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Materials and Methods

DNA extraction and sequencing library preparation

Isolate collection and subsequent sequencing was performed over several years, using multiple
DNA extraction methods, different versions of library preparation kit chemistries and at different
sequencing centres. Newly sequenced isolates for this study were grown in 50ml Nalgene Nunc™
tissue culture-treated flasks (Thermo Fisher Scientific, Massachusetts, USA) for 10-14 days at 18-

20°C. DNA extraction was performed using the MasterPure™ Yeast DNA Purification Kit (Epicentre,

Wisconsin, USA) or Qiagen Genomic Tips 20/G and DNeasy™ Blood and Tissue Kits (Qiagen,
Venlo, Netherlands). DNA extractions were quantified using a Tapestation™ 2200 (Agilent
Technologies, California, United States) and Quibt™ 2.0 fluorimeter (Thermo Fisher Scientific,
Massachusetts, USA). We prepared DNA samples for sequencing on an [llumina HiSeq™ platform
(Illumina, California, USA), generating 125+125bp paired-end sequencing using the Illumina
HiSeq™ high output V4 chemistry. Isolates CLFT061, CLFT065, CLFT067, CLFT071, CLFT136

and CLFT144 were prepared using [llumina Nextera™ XT kits.

Autosomal read mapping and variant calling

All raw sequencing reads obtained from this study and from the previous studies were first
cleaned of adapter sequences and quality trimmed using cutadapt v1.10 (45). Reads were mapped to
the JEL423 reference genome (23) using Burrows-Wheeler Aligner (46) (BWA) v0.7.8. Resulting
sequence alignment/map (SAM) files were processed using SAMtools (47) v1.3.1 using the ‘fixmate’
and ‘sort’ programs to ready the files for variant discovery. Variant discovery was performed in a
two-step process using freebayes (48) version dbb6160 assuming a diploid genome in all individuals
for the purposes of downstream analyses. Tests for the effect of ploidy variation on population genetic
statistics in this study showed minimal bias due to this assumption (see online content methods
section Population structure and genomics analysis for details). In the first step, sorted BAM files for
each of the isolates in the study were independently called to find variant positions. The set of all

variable positions identified across all samples were merged into a single variant call format (VCF)



file. In the second step, genotype calls were independently made for each isolate, at each of the
positions identified in the first step to produce a squared-off call set (each sample VCF has genotype
calls at the same loci, including homozygous reference calls, and explicitly identifying positions
without sequencing read coverage). The sample VCF files were processed by vcflib (49) to break
complex variants into allelic primitives and then vt (50) to normalize short insertion and deletion
sequences (indels). VCFs were then quality filtered with bcftools (47) version 1.3.1. In individuals,
sites covered by 3 reads or less were set to missing to ensure very low coverage sites did not
contribute information. Subsequently, putative non-reference genotype calls were set to homozygous
reference if they failed any of the following filters (there was not enough evidence to support a variant
genotype call); an alternate allele is in the called genotype without supporting reads (AC > 0 &&
NUMALT == 0); the phred-scaled quality score is less than 5 when there are any reads covering the
position (%QUAL <5 && DP > 0); any called allele is not supported by at least two reads (AF[*] <=
0.5 && DP < 4); alternate alleles are supported by only low quality reads (AF[*] <= 0.5 && DP <13
&& %QUAL < 10) | (AF[*] > 0.5 && DP <4 && %QUAL < 50); the quality, scaled by depth of
supporting reads is less than a threshold (%QUAL / AO < 10); a called allele does not appear on both
forward and reverse strands ( SAF == 0 | SAR == 0); alleles are supported only by reads entirely
placed right or left of the query variant (RPR = 0 | RPL = 0). The individual filtered VCF files were
merged into a single multi-sample VCF using vcfstreamsort (49) to ensure sorting of out of order
variants resulting from breaking complex variants in individual files into their simplest allelic

representation.

Phylogenetic analysis, evolutionary rates and TMRCA for the amphibian panzootic

Positions including putative indels, and other complex and small structural variants were
removed from the VCF leaving SNP positions only to maintain the alignment between sites. A
FASTA file of the concatenated SNPs was constructed from these positions. Phylogenetic analyses
were conducted using RAXML (57) v8.2.9 using the GTRCAT model with 500 bootstrap runs in rapid

bootstrapping mode. A browsable version of this phylogeny with associated isolate metadata is



available on the microreact website (/9) at https://microreact.org/project/GlobalBd. Mitochondrial
reads were mapped to the JEL423 mitochondrial reference genomes and SNPs were called using the
GATK UnifiedGenotyper (52) (v3.4-46-gbc0262) due to the haploid nature of the mitochondrial
genome. A total of 1,150 high quality mitochondrial SNPs were called in the mitochondrial genome.
Among those variants, 412, 194, 94 and 86 SNPs were contained within the BdASIA-1 (n = 8),
BdCAPE (n =15), BAGPL (n = 153) and BdASIA-2/BdBRAZIL (n = 7) lineages respectively.

