# Supplementary Table 1. Antibodies used in tissue immunofluorescence staining and their application.

| Primary Antibody              | Secondary Antibody                 | Application     |
|-------------------------------|------------------------------------|-----------------|
| (Manufacture, catalog #,      | (Manufacture, catalog #, dilution) |                 |
| dilution)                     |                                    |                 |
| Rat anti-myelin basic protein | Alexa fluor 594-conjugated donkey  | White matter    |
| (Millipore, MAB386, 1:1,000)  | anti rat (Jacksonimmuno, 712-586-  | marker          |
|                               | 150, 1:2,000)                      |                 |
| Mouse anti-CD68               | Cy3-conjugated donkey anti mouse   | Microinfarct    |
| (AbD Serotec, MCA341R,        | (Millipore, AP192C, 1:2,000)       | marker          |
| 1:1,000)                      |                                    |                 |
| Mouse anti-GFAP               | Cy3-conjugated donkey anti mouse   | Astrogliosis    |
| (Millipore, MAB360, 1:1,000)  | (Millipore, AP192C, 1:2,000)       | marker          |
| Mouse anti-NeuN               | Cy3-conjugated donkey anti mouse   | Neruonal marker |
| (Millipore, MAB377, 1:1,000)  | (Millipore, AP192C, 1:2,000)       |                 |
| None                          | Cy3-conjugated donkey anti mouse   | Endogenous IgG  |
|                               | (Millipore, AP192C, 1:10,000)      |                 |

### Supplementary table 2. Detailed information for statistical analysis of two-way ANOVA

#### results.

|             | Experiments    | Results from two | -way ANOVA |
|-------------|----------------|------------------|------------|
|             | Genotype       | F = 7.599        | P = 0.0089 |
| MBP         | BCAS operation | F = 40.15        | P < 0.0001 |
|             | Interaction    | F = 0.02038      | P = 0.8872 |
| GFAP        | Genotype       | F = 48.50        | P < 0.0001 |
| cortex      | BCAS operation | F = 15.12        | P = 0.0003 |
|             | Interaction    | F = 16.76        | P = 0.0002 |
| GFAP        | Genotype       | F = 8.699        | P = 0.0050 |
| Hippocampus | BCAS operation | F = 30.07        | P < 0.0001 |

|                | Interaction    | F = 2.914  | P = 0.0946 |
|----------------|----------------|------------|------------|
| GFAP           | Genotype       | F = 5.24   | P = 0.0267 |
| WM             | BCAS operation | F = 32.85  | P < 0.0001 |
|                | Interaction    | F = 0.2765 | P = 0.6015 |
| Locomotion     | Genotype       | F = 1.721  | P = 0.2026 |
| total distance | BCAS operation | F = 8.517  | P = 0.0077 |
|                | Interaction    | F = 0.4536 | P = 0.5073 |
| Locomotion     | Genotype       | F = 3.765  | P = 0.6457 |
| center         | BCAS operation | F = 4.708  | P = 0.9950 |
| duration       | Interaction    | F = 0.1977 | P = 0.6607 |
|                | Genotype       | F = 0.0011 | P = 0.9737 |
| Y-maze         | BCAS operation | F = 38.78  | P < 0.0001 |
|                | Interaction    | F = 1.382  | P = 0.2488 |
|                | Genotype       | F = 4.475  | P = 0.0423 |
| NOR            | BCAS operation | F = 4.65   | P = 0.0387 |
|                | Interaction    | F = 5.318  | P = 0.0277 |
|                | Genotype       | F = 14.19  | P = 0.0006 |
| CD31           | BCAS operation | F = 0.3226 | P = 0.5735 |
|                | Interaction    | F = 0.1897 | P = 0.6657 |
| IøG            | Genotype       | F = 92.24  | P < 0.0001 |
| cortex         | BCAS operation | F = 39.88  | P < 0.0001 |
|                | Interaction    | F = 9.358  | P = 0.0042 |
| IgG            | Genotype       | F = 183.6  | P < 0.0001 |
| Hippocampus    | BCAS operation | F = 30.49  | P < 0.0001 |

|     | Interaction    | F = 8.337 | P = 0.0065 |
|-----|----------------|-----------|------------|
| IgG | Genotype       | F = 75.86 | P < 0.0001 |
| WM  | BCAS operation | F = 23.4  | P < 0.0001 |
|     | Interaction    | F = 3.002 | P = 0.0917 |

| Variable         |              | Power (1-β) |        |             |
|------------------|--------------|-------------|--------|-------------|
|                  |              | Gene        | OP     | Interaction |
| MBP              |              | 23.8%       | 97.6%  | 5.2%        |
| GFAP             | Cortex       | 100.0%      | 100.0% | 100.0%      |
|                  | Hippocampus  | 100.0%      | 100.0% | 100.0%      |
|                  | White matter | 100.0%      | 100.0% | 48.2%       |
| CD31             |              | 59.4%       | 5.7%   | 22.0%       |
| Capillary length |              | 5.0%        | 5.0%   | -           |
| IgG              | Cortex       | 100.0%      | 100.0% | 100.0%      |
|                  | Hippocampus  | 100.0%      | 100.0% | 100.0%      |
|                  | White matter | 100.0%      | 100.0% | 100.0%      |

Supplementary table 3. Posthoc power analysis

Significance level ( $\alpha$ ) at 0.05

#### **Supplementary Figure Legends**

Supplementary Figure 1. White Matter Damages in Aged Mice

(a) Representative images of LFB staining. BCAS-operated wild-type and BCAS-operated ApoE<sup>-/-</sup> mice developed white matter injury. (b) Severity score of white matter from LFB staining. Data are presented as number of mice. Difference between groups was statistically significant by chi-square test (P = 0.01). 4 wild-type sham, 5 wild-type BCAS, 4 ApoE<sup>-/-</sup> sham, and 4 ApoE<sup>-/-</sup> BCAS mice. Scale bar, 200  $\mu$ m.

Supplementary Figure 2. Hippocampal Neuronal Loss and Ischemic Stroke in Aged Mice Representative images of haematoxylin and eosin staining and immunohistochemistry for CD68. Hippocampal neuronal loss (arrowheads) and ischemic stroke (arrow) was seen only in ApoE<sup>-/-</sup> BCAS-operated mice. Supplementary Figure 3. Weight and Food Consumption Before and After Surgery

Weight (a) and food consumption (b) were not different among the groups (by two-way ANOVA). The dotted line indicates the time of the operation. Data are presented as gram. 4 wild-type sham, **5** wild-type BCAS, **4** ApoE<sup>-/-</sup> sham, and **4** ApoE<sup>-/-</sup> BCAS mice.

## Supplementary Figure 1.



## Supplementary Figure 2.



