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Figure S1. Control of cellular circadian rhythms by translational 
switching of Cry1 expression in organotypic Cry-null SCN slices. 
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a) Expression of Cry1::EGFP relative to mCherry shows a dose-dependent 

increase, representing a dose-dependent increase in Cry1 expression. 

Mean±SEM ratio of EGFP to mCherry (n=4-6 SCN slices per dose) 

following addition of vehicle (0) or AlkK (0.3, 3mM) to the medium. In 

each slice the average, background subtracted ratio was taken from 40 cells 

over 2 fields of view (63x confocal image) (1xANOVA: F=16.95 df 2,12 

p<0.001; post-hoc Tukey’s multiple comparisons test *p<0.05 0.3mM AlkK 

vs vehicle; 0.3mM vs 3mM AlkK; ***p<0.001 3mM AlkK vs vehicle). b) 

Representative traces from 4 SCN slices treated with 1mM AlkK showing 

the decrease in the level of Per2::Luc bioluminescence following expression 

of pCry1-Cry1(177TAG)::EGFP. Photomicrographs (x20; scale bar 100µm) 

show the colocalisation of Cry1::EGFP and mCherry (yellow/orange cells) 

at the peak but not at the trough of the Per2::Luc bioluminescence cycle c) 

Comparison between the mean (±SEM, dashed lines) decrease in 

bioluminescence recording from Cry1, 2-null Per2::Luc SCN slices (n=7) 

immediately following addition of 1mM AlkK (“initiation”; black line) and 

during the 1st TTFL-driven oscillation (“1st peak”, red line). Grey bars 

represent significant differences between the “initiation” and “1st peak”; dark 

grey p<0.001; mid grey p<0.01; light grey p<0.05. 
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Figure S2. Control of cellular circadian rhythms by translational 

switching of Cry1 expression in organotypic Cry-null SCN slices. 

a) Representative pixel-based images of trough and peak bioluminescence, 

with corresponding standard deviation of signal over SCN during pre-AlkK 

baseline (left), during 1mM AlkK (centre) and following wash-out of AlkK 

(right) (images from Slice B). b) Corresponding FFT determined period, 

normalised amplitude, RAE (relative amplitude error) and GOF (goodness 

of fit) of cellular circadian oscillations from Slice B showing the coherence 

of the cellular rhythms during AlkK treatment but not during baseline or 

washout (mean±SD shown in magenta overlayed on top of the individual 

values). 
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Figure S3. Control of circuit-level circadian organisation by 
translational switching of Cry1 expression in organotypic Cry-null SCN 
slices. 
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Phase distribution maps and associated Rayleigh plots from 4 independent 

Cry1, 2-null SCN slices (A-D) transduced with the AAV pCry1-

Cry1(177TAG)::EGFP. Data presented during the baseline (left), 1mM AlkK 

treatment (centre) and washout (right). Extreme right shows phase 

distribution during AlkK treatment but with an expanded scale (-3 to 3h vs -

20 to 20h).  
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Figure S4. Control of cellular circadian rhythms by translational 

switching of Cry1 expression in organotypic Cry-null SCN slices is 

dependent on inter-cellular communication. 

a) Per2::Luc bioluminescence traces from Cry1, 2-null SCN slices 

transduced with AAV pCry1-Cry1(177TAG)::EGFP and treated with 1mM 
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AlkK (magenta) followed by either vehicle or b) 1mM TTX (n=3/group). c) 

As in a) for slices treated with vehicle then AlkK (n=3), or d) TTX and then 

AlkK (n=4). e) Mean (±SEM, dashed lines) detrended bioluminescence 

traces from a) to d). The black dashed line aligns the 1st TTFL-driven peak 

following treatment with 1mM AlkK.  
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Figure S5. Translational switching of Cry1::EGFP expression in the 

SCN controls circadian behaviour of Cry1, 2-null mice. 