A non-recombining 1.66Mbp region from Supercontig 1.2 between positions 500,000-
2,160,000 was identified as suitable input for the dating analysis from the autosomal genome. Owing
to the highly dynamic organisation of the Bd genome (/8) and subsequent rapid fluctuations in
heterozygosity, and to scale the mutation rate by the number of variable and invariant sites,
heterozygous SNPs in this region were ‘haploidised’ using a custom Perl script. A single allele at each
site for each sample was selected using a weighted random-draw from the alleles observed at each
locus, with weights equal to the sum of sequenced base qualities of the observed reads supporting
each allele observed in the sequencing data (and not only from called genotypes, which are dependent
on assumed ploidy). A ML phylogenetic tree was inferred with PhyML (53), using the haploidised
and mitochondrial alignments, both of which recapitulate the whole-genome autosomal phylogeny.

Bayesian dating inferences were performed with BEAST (54) (v1.8.2) on 153 BdGPL isolates
with recorded sampling years. Isolate 0739 (BdCH) was included as an outgroup in the phylogenetic
reconstruction to improve the efficiency of tree search. We applied a GTR substitution model because
the latter was shown using ModelTest (55) to best fit the SNP data. The xml input files were manually
edited by adding the counts of invariant A, T, C & G sites as explained in Rieux & Balloux,
Molecular Ecology, 2016 (see supplementary material 1a) (56). Rate variation among sites was
modelled with a discrete gamma distribution with four rate categories. We assumed an uncorrelated
lognormal relaxed clock to account for rate variation among lineages. To minimize prior assumptions
about demographic history, we adopted an extended Bayesian skyline plot (EBSP) approach to
integrate data over different coalescent histories.

The mitochondrial BdGPL tree was calibrated using tip dates. To validate the tip dating

additional calibration also using node dates (mixed calibration) was carried out. The autosomal



genome was calibrated using tip dates only. For tip dating inferences, we applied flat priors (i.e.,
uniform distributions) for the substitution rate (1.107% - 1.107 substitutions/site/year) as well as for the
age of any node in the tree (including the root). For inference including node dating, we also applied
the same flat prior for the substitution rate but we constrained the age of the MRCAs for Australian
(1978) (4), Central American (1972) (5), Sierra de Guadarrama (1997) (/0) and the Pyrenean (2000)
(57) isolates to date to their respective historical description times. We used normal distributions as
priors on nodal ages with the mean being equal to the historical description and a standard deviation
of 20% the value of the mean. We initially ran an analysis, sampling from priors only to check the
induced marginal prior distribution of the constrained nodes. The marginal priors of date-constrained
nodes adequately matched the calibration densities we specified and there was no systematic bias in
shifts away from the mean of the calibration densities (Fig S9). We ran a minimum of five
independent chains in which samples were drawn every 10,000 MCMC steps from a total of
100,000,000 steps, after a discarded burn in of 10,000,000 steps. Convergence to the stationary
distribution and sufficient sampling and mixing were checked by inspection of posterior samples
(effective sample size >200). Parameter estimation was based on the samples combined from the
different chains. The best supported tree was estimated from the combined samples using the

maximum clade credibility method implemented in TreeAnnotator (54).

Targeted capture of Bd DNA from preserved amphibians specimens using RNA baits

The extraction, preparation, bait-enrichment and sequencing of Batrachochytrium dendrobatidis
DNA preserved on amphibian skin was performed in a controlled environment in specialised ancient
DNA laboratories at the Centre for GeoGenetics, Natural History Museum of Denmark. Amphibians
from the Pyrenean Bd outbreak, -including the Pyrenean index site of Pefialara- were stored in 70%
ethanol. Tissue (toe clips and ventral skin scrapes) was aseptically removed in a laminar flow hood
and DNA was extracted using a Qiagen DNEasy™ Blood and Tissue kit (Qiagen, Venlo,
Netherlands). DNA was sheared using sonication on a Biorupter™ (Diagenode, Liege, Belgium)

using 6 cycles of 15 seconds on, followed by 90 seconds off to obtain 350-400bp fragments. Libraries



