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SI Appendix Methods 

Identification of Subjects with LRTI 

Subjects with LRTI were identified by two-physician adjudication, as described in the main 

text. The Cohen’s kappa for physician adjudication was 0.86 (95% CI = 0.77 – 0.93). 

Disagreement was resolved by discussion involving focused review of each subject’s clinical and 

microbiologic evidence as related to the CDC definition of pneumonia.  A third adjudicator was 

available (CC) in the event that disagreements could not be resolved, however this was not 

needed. 

Pathogen versus Commensal LRM Performance Evaluation. 

To evaluate LRM performance, we first performed 1000 rounds of cross-validation in 

which we randomly sub-divided the derivation cohort into training (70%) and test (30%) sets 

during each round, which yielded an average AUC of 0.93 +/- 0.08 standard deviations. This 

assessed model variability as a function of the input training data. However, to obtain microbe 

predictions for all microbes in patients in the derivation cohort, while mitigating the potential for 

microbes within a single patient to disproportionately impact model performance, we performed 

leave-one-patient-out (LOPO) cross validation. In each round of LOPO-CV, all microbes from a 

single patient were left out, the model was trained on the microbes from all remaining patients, 

and prediction probabilities were calculated for the microbes in the left-out patient. This was 

repeated for all LRTI+C+M and no-LRTI patients in the derivation cohort. Finally, the logistic 

regression model trained on microbes from patients in the derivation cohort (12 “pathogens” and 

155 “commensals”) was applied to all microbes from validation cohort patients (26 “pathogens” 

and 174 “commensals”). 

Learning Curves for Pathogen versus Commensal Model. 
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To evaluate the logistic regression model performance as a function of derivation cohort 

size, learning curves were computed using randomized subsets of microbes from the derivation 

set (n = 5, 10, 15…165 total training microbes). The training and test mean square error (MSE) 

were computed along with the AUC for the test set at each iteration. This process was repeated 

over 25 rounds and the mean learning curve was computed (Figure S5A). The results indicate 

that the training set has saturated model performance, suggesting adequate sample size for the 

aforementioned analyses. We note that balanced classes may be of benefit, but are unrealistic 

given the distribution of pathogens amongst the lung microbiome.  

Differential Expression of Viral versus Bacterial LRTI 

Gene count data were analyzed using the Bioconductor package DESeq2 (v 1.16.1) (69) 

in R statistical programming environment. To ensure adequate sample size, we extended 

differential expression analysis as a function of pathogen type to include all LRTI+C+M patients 

(both derivation and validation cohorts) with known bacterial (n = 17) or viral (n = 3) infections. 

Cases of co-infection (n = 6) were left out of the analysis. Differentially expressed genes with FDR 

< 0.05 were used as input to ToppGene (44) to evaluate for functional pathway enrichment. 

Sample Size Calculations for Host Gene Expression Classifier 

To estimate the sample size required to develop a binary classifier from high-dimensional 

data with performance within a tolerance of .05 of the best possible classifier, we employed a 

sample size calculator available from the National Cancer Institute which incorporates 

standardized log fold change (3.46), number of genes (11,918), and class prevalence (0.5) (1). 

To compute standardized fold change, the maximum absolute value log fold change value was 

obtained from DESeq2 for the 12 classifier genes (logFC = 3.07 for gene BLVRB). The within-

class standard deviation for this gene (0.71) was computed and the suggested scaling factor of 

0.8 was used. The number of genes (11,918) was based on the total number of genes that met 
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QC thresholds for the classifier analysis. At a tolerance of 0.05 the calculator indicated that the 

derivation cohort would require nine subjects in each group (LRTI+C+M and no-LRTI).” 

 

Validation of Host Gene Expression Classifier 

To evaluate the performance of the classifier on the independent validation cohort (16 

LRTI+C+M and eight no-LRTI samples), genes from the validation cohort were independently 

normalized using DESeq2 and subsequently scaled and centered according to the scaling 

parameters derived from the derivation cohort. Then, the scaled counts were multiplied by the 

weights, values were summed and AUC computed. 

