level) was added or 
subtracted to the influx or outflux value. We analyzed the response of the system through the behavior 
of its main system parameters (Fig. S3). The model is stable against high levels of zero-mean noise, and 
the value of each main system parameter remains close to its equilibrium. The fluctuations are strongest 
in the shared substance depot S(t). However, this is expected, as the common stomach is the integrator 
of these flows, and this property of integration tends to decrease the impact of high frequency system 
noise (8). The common stomach also has a strong buffering effect, so with the additional effect of the 
regulating behavioral feedback loops, the compositions of worker forces are less affected by the noise. 
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Figure S3. Effect of zero-mean noise (gray) in the substance inflow (A) and outflow (B) on the dynamic 
equilibria of the system variables S(t), C(t) and F(t) (Fig. 2). All other parameter values were kept at the 
standard values (Δt = 0.125, 4th order Runge-Kutta numerical solver). 
 
 

D. Assumptions and fundamental concepts of the model 
 
We built our general model as a system of coupled ordinary differential equations (ODEs) which we 

solve numerically by a 4th order Runge-Kutta method with a time step size of Δt = 0.125 time units. In 

the following, we detail the terms and parameters of the three main equations: 

We assume that there are two major processes that determine the change of shared substance S(t) in 

the colony (equation 1): 

𝑑𝑆

𝑑𝑡
= 𝜆𝑖𝑛𝐹(𝑡) − 𝜆𝑜𝑢𝑡Ω(t)𝐶(𝑡)    [1] 
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The first term models that every active forager F(t) transports an average volume of λin of the shared 

substance S(t) into the common stomach. We assume that the foragers will not always arrive with a full 

load, but we also assume that the foragers will give some significant contribution. Thus, we set our 

default value of λin to 0.75 volume units per worker per time step.  

The second term describes the assumption that the substance consumed by the colony is proportional 

to the number of consumers C(t) and the common stomach saturation Ω(t). The second term represents 

an implementation of the mass-action law, since the consumption depends on both: on the relative 

abundance of the substance (Ω(t)), and on the available consumers that can use it. The term λout is a 

scaling parameter representing the ease of retrieving material from the common stomach. This value is 

close to its maximum (1.0) when the common stomach is full and close to its minimum (0.0) when the 

common stomach is empty. Therefore, we set the value of λout to 0.5 volume units per worker per time 

step. 

The change in the number of foragers (equation 2) and consumers (equation 3) is determined by two 

processes: recruitment of unemployed workers to the special task, as well as abandonment of that 

special task and becoming unemployed  

𝑑𝐹

𝑑𝑡
= 𝛼𝐹(1 − Ω(t))𝑈(𝑡) − 𝛽𝐹Ω(t)𝐹(𝑡)   [2] 

𝑑𝐶

𝑑𝑡
= 𝛼𝐶Ω(t)𝑈(𝑡) − 𝛽𝐶(1 − Ω(t))𝐶(𝑡)   [3] 

 

We assume that both the recruitment and the abandonment can also be expressed by a mass-action law 

where the number of the individuals of a task group is multiplied with the saturation of the common 

stomach (or with its inverse) and a scaling coefficient. The two coefficients (α and β) model the speed of 

these two processes. Similarly, as discussed for equation 1, these coefficients can change between 0.0 

and 1.0 depending on the fullness of the common stomach. Assuming an average half-full common 

stomach (9), we set all recruitment and abandonment rates to 0.5. Whether or not this recruitment or 

the abandonment is proportional or inversely proportional to the common stomach is based on (10). 

When a substance is rare in a colony, then the common stomach saturation will be low. A low saturation 

of the common stomach promotes the recruitment of foragers and the abandonment of consumers. We 

express this as an inverse relationship (1 - Ω(t)), or the “degree of emptiness of the common stomach” in 

the multiplied terms.  