were prepared according to the blunt-end library preparation for degraded DNA described by Wales et
al (58). Nicks in ligated adaptor sequences were repaired using a NEBNext™ fill-in module. Libraries
were PCR amplified and P7 adaptor ends added using primers with custom barcode indexes. Samples
underwent as few rounds of PCR as possible to minimise PCR amplification bias, using 12 cycles of
PCR amplification with AmpliTaq Gold (Thermo Fisher Scientific, Massachusetts, USA). Indexed
libraries were purified into 51ml ddH,0 using a Qiagen Qiaquick™ PCR purification kit. 300ng of
each indexed library was enriched for Batrachochytrium dendrobatidis sequences using a custom-
designed Mybaits™ kit (MY croarray, Michigan, USA). RNA probes with a length of 120-mer were
synthesized for the entire genome, using a 40 bp tiling strategy. The manufacture’s recommended

protocol was followed (Mybaits manual 1.3.8), including hybridisation of DNA and probes at 65°C

for 41 hours, and releasing the captured DNA from the RNA probes with an 10mM NaOH solution.
Captured libraries were re-amplified with AmpliTaq Gold using 14 PCR cycles, inspected on a
Bioanalyzer™ instrument (Agilent, California, USA) and sequenced on an Illumina HiSeq™ 2500
using paired end chemistry. Sequencing was carried out on captured libraries only. Reads were
processed using the PALEOMIX (59) pipeline to produce BAM files for use in variant calling

pipelines as described.

Resolving the structure of mtDNA using long-read sequencing

DNA from freshly cultured Bd reference isolate JEL423 (23) was carefully extracted using
Qiagen Genomic Tips 20/G and DNeasy™ Blood and Tissue Kits (Qiagen, Venlo, Netherlands).
DNA was size selected for high molecular weight (HMW) fragments using a QIAquick™ Gel
Extraction Kit (Qiagen, Venlo, Netherlands). Size-selected DNA was subsequently sheared using
Covaris g-tubes, preferentially shearing to obtain fragments of approximately 10 kbp. Libraries were
prepared for long-read sequencing on a MinlON™ sequencing device (Oxford Nanopore
Technologies, Oxford, UK) using the Nanopore Sequencing Kit SQK-LSK208 (Oxford Nanopore
Technologies, Oxford, UK). Libraries were run on a SpotON™ Flow Cell R9.4 (Oxford Nanopore

Technologies, Oxford, UK) using a 48-hour run protocol.



Canu (60) was used to assemble resultant long reads, producing 4 unitigs. Using these unitigs as
independent reference sequences, the long reads were re-mapped using Graphmap (6/7). Reads that
mapped were extracted and reassembled using Canu. This improved (lengthened) the inverted repeat
assembly at the termini of unitig2 and unitig4. The original Canu assembly produced longer inverted
repeats for unitigl and unitig3. The unitig variant with the longest terminal inverted repeat structure
was selected for each of the 4 unitigs and combined into a single file. Previously sequenced Illumina
HiSeq reads were mapped to the new long-read reference and Pilon (62) was used to improve the
sequence assembly across 3 iterations. Based on contig overlap and coverage data the 4 unitigs were
resolved into three mitochondrial chromosomes: unitig2-unitigl, unitig2-unitig3 and unitig4.
Annotation was done using MFannot (63), InterProScan (64) for protein functional prediction and
tRNAscan-SE(65, 66) to improve the tRNA predictions. Ribosomal RNA annotation was improved
using the mapping of RNA-seq reads with accession number SRR3707957 (see Supplementary

Materials Fig S7).

Population structure and genomics analysis

Sliding-window population genetic statistics (n, Tajima’s D, Fst) were calculated using vcftools
(67) (v0.1.14) using 10kb non-overlapping windows. The ploidy of Bd genome is known to be
variable (/8) which violates the assumption of a diploid state used in these statistics. We tested for
changes in m due to an effect of unaccounted-for increased ploidy. We predicted the ploidy of three
samples with variable depth of coverage (JEL423, KB45 and VOR3) using a method based on
genotype likelihoods. Briefly, the likelihood of a certain ploidy is equal to the sum across all possible
genotype likelihoods compatible with the tested ploidy, times the probability of the genotype itself.
The latter is calculated assuming Hardy-Weinberg Equilibrium using an expected population allele
frequency with a constant effective population size of 100,000. We assigned the most likely ploidy at
each supercontig as the most frequent ploidy across windows of 100kbp.