 

In Silico Analysis of Cell Type Proportions 

Cell-type proportions were estimated from bulk host transcriptome data using the 

CIBERSORT algorithm implemented in R package EpiDISH version 0.1.1(2) and the LM22 

reference dataset for distinguishing 22 human hematopoietic cell phenotypes. The cell types 

estimated with this reference cover all expected cell types in the TA sample, however the LM22 

matrix was derived from microarray data. The estimated proportions were compared between 

LRTI+C+M and no-LRTI patients within the derivation cohort using the Wilcoxon Rank Sum test. 

 

Learning Curves for Host Gene Expression Classifier 

To assess the power of our host classifier given the limited derivation cohort size, learning 

curves were generated (Figures S5B). Learning curves are a widely used and robust approach 

to determine optimal training set sample size in machine learning analyses(3, 4). A learning curve 

is computed by evaluating the performance of a model at varying training set sizes and relies on 

the observation that beyond a certain sample size threshold the performance of a model has 

diminishing improvements as a function of the size of training data. 
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For each learning curve, the derivation cohort was subsampled randomly at size n = 10, 

12, 14, 16, 18, and 20 patients. The training and test MSE were computed along with the AUC for 

the test set at each iteration. Finally, for each iteration, the genes identified by regularized 

regression were tallied. These mean squared errors and AUCs were plotted as a function of 

training set size. After repeating this process 25 times, the mean learning curve was computed.  

Estimation of Antibiotic Use Reduction 

Days of therapy for each antibiotic administered to each subject in the no-LRTI group was 

tracked until date of ICU discharge or for up to seven days. Subjects in this group received empiric 

antibiotics because either: 1) a non-infectious etiology of respiratory failure was unapparent to the 

treating clinicians during the time of ICU admission but evident upon post-hoc adjudication based 

on review of the medical record, or 2) the patient had a non-pulmonary infection. Changes in total 

days of therapy per antibiotic were estimated based on theoretical use of mNGS rule-out model 

results 48 hours post-study enrollment to inform discontinuation of antibiotics empirically 

prescribed for LRTI. Standard of care prophylactic antibiotics for immunocompromised patients 

prescribed prior to admission and antibiotics prescribed for non-pulmonary infections were 

excluded from the analysis. The Wilcoxon Rank Sum test was used to determine the significance 

of the differential days of antibiotic therapy.  
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SI Appendix Figures 

LRTI Identified by Clinical Criteria and 
Standard Clinical Microbiology ( LRTI+C+M )
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LRTI Identified by Clinical Criteria ( LRTI+C )
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LRTI Status Unknown ( unk-LRTI )

No LRTI ( no-LRTI )
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Figure S1.  

Distribution of NGS-identified microbes by relative abundance denoting those identified 

by standard clinical microbiology. 

Microbes plotted by log(RNA rpM) versus log(DNA rpM) demonstrate the microbial community 

composition for each patient. Legend: circles represent bacteria or fungi, squares represent 

viruses. Filled markers: microbes identified by conventional microbiologic tests. Red filled: 

microbes indexed in the reference established respiratory pathogens. Blue filled: microbes with 

uncertain respiratory pathogenicity, not present in the reference list. Open circles: microbes 

identified by mNGS, but not identified by conventional clinical microbiology. 
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Figure S2. Microbial pathogens identified by clinician-ordered diagnostics, compared to 

those identified by mNGS rules-based (RBM) and logistic regression (LRM) models.  