a) Photomicrographs (20x magnification, 4x4 tiled) showing the rostro-

caudal coronal distribution of Cry1(177TAG)::EGFP expression in the 

hypothalamus of 5 representative Cry1, 2-null mice (3V: 3rd ventricle; AC: 

anterior comminsure; OC: optic chiasm; POA: preoptic area; MBH: medio-

basal hypothalamus) (Scale bar = 500µm). b) Representative double-plotted 
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actograms of wheel-running behaviour of the same mice as in (a) transferred 

to DD and provided with AlkK in drinking water. The traces are double-

plotted on a 24h time base.  
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Figure S6. Quality and coherence of circadian behaviour initiated in 

Cry1, 2-null mice by translational switching of Cry1::EGFP expression 

in the SCN. 
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a, b) Representative double-plotted actograms of wheel-running behaviour 

of wild-type (a) or Cry2-null (b) mice. c- f) Group data (mean±SEM; n=6-

11) for c) circadian period, d) non-parametric relative amplitude, e) intra-

daily variability and f) inter-daily stability of circadian wheel-running 

behaviour of wild-type (black; n=11) or Cry2-null mice (grey; n=8); or 

Cry1, 2-null mice injected with control AAV pCry1-EGFP (green; n=6) or 

non-conditional pCry1-Cry1::EGFP (red; n=6); or Cry1, 2-null mice injected 

with AAV encoding aminoacyl-tRNA synthetase/ tRNACUA pair, plus 

pCry1-Cry1(177TAG)::EGFP and treated with vehicle (light blue; n=11) or 

AlkK (magenta; n=11) for translational switching. (Period: post hoc Tukey’s 

multiple comparison test *p<0.05 AlkK vs AAV pCry1-Cry1::EGFP; 

***p<0.001 vs wild-type and Cry2-null; xxp<0.005 wild-type vs Cry2-null. 

Relative amplitude: 1xANOVA: F=3.2 df 3,32 p<0.05; post hoc Tukey’s 

multiple comparison test *p<0.05 AlkK vs wild-type. Intradaily variability: 

1xANOVA: F=12.1 df 3,32 p<0.0001; post hoc Tukey’s multiple 

comparison test **p<0.005 AlkK vs Cry2-null, xxxp<0.0001 WT vs Cry2-

null. Interdaily stability: 1xANOVA: F=22.4 df 3,32 p<0.0001; post hoc 

Tukey’s multiple comparison test ***p<0.0001 AlkK vs wild-type; 
xxxp<0.0001 WT vs Cry2-null and AAV pCry1-Cry1::EGFP.).   
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Figure S7. Effect of AlkK on drinking water consumption and 

maintenance of body weight. 
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a) Weekly fluid intake of Cry1, 2-null mice treated sequentially with AlkK, 

vehicle and AlkK (blue; n=5), or vehicle, AlkK and vehicle (red; n=6) in 

drinking water. Shaded blue and red blocks indicate phase of AlkK 

treatment. *** p<0.001 between groups  (2xANOVA: Interaction F=55.0, df 

8,75, p<0.0001; Time F=17.7 df 8,75 p<0.0001; Treatment F=2.0 df 1,75 

p<0.05; post hoc Sidak’s multiple comparisons test ****p<0.0001, 

***p<0.001). b) Weekly change in body weight (mean+SEM), potted as in 

(a). (2x RM ANOVA: Interaction F=13.8, df 9,81, p=0.09; Time F=12.1 df 

9,81 p=0.16; Treatment F=0.3 df 1,9 p=0.99).  
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Figure S8. Comparison of circadian behavioural profiles of Cry1, 2-null 

mice undergoing translational switching of Cry1 expression and wild-

type and Cry2-null mice. 
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a) Single-plotted group circadian activity profiles (mean±SEM, n =11/group) 

of AAV-injected Cry1, 2-null mice provided with vehicle (light blue) or 

AlkK (magenta) in their drinking water (Grey box denotes subjective night). 

b) Circadian activity profile as in (a) for AlkK-treated mice (magenta, 

n=11), plotted alongside wild-type (black, n=11) and Cry2-null (grey, n=8) 

mice. (2xANOVA RM: Interaction F=12.5, df 90,1035, p<0.0001; Time 

F=32.4, df 45,1035, p<0.0001; Group F=4.5, df 2,23, p<0.005.  
 
 
 
 
 
 