We then performed 10 simulations using 1Mbp segments from these isolates, where the ploidy

was estimated to be equal to 3, 4 or 5. These segments of varying ploidy were then transformed to



diploids by either (i) randomly sampling two alleles at each genotype and (ii) using a strategy that
favours heterozygous states if two alleles are present. With the former strategy, the mean
overestimation of « (in standardised bias units) ranges from 1.0037 to 1.0061, while on the latter
approach it ranges from 1.084 to 1.23. When the true ploidy is 1, we observe a mean underestimation
(in standardised bias units) of 0.97. We therefore concluded that variation in ploidy cannot account
for the large variation in © between the main lineages.

To explore population structure and signatures of ancient recombination using our complete,
dense sequencing data, we used fineSSTRUCTURE (68), which identifies haplotypes in the data and
‘paints’ individuals as a combination of those haplotypes. We used the linked co-ancestry model
which uses information from markers in linkage disequilibrium, and we phased our sequencing data
using the read-aware phasing algorithm implemented in shapeit2 (69) using these phased files as input
to fineSSTRUCTURE.

We also investigated population structure and genetic exchange among main lineages using
STRUCTURE (29, 70) for a subset of sites and isolates. We selected a panel of 61 isolates
representing all main lineages, and those isolates putatively identified as hybrids (Fig. 1b). We
subsampled positions from our multi-sample VCF at a constant rate to equal to 10,000/586,005 (the
total number of segregating sites in the VCF) using vefrandomsample from vcflib (49) to obtain a
random selection of 9,905 bi-allelic sites for analysis. We used the linked admixture model, without
assuming correct phasing information for each site. After a burn-in of 10,000 MCMC iterations we
sampled the posterior distribution from 20,000 iterations of the model to obtain joint-assignment
probabilities for the ancestral population of origin for each site in each isolate. We varied the number
of ancestral populations £, calculating the rate of change in the log probability of the data (77) across
multiple replicates at each k, which indicated k=4 best explained the genetic structure in the
population, broadly agreeing with deeply diverged phylogenetic lineages. The variance between
replicates indicated that the length of our burn in and subsequent run-time was long enough.

The clustering of the global isolate panel was also investigated using principal component
analysis (PCA). SNPs that were in high linkage disequilibrium were pruned from the dataset using the
SNPRelate (72) package version 1.10.2 in R (73) version 3.4.0. After pruning using a sliding-window
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based analysis and an LD threshold of 0.125, 3,900 SNP positions remained which were analysed

using SNPrelate and plotted with ggplot2 (74).

Tests of association between chytridiomycosis and Bd lineage

All Bd isolates were classified as chytridiomycosis positive or negative (Supplementary
Materials Fig. S11). Positive classifications were assigned where Bd isolates were observed to have
caused clinical signs of disease or death in the wild in either the adult or tadpole from which the
isolates were obtained. We examined differences for all isolates with geographic coordinates in the
first instance (n=228). We also examined the potential effect of oversampling isolates from some
locations. Fisher's tests (two tailed, p=0.05) were used to test for differences in the proportion of
isolates associated with chytridiomycosis among main Bd lineages, where isolates were grouped into
their parental lineages: BAASIA (consisting of BAASIA-1, BdASIA-2 and BdBRAZIL); BdGPL and
BdCAPE. Other lineages detected (all HYBRIDs and BdCH) were excluded due to small sample
sizes. Post-hoc tests with false-discovery rate (FDR) correction for multiple comparisons were used to
determine statistical significance of differences between lineage pairs and to calculate odds ratios
(Supplementary Materials Table S5).

We also examined the potential effect of oversampling isolates from some locations within the
dataset by rerunning the tests of association after excluding isolates according to three geographic
distance thresholds: 1) exact same location (0km); 2) within 0.5km, and 3) within 1km. Site pairs
within each of these distance thresholds were first identified, and the first isolate of each pair of the
same Bd lineage when ordered by latitude was retained for analyses while the other geographic

duplicates were removed.

Bd multi-lineage challenge experiments

Experimental assessment of host response to Bd isolates was done according and subject to

ethical review at the Institute of Zoology (Zoological Society of London), under UK Home Office



licence PPL 80/2466 in accordance with the A(SP)A Act 1986 and following established protocols
(31). Common toad (Bufo bufo) larvae (Gosner stage 24 (72)) hatched from 20 egg strings collected in
the UK were randomly allocated into 1 of 5 experimental treatment groups in two separate
experiments for challenge with a Bd isolate from the BdGPL, BACAPE, BdCH or BdASIA-1 main
lineages, or the negative control group. Each treatment comprised 60 individuals (biological
replicates).