Microbial pathogens identified by standard clinical microbiologic diagnostics (upper panel) versus 

those identified by mNGS (lower panel). Patients are grouped by LRTI adjudication: 1) LRTI+C+M 

= LRTI defined by both clinical and microbiologic criteria; 2) No-LRTI = no evidence of LRTI with 

a clear alternative explanation for acute respiratory failure; 3) LRTI+C = LRTI defined by clinical 

criteria only with negative conventional diagnostic testing; 4) unk-LRTI = respiratory failure due to 

unknown cause. LRTI+C+M and no-LRTI patient groups are further divided into derivation and 

validation cohorts. Microbes are depicted in rows, ordered by prevalence within the cohort, and 

patients in columns. Legend: color shading indicates whether the microbe was identified by 

conventional diagnostics (gray, Clin+); the rules based model (light red RBM+), the logistic 

regression model (medium red, LRM+), both the rules based model and logistic regression 

models (dark red, RBM+, LRM+).  
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Figure S3. Performance of LRM-derived top microbe probability score for differentiating 

patients with LRTI from those with non-infectious causes of acute respiratory failure.  

The top microbe probability score per patient from the LR model was significantly higher in 

LRTI+C+M subjects versus the no-LRTI subjects (p = 3.8 x 10-4 in the derivation cohort). This value 

predicted LRTI with an AUC of 0.97 (95% CI = 0.90 - 1.00) in the derivation cohort and AUC of 

0.93 (95% CI = 0.82-1.00) in the validation cohort. 
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Figure S4. Performance DNA-Seq microbiome diversity assessment for differentiating 

patients with LRTI from those with non-infectious causes of acute respiratory failure.   

A) DNA-Seq Shannon Diversity Index (SDI) was found to be significantly different between 

LRTI+C+M and no-LRTI patients (p = < 0.01) B) Beta diversity assessed by PERMANOVA on Bray-

Curtis dissimilarity values in the derivation cohort differed between LRTI+C+M and no-LRTI patients 

(p < 0.01). C. DNA-Seq SDI differentiated LRTI+C+M from no-LRTI patients with an AUC of 0.84 

(0.66−1.0) in the derivation cohort. The AUC curves for derivation and validation cohorts are blue 

and green, respectively. 
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Figure S5. Learning Curve analyses for pathogen versus commensal and host gene 

classifier models.  

A) Learning curve analyses of the host gene expression classifier model indicated that n=20 

samples in the derivation cohort approached model saturation. B) Learning curve analyses for 

the pathogen versus commensal LR model demonstrated convergence of the derivation cohort 

(blue) and validation cohort (green) mean squared error (MSE) for each of 25 iterations, with 

increasing training set size. The mean MSE is plotted as a solid line. The validation cohort AUC 
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is overlaid, with individual values plotted in black, the mean plotted as a red line, and variance 

shown in gold. The AUC increased with increasing training size, but plateaued at training size of 

n = 125, indicating adequate sample size.   
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Additional Datasets S1 – S9 
 
 

Dataset S1. Expanded clinical and microbiologic data including: age (years), race, gender, 

temperature (°C), maximum heart rate, maximum respiratory rate, maximum white blood cell 

count (cells/uL), number of systemic inflammatory response (SIRS) criteria met, bacteremia, 

concurrent non-pulmonary infection, immune suppression, clinically adjudicated diagnosis, 

standard of care microbiologic testing and antimicrobial use. 

 

Dataset S2. A) United States Centers for Disease Control/National Healthcare Surveillance 

Network surveillance definition of pneumonia used for adjudication in this study. B) Reference 

index of established respiratory pathogens derived from epidemiologic surveillance studies, 

clinical guidelines from the Infectious Diseases Society of America and American Thoracic 

Society and systematic reviews(5–9). 

 

Dataset S3. A) Microbial pathogens detected by clinician-ordered microbiologic diagnostics 

(Clin+) or predicted using the rules-based model (RBM+) and/or the logistic regression model 

(LRM+). For each microbe listed, the values of the LR model features (RNA-Seq rpm, DNA-Seq 

rpm, rank by RNA-Seq rpm, established LRTI pathogen (yes/no), and virus (yes/no)) are listed. 