We assume that workers distribute the shared substance amongst themselves via a process of worker-

to-worker interactions that are similar to a diffusion process. This process has been described in detail in 

(9). As a consequence of these inter-individual substance exchanges in large colonies, individual 

differences in shared substance possession will “average out” over time. The saturation of the common 

stomach is expressed by Ω(t)=S(t)/smax, where smax is the overall storage capacity of the common 

stomach. This maximum value depends on the number of individuals (N=100) which engage in the 

process of the shared substance (foragers, users and storers). We assumed that all individuals have a 

maximum capacity of crop volume (1.0) to store the substance, therefore the capacity of the substance 

in the colony is the product of these 2 parameters. For simplicity, we further assumed that the number 

of colony individuals stays constant during the studied time periods (several hours to several days): N = 

C(t)+U(t)+F(t).  The rates of change of the system variable U(t) can thus be calculated directly from the 
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constant colony population size (N) and the values of the two system variables C(t) and (F(t).  

Consequently, we have conservation of mass in the model layer that tracks the workers (agents, right 

red-shaded column in Fig. 2), which represents a closed system. In contrast, the model layer that tracks 

substances (left yellow-shaded column in Fig. 2) is modeled as an open system, containing an explicit 

source (inflow) and an explicit sink (outflow) in the system. The middle layer (blue shaded area in Fig. 2) 

acts as a regulating mediator between these two subsystems. 

 

E. Identification and classification of feedback loops in the common stomach system 
 

The behavioral processes that are described by the terms of the RHS of equations 1-3 establish several 

positive and negative feedback loops that govern the system dynamics and the resilience and 

convergence properties of system variables. We identified 13 negative feedback loops and 6 positive 

feedback loops in our general model (Table S1): 

 

Table S1. Feedback loops of the system. 

Loop Variables included in each feedback loop Type Effect 

#1 S(t) Ω(t)outflux(t)S(t) negative Prevents CS from running 
empty 

#2 U(t)recruitmentF(t)U(t) negative Balances the number of 
unemployed agents 

#3 U(t)recruitmentC(t)U(t) negative Balances the number of 
unemployed agents 

#4 F(t)abandonmentF(t)F(t) negative Balances the number of 
active foragers 

#5 C(t)abandonmentC(t)C(t) negative Balances the number of 
active consumers 

#6 S(t) Ω(t)abandonmentC(t)C(t)outflux(t)S(t) negative Prevents the CS from 
running empty 

#7 S(t) Ω(t)abandonmentF(t)F(t)influx(t)S(t) negative Prevents the CS from 
overfilling 

#8 S(t) Ω(t)recruitmentC(t)C(t)outflux(t)S(t) negative Prevents the CS from 
running empty 

#9 S(t) Ω(t)recruitmentF(t)F(t)influx (t)S(t) negative Prevents the CS from 
overfilling 

#10 U(t)recruitmentF(t)F(t)abandonmentF(t)U(t) positive Enhancing foraging 

#11 U(t)recruitmentC(t)C(t)abandonmentC(t)U(t) positive Enhancing consumption 

#12 U(t)recruitmentF(t)F(t)influx(t)S(t) 
Ω(t)recruitmentC(t)U(t) 

negative Balancing the tasks 

#13 U(t)recruitmentC(t)C(t)outflux(t)S(t) Ω(t) 
abandonmentC(t)U(t) 

positive Enhancing consumption 

#14 U(t)recruitmentC(t)C(t)outflux(t)S(t) Ω(t) 
recruitementF(t)U(t) 

negative Balancing the tasks 
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#15 U(t)recruitmentF(t)F(t)influx(t)S(t) Ω(t) 
abandonmentF(t)U(t) 

positive Enhancing influx 

#16 U(t)recruitementC(t)C(t)outflux(t)S(t) 
Ω(t)abandonmentF(t)U(t) 

negative Regulating outflux 

#17 U(t)recruitmentF(t)F(t)influx(t)S(t) 
Ω(t) abandonmentC(t)U(t) 

negative Regulating influx 

#18 U(t)recruitmentF(t)F(t)influx(t)S(t) 
Ω(t)recruitmentC(t)C(t)abandonmentC(t)U(t) 

positive Enhancing influx 

#19 U(t)recruitmentC(t)C(t)outflux(t)S(t) Ω(t) 
recruitmentF(t)F(t)abandonmentF(t)U(t) 

positive Enhancing consumption 

 
In this table, the variable influx(t) represents the positive term in the RHS of equation 1, while the 

variable outflux(t) represents the negative term. The variables recruitmentC(t) and recruitmentF(t) 

represent the positive terms on the RHS of equations 2 and 3, while the variables abandonmentC(t) and 

abandonmentF(t) represent the negative terms. 
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