Tadpoles in Bd challenge treatments were exposed to 8 doses (7,500-37,500: mean 20,625 + std.
dev. 9,542 active zoospores per exposure in liquid media) of Bd zoospores every 4 days. Zoospore
counts and volume of media were standardized among isolates for each exposure. Tadpoles in the
negative control treatment were exposed on the same schedule to an equivalent volume of sterile
media used to culture isolates. The experiment was undertaken in a climate-controlled room (18 °C
constant temperature) with a 12h/12h day/night light schedule. Tadpoles were kept in individual
flasks in 140 ml of aged water which were rotated daily. Water changes took place twice a week, and
animals were fed with 0.4 mL solution of 1g/100ml powdered Tetra tablets every two days.

DNA from the tissue samples (mouth parts in larval stage and feet in metamorphs) was extracted
in PrepMan Ultra (Applied Biosystems, Foster City, CA, USA; Hyatt et al. 2007) and analysed for the
presence of Bd using quantitative (real-time) polymerase chain reaction techniques (QPCR) described
by Boyle et al (76), and employing the changes described by Kriger et al (77). Extractions were
diluted 1:10 before qPCR amplification, performed in duplicate, with Bd genomic equivalent (GE)
standards of 100, 10, 1 and 0.1 GE.

To assess the effects of the different main Bd lineages on infectivity and survivorship we used
an analysis of covariance (ANCOVA) with Bd lineage (treatment) as factor and body mass at
metamorphosis as a covariate. Body mass was log-transformed to meet expectations of normality.
Survivorship was assessed using Cox proportional hazards regression with treatment group and
animal weight as covariates. It has been shown that exposure to Bd can affect larval development (7§-
80) so we examined the effect of treatment on time to metamorphosis, using one-way analysis of
variance (ANOVA). By default, the last day of the experiment was considered the day of completion

of the metamorphosis for those individuals that did not metamorphose by the endpoint. We also tested
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for differential effects on body mass using ANCOVA at: 1) metamorphosis, using time to
metamorphosis as covariate, and 2) at the end of the experiment using mass at metamorphosis and
time post-metamorphosis as covariates. Mass and time were normalised by log-transformation.

The susceptibility to infection and survivorship of previously uninfected metamorphosed toads
was tested using animals from the same egg strings as the larval challenge experiment. The animals
were housed individually in plastic boxes (120 x 80 x 70 mm) lined with moist paper towel, provided
with PVC shelter and kept on shelves in a climate-controlled environment at 18 °C. Box positions on
each shelf were rotated daily to ensure each animal had equal lighting conditions across the duration
of the experiment. Toadlets were fed on hatchling crickets every two days. The animals were
allocated to be treated with one of the same 4 Bd treatments or the control treatment. Bd exposure
treatments comprised being exposed to five doses (10,000-36,000: mean 20,200 =+ std. dev. 10,639,
active zoospores per exposure in liquid media) of Bd zoospores every 4 days. Each treatment
comprised 30 toadlets. One control animal which was inadvertently contaminated was excluded from
the analysis. Individuals were weighed before the experiment with no difference among different
treatment groups (ANOVA: F(4, 145) = 0.178, p = 0.949). After 22 days, the experiment was
completed and all animals were re-weighed. We tested for effects of treatment group (Bd lineage) on
infectivity using ANCOVA, and tested survivorship using Cox’s proportional hazards regression. We
used Fisher’s Least Significant Difference (LSD) test to determine post hoc where differences
amongst treatments occurred, adjusting for multiple comparisons using false discovery rate

correction.

Rooting the global phylogeny using orthoMCL

To root the Bd phylogenetic tree using Bsal as an outgroup (as opposed to a midpoint root as
used in Fig 1b), VCF's, GFF3 and coding sequence (CDS) FASTAs for each gene in an updated Bd
JELA423 gene set (23) were compared to generate consensus gene sequences for 7 isolates representing
the full range of known Bd lineages (BdCH=0739, BACAPE=SA6e, BAASIA-1=KB347, BdASIA-

2/BdBRAZIL=CLFTO001 and KB72, BdGPL=JEL423 and 1A043). SNPs were included, and single
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alleles were randomly chosen from heterozygous position. In an iterative process, we checked for any
previous assignments of heterozygosity, and when present, we used the same allele. Each gene was
translated to amino acid sequences using the universal genetic code. The first reading frame found to
translate without stop codons was used, or that with the least number of stops. Single copy
orthologous protein sequences for the Bd isolates, Bsal and 2 other chytrids Hp and Sp (23) were
merged into individual files. We retained files with nucleotide substitutions between the Bd isolates
resulting in 8 informative orthologous proteins for alignment using Muscle v3.8.31. From the protein
alignments, we then extracted the CDS sequences and reformatted the alignment in a codon context,
and merged into a single FASTA file. We identified DCMut+I+G as the best-fitting model
(Supplementary Materials Table S2) of protein evolution using Prottest (8/) v3.4 from all-matrices
and all-distributions. We then ran RAXML (57) v8.2.9 with 500 bootstrap runs in rapid bootstrapping
mode to generate the final tree (Supplementary Materials Fig. S6). We did not specify an outgroup to

RAXML, but rooted the resultant tree using the Bsal outgroup.