*Sample orthogonally tested by viral PCR to validate mNGS-identified virus. +Sample orthogonally 

tested by 16S rRNA gene sequencing to confirm one or more bacterial results. B) Feature weights 

for the LRM determined by machine learning in the derivation cohort. 

 

Dataset S4. Microbes identified in no-LRTI patients. The top 10 most prevalent genera 

concordant by DNA- and RNA-Seq across all no-LRTI patients are listed alongside the relative 

distribution of species for each.  
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Dataset S5. Diversity metrics of the transcriptionally active and total fractions of the lung 

microbiome assessed by RNA-Seq and by shotgun DNA sequencing, respectively.  Wilcoxon 

Rank Sum statistical significance and AUC of Simpsons Diversity Index, Shannon Diversity Index, 

richness (number of genera), microbial sequence abundance (total microbial alignments by genus 

normalized per million reads sequenced) and Bray-Curtis index calculated on RNA-Seq and DNA-

Seq datasets. 

 

Dataset S6. A) Differentially expressed genes in the derivation cohort with an adjusted P value 

of < 0.05 between LRTI+C+M and no-LRTI patients. B) Gene Ontology Biological Processes with 

significant enrichment in either LRTI+C+M or no-LRTI subjects.  

 

Dataset S7. LRTI host transcriptional classifier specifics. A) 12 genes were identified as highly 

predictive for differentiating LRTI+C+M and no-LRTI subjects in the derivation cohort, and these 

were subsequently applied to the validation cohort. B) Covariates for immune suppression, 

concurrent non-pulmonary infection, antibiotic use, age, and gender were not significantly 

different between LRTI+C+M and no-LRTI patients. C) CIBERSORT(1) was utilized to predict cell 

type proportions for each patient. M2 Macrophages were identified to have significant differences 

in estimated proportions (Wilcoxon Rank Sum p = 0.03).   

 

Dataset S8. To mitigate the impact of ubiquitous environmental contaminants, no template water 

controls were sequenced alongside each batch of samples that underwent nucleic acid extraction 

(n = 5 for DNA-Seq, n = 6 for RNA-Seq). The 10 most abundant genera, concordant across both 

RNA- and DNA-Seq water controls are listed. 

 

Dataset S9. Human Transcript Counts 
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Gene counts obtained using alignment against the ENSEMBL GRCh38 human genome build are 

listed. Genes and associated ENSEMBL ID are listed in rows and subjects are grouped by 

columns. 

 

 

  



Page 20 of 20 
 

 

Supplemental References 

1.  Dobbin KK, Zhao Y, Simon RM (2008) How Large a Training Set is Needed to Develop a 
Classifier for Microarray Data? Clin Cancer Res 14(1):108–114. 

2.  Newman AM, et al. (2015) Robust enumeration of cell subsets from tissue expression 
profiles. Nat Methods 12(5):453–457. 

3.  Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH (2012) Predicting sample size required for 
classification performance. BMC Med Inform Decis Mak 12:8. 

4.  Meek C, Thiesson B, Heckerman D The Learning-Curve Sampling Method Applied to 
Model-Based Clustering. 22. 

5.  Jain S, et al. (2015) Community-Acquired Pneumonia Requiring Hospitalization among U.S. 
Adults. N Engl J Med 373(5):415–427. 

6.  Magill SS, et al. (2014) Multistate point-prevalence survey of health care-associated 
infections. N Engl J Med 370(13):1198–1208. 

7.  Mandell LA, et al. (2007) Infectious Diseases Society of America/American Thoracic Society 
Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults. 
Clin Infect Dis 44(Supplement_2):S27–S72. 

8.  Sethi S, Murphy TF (2008) Infection in the Pathogenesis and Course of Chronic Obstructive 
Pulmonary Disease. N Engl J Med 359(22):2355–2365. 

9.  Fishman JA (2017) Infection in Organ Transplantation. Am J Transplant Off J Am Soc 
Transplant Am Soc Transpl Surg 17(4):856–879. 

 

 

 

 

 

 

 