Use of ITS-1 as a diagnostic marker for Bd lineage

A 50pl PCR reaction mixture was prepared for each sample, containing 32.5ul of dH,O, 5ul of
deoxyribonucleotides (ANTPs) at 2mM in equal ratio, Sul of 10x buffer, 1ul each of the forward
universal fungal ITS primer SF1 and the reverse universal fungal ITS primer SR1 (/6), 0.5ul of Taq
enzyme and 5pl of DNA sample. Primers were diluted to 10mM and the dNTPs to 2mM prior to use.

PCR amplification proceeds as follows: 95°C for 2 minutes, then 35 repetitions of 95°C for 30
seconds, followed by annealing at 50°C for 30 seconds, then extension at 72°C for 2 minutes. A final
extension at 72°C for 7 minutes was carried out before holding at 4°C. 10ul of PCR product was

analysed via gel electrophoresis using agarose gel and the DNA visualizer SafeView with a Hind III A
ladder to confirm successful amplification. The ITS region was visualised as a band around 500bp in
size. The remainder of the PCR product was reserved for Multilocus Sequence Typing (MLST).
Samples that were not successfully amplified with the SF1/SR1 primer combination were put through
a nested PCR assay (/6). 2pl of the original PCR product from the SF1/SR1 assay was added to a

12



master mix containing 35.5ul dH20, 5ul each of ANTPs at 2mM and 10x buffer, 1ul of each of the Bd
specific forward primer Bdla and the Bd specific reverse primer Bd2a and 0.5ul of Taq enzyme. 10pul
of PCR product was analysed as above via gel electrophoresis. MLST was carried out in either
duplicate or, where possible, triplicate on all samples which were shown by gel electrophoresis to
have undergone successful amplification. The sequencing reactions were Sanger-sequenced by
Imperial College London’s MRC CSC Genomics Core Laboratory. The Sanger sequences were
imported into CodonCode where low quality ends were trimmed and consensus sequences assigned
using Phred base-calling. Sequences were aligned using Clustal-W in Mega (82) V.6 and a ML Tree,

with 500 bootstrap replications was computed (Supplementary Materials Fig. S3).

Additional R packages used

Additional R (73) packages used for generating figures include; ggplot2 (74), RColorBrewer

(88,89), data.table (90), ggtree (91), dendextend (92) and ape (93).
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Caption for Fig. S2

Available online as a PDF file. Nuclear phylogeny. A phylogeny was constructed from the
586,005 segregating sites in the nuclear genome using the GTRCAT substitution model
implemented in RAXML. Five hundred bootstrap replicates were performed. The phylogeny
is mid-point rooted.
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Comparison of phylogenies generated from mitochondrial and internal transcribed spacer
(ITS) sequence alignments. Phylogenetic trees generated from mitochondrial alignments
recapitulate the deeply diverged, main lineages obtained from whole nuclear genome
alignments. ITS alignments are not able to distinguish main Bd lineage, grouping isolates
from different lineages with high bootstrap support (high support values for ITS tree
displayed at internal nodes labelled with black dots).
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Nulceotide diversity (m). A non-overlapping sliding window of 10kb width was used to
calculate nucleotide diversity for each of the lineages. The region highlighted in red is the
region of low-recombination identified in the BdGPL lineage. The dashed black horizontal
line in each panel denotes average m.
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Caption for Fig. S5

Available online as a PDF file. fineSSTRUCTURE analysis of haplotype sharing among
lineages. The scale bar represents the amount of genomic sharing (number of haplotype
chunks), with dark purple representing the largest number of shared haplotypes, and yellow
representing the least number of shared haplotypes. The dendrogram at the top is coloured
according to lineage.
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A Bd phylogeny rooted with the outgroup Batrachochytrium salamandrivorans (Bsal). This
phylogeny shows the inferred relationships among the four main lineages of Bd. The region
of the phylogeny highlighted in grey, shows strongly supported internal branches, lending
support to BACAPE and BdGPL more different to Bsal than BAASIA-1 or BAASIA-
2/BdBRAZIL. The values on the phylogeny denote bootstrap support values from 1000
bootstrap replicates.
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Fig. S7

Structure of Bd mtDNA resolved using long-read sequencing. a. Graph representation of the
mitochondrial genome using Bandage (83). Canu assembly of the mitochondrial genome
resulted in four unitigs that belong to three linear chromosomes that terminated in inverted
repeats. b. Genetic map of the mitochondrial chromosomes and how they relate to the four
unitigs. Grey region is the shared (homologous) region that corresponds to unitig2, which can
be found in both large chromosomes. Unitig2 had twice as high coverage as the other
mtDNA unitigs, and it was linked with unitigl and unitig3 with equal support. Homology of
the shared region is assumed to be maintained by recombination between the two
chromosomes. Most of the conserved mitochondrial genes are located in the shared region
except for rns (or mtSSU rRNA) and cox! (or COI). In addition, the shared region contains a
tRNA gene recognizing UAG codon as leucine (typical for chytrid mtgenomes (84)) and
DNA-polymerase (polB) that is associated with linear mitochondrial chromosomes
terminating in inverted repeats(85-87). ORFs (open reading frames) lacking functional
prediction are shown as blue arrows or boxes without tags. HEG stands for homing
endonuclease gene (commonly associated with group I and II introns). CDS stands for coding
sequence region of protein coding genes.
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Caption for Fig. S8

Available online as a PDF file. Counts of heterozygous positions for each isolate plotted
against a phylogeny. Counts were binned into 10kbp stretches of DNA and plotted against the
midpoint rooted phylogeny depicted in Fig 1b. The red highlighted region is the identified
low recombination region that shows a striking loss of heterozygosity across all isolates of
BdGPL. This same region exhibits no loss of heterozygosity at all in BAASIA-1.
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Calibration densities versus marginal priors
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Fig. S9

Histogram of marginal priors (grey) for each of the constrained nodes in the mixed dating
analysis in BEAST. The specified (normally distributed) calibration densities for each node
are overlaid in red. The mean of the calibration densities is denoted by the red vertical line.
The median of each marginal prior distribution is denoted by the vertical black lines.
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Transcontinental clusters of infection amongst isolates of BdGPL showing international
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linkages with high (>90%) bootstrap support. In this example, isolates of Bd recovered from
Discoglossus sardus on the Mediterranean island of Sardinia are closely linked to isolates of

Bd recovered from species of Amietia from South Africa. A browsable version of this

phylogeny can be accessed at https://microreact.org/project/GlobalBd
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Fig. S11

Transcontinental clusters of infection amongst isolates of BdGPL showing international
linkages with high (>90%) bootstrap support. In this example, isolates of Bd recovered
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Alytes obstetricans
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invasive non-native North American bullfrogs in France and fire-bellied toads from Hungary
are closely linked to an isolate of Bd recovered from Amietia fuscigula from South Africa. A
browsable version of this phylogeny can be accessed at

https://microreact.org/project/GlobalBd
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Fig. S12

Transcontinental clusters of infection amongst isolates of BdGPL showing international
linkages with high (>90%) bootstrap support. In this example, isolates of Bd recovered native
and non-native species of amphibian in Chile are closely linked to isolates of Bd recovered
from species of amphibians across Europe. A browsable version of this phylogeny can be
accessed at https://microreact.org/project/GlobalBd
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Fig. S13

Transcontinental clusters of infection amongst isolates of BACAPE showing international

=
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linkages with high (>90%) bootstrap support. In this example, isolates of Bd from Mallorcan

midwife toads are closely linked to isolates of Bd recovered amphibians in South Africa,

confirming the hypothesis by Walker ef al. Current Biology 2008 (35). A browsable version
of this phylogeny can be accessed at https://microreact.org/project/GlobalBd
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Fig. S14

Transcontinental clusters of infection amongst isolates of BAASIA-2/BdBrazil showing
international linkages with high (>90%) bootstrap support. In this example, isolates of Bd
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from North American bullfrogs in South Korea are closely linked to isolates recovered from
amphibians in Brazil. A browsable version of this phylogeny can be accessed at

https://microreact.org/project/GlobalBd
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Fig. S15

Prevalence of Bd infection after exposure to different lineages during larval stage and early
terrestrial stage.
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Association between chytridiomycosis and main Bd lineages. The B4ASIA-1 and BdASIA-
2/BRAZIL lineages were grouped into a single assumed parental lineage (labelled ASIA).
The bar chart of the left gives counts of cases and non-cases of chytridiomycosis for each of
the lineages. The plot on the right gives the relative proportion for each of the lineages. Asian
and endemic Brazilian strains were not associated with any cases of chytridiomycosis.
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Caption for Table S1

Available online as an Excel file. Metadata associated with isolates used in this study.
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Table S2

Likelihood for different models of protein evolution fit to Bd/Bsal protein alignments in

Prottest v3.4.

Model deltaL.nLL LnL LnLw -InL
DCMut+I+G 0 12773033.24 1 12773033.24
Dayhoff+I+G 737.1 12773770.34 0 12773770.34

DCMut+G 14986.51 12788019.75 0 12788019.75
Dayhoff+G 15702.76 12788736 0 12788736
DCMut+I 3217593 12805209.17 0 12805209.17
Dayhoff+I 32455.96 12805489.2 0 12805489.2
DCMut 316469.3 13089502.54 0 13089502.54
Dayhoff 318527.3 13091560.54 0 13091560.54
WAG+I 383916.71 13156949.94 0 13156949.94
WAG+I+G 383955.38 13156988.62 0 13156988.62
WAG+G 398459.69 13171492.93 0 13171492.93
WAG 514689.17 1328772241 0 13287722.41
Blosum62+1+G 524054.62 13297087.86 0 13297087.86
Blosum62+1 524634 48 13297667.72 0 13297667.72
Blosum62+G 526363.77 13299397.01 0 13299397.01
Blosum62 579023.94 13352057.18 0 13352057.18
JTT+I 623633.02 13396666.26 0 13396666.26
JTT+I+G 62365041 13396683.65 0 13396683.65
JITT+G 63749791 13410531.15 0 13410531.15
JIT 770388.94 13543422.18 0 13543422.18
LG+I 978698.32 13751731.56 0 13751731.56
LG+I+G 978952 .45 13751985.69 0 13751985.69
LG+G 996008.37 13769041.61 0 13769041.61
VT+I+G 1009335.06 13782368.3 0 13782368.3
VT+G 1025258.35 13798291.59 0 13798291.59
FLU+I+G 1034524.76 13807558 0 13807558
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Table S3

Mean time to metamorphosis, mean mass at metamorphosis and percentage survival of

individuals under the varied Bd lineage treatments. Mean time and mass are displayed + the

standard error.

Mean time to

Mean mass at

T(::f:;il)lt metamorphosis  metamorphosis Survival (%)
(days) (®
Control 4043 +0.706 0.102 £ 0.0025 91.4
BdCAPE 39.29 £0.500 0.103 +£0.0018 91.4
BAdASIA-1 39.11 £0.521 0.098 +0.0019 80.6
BdCH 42.63 +0.899 0.095 +0.0020 81.6
BdGPL 40.80 +0.671 0.098 £0.0016 80.0

32



Table S4

Statistical tests for significant differences between treatment groups for B. dendrobatidis
infection. Fisher’s least significant difference (p < 0.05) with false discovery rate correction
for multiple comparisons was used to determine significant differences between treatment
group means for B. dendrobatidis prevalence for larval and post-metamorphic experiments.
Statistical significance when p-value < 0.05.

Experiment #1 (Larval)

Treatment

. BdGPL BdCAPE BdCH BdASIA-1
(lineage)

BdCAPE <0.01

BdCH <0.01 0.621

BdASIA-1 0.424 <0.01 <001

Control <0.01 0.136 0.297 <0.01
Experiment #2
(Metamorph)

BdCAPE 0.206

BdCH <0.05 0.206
BdASIA-1 0.066 0.472 0.472
Control <001 0.066 0.472 0.206
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Table S5

Statistical tests for significant differences between Bd lineage and association with
chytridiomycosis. Fisher's tests (two tailed, p=0.05) were used to test for differences in the
proportion of isolates associated with chytridiomycosis among Bd lineages, where isolates
were grouped into their parental lineages: ASIA (consisting of BAASIA-1, BdASIA-2 and
BdBRAZIL); CAPE and GPL. p values reported in main text were calculated using false
discovery rate correction for multiple comparisons; Bonferroni corrected p values are also
shown above.

False
0, 0, 3 . .
Lineage Lower 95% Odds ratio Upper 95% Fisher’s Discovery Bonferroni
Cl CI test P corrected p
Rate p
BdASIA vs BACAPE 1.760 Inf Inf 0.0049 0.0073 0.0146
BdASIA vs BdGPL 3.001 Inf Inf 0.0001 0.0004 0.0004
BdGPL vs BdCAPE 0.276 0.787 2.072 0.6606 0.6606 1.0000
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Dataset S1

Available online as a zipped xml file. BEAST settings and prior specifications used in the tip-
based mitochondrial genome dating analysis

Dataset S2

Available online as a zipped xml file. BEAST settings and prior specifications used in the tip-
based autosomal genome dating analysis

Dataset S3

Available online as a zipped xml file. BEAST settings and prior specifications used in the
node and tip-based mitochondrial genome dating analysis
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