
 

 

Supplementary Material 

LesionTOADS in the healthy elderly 

Lesion TOADS—a computer-based WMH segmentation algorithm that was previously 

validated for patients with multiple sclerosis—was used to automatically determine WMH 

volume on T1-weigthed MPRAGE and FLAIR images.14 As WMH differ in their pattern, 

intensity, and extent to those of multiple sclerosis, we adapted the algorithm to the needs of 

age-related WMH in our cohort in a two-step iterative process and revalidated it the algorithm 

on our cohort. Given the large variety of WMH, their appearance on FLAIR images had a 

wider range of intensities across participants. Therefore, from the first segmentation given by 

LesionTOADS (step 1), we renormalized the contrast of input FLAIR images to better 

separate WMH from healthy tissue, modeling the FLAIR intensity inside the brain as a 

mixture of Gaussian and outlier distributions (step 2). The intensity boundary between tissue 

intensity and WMH is estimated from setting the ratio of segmented WMH to brain volume as 

an outlier ratio, and performing the LesionTOADS step again on the re-normalized intensities. 

This method ensures that the relative intensities of the FLAIR in different images is similar 

across a large cohort of subjects. We then performed a revalidation of LesionTOADS with 

groups of different White matter disease severity. Groups were defined by experienced 

neuroradiologists according to the widely used Fazekas scale,2 and each Fazekas subcategory 

had ten participants (forty participants in total). Manually delineated WMH maps served as 

the “gold standard”. Three iterations were necessary to achieve an improved stable result 

(Supplementary Figure 2). The algorithm also performed a full brain segmentation into 

cerebral and cerebellar cortex, white matter, ventricles, brainstem, and subcortex 

(Supplementary Figure 1). 

 



 

 

 

Supplementary Figure 1 (from left to right): Output of LesionTOADS; FLAIR image with 

WMH, full brain segmentation of T1weighted image, WMH mask 

  



 

 

 

Supplementary Figure 2: Validation of LesionTOADS; Overlap between manual and 

automated segmentations during the renormalization step: A) Mean dice coefficient in 

different lesion groups; B) Average dice coefficient of all 40 participants 

  



 

 

 

 

Supplementary Figure 3A: Normalized WMH volume (WMHvol/WMvol) across age in 890 

healthy participants (60 - 82 years)  



 

 

 

Supplementary Figure 3B: Normalized WMH volume (WMHvol/WMvol) across age in 890 

healthy participants (60 - 82 years), color coding: different Fazekas groups 

LesionTOADS in our sample 

WMH volume in our cohort was assessed first visually according to the widely used Fazekas 

scale.3 Forty subjects (ten of each Fazekas category) were subsequently manually delineated 

and served as the validation sample for LesionTOADS, a computer-based lesion segmentation 

algorithm1 originally designed for multiple sclerosis patients. As WMH of vascular and 

inflammatory origin are similar in appearance, the algorithm rendered satisfactory results. By 

segmenting jointly brain structures and lesions from the MPRAGE and the FLAIR, false 

positive WMH detected in other tissue were minimized. High spatial resolution FLAIR 

images (1 mm isovoxel) increased the accuracy of the WMH volume assessment. WMH 

typically differ in intensity, pattern, and distribution. While some WMH are subtle in intensity 

differences and blurry because of diffuse configuration—also referred to as dirty-appearing 



 

 

white matter4—other WMH are circumscribed focal lesions of high intensity signal. The latter 

is easily depicted while the former is easily missed by lesion segmentation algorithms in 

general as well as for LesionTOADS. A frequent challenge for detecting WMH in our cohort 

were motion artifacts because of discomfort in the scanner related to a lengthy scanning 

protocol, which lead to false positive WMH classification. Through careful inspection, we 

removed images with motion-induced, artificial WMH volume. We further noted occasional 

misclassification of tissue, for example, T2-hyperintense appearing plexus choroideus often 

falsely segmented as WMH. As a result of these precautions, the number of false positives is 

relatively small and consistent in all participants, independent of WMH volume, and can be 

neglected as systematic error. The high dice coefficient in participants with high lesion load 

and the lower dice coefficient in participants with few lesions in the revalidation of 

LesionTOADS likewise reflect false positives carrying a larger weight in participants with 

low or no WMH (Supplementary Figure 2). The overall dice coefficient of LesionTOADS is 

comparable with competing state-of-the-art lesion segmentation algorithms (MICCAI 

segmentation challenge5), and was consistent with multiple sclerosis lesion segmentation 

scores in our revalidation. It is also worth mentioning that the “gold standard” of a manual 

delineation cannot be considered an objective truth. We conclude that LesionTOADS is a 

competitive algorithm and well suited for segmenting age-related WMH in the general 

population, and that automated WMH segmentation is the more precise, rapid, and objective 

method by which to quantify WMH volume in comparison to visual rating scales.  

 

Our processing pipelines with the detailed parameter settings is publicly available online: 

https://figshare.com/s/34efe4617cb2e65c03f0 

https://figshare.com/s/3c1ea16ef5ab67aec6cc 

 

It can be easily visualized or applied to new data in cbstools. 

https://github.com/piloubazin/cbstools-public 

https://figshare.com/s/34efe4617cb2e65c03f0
https://figshare.com/s/3c1ea16ef5ab67aec6cc
https://github.com/piloubazin/cbstools-public


 

 

 

Supplementary Figure 4: WMH frequency maps; overlaid onto a standard MNI template; 

color bar: WMH frequency in percent 

 

  



 

 

 

Supplementary Table 1: Kaiser-Meyer-Olkin Factor Adequacy  

 

MSA total 0.78 

MSA for each item  

Wortschatztest 0.84 

Phonemic Verbal Fluency (S-Words) 0.79 

Semantic Verbal Fluency (Animals) 0.83 

SIDAM Working Memory 0.84 

SIDAM Language 0.8 

SIDAM Long Term Memory 0.82 

Boston Naming Test 0.79 

Delayed Recall Words 0.71 

Recognition Words 0.76 

Immediate Recall Words 0.79 

SIDAM Short Term Memory 0.86 

CERAD Figure Drawing 0.71 

SIDAM Figure Drawing 0.74 

Delayed Figure Drawing 0.83  

TMT A 0.60 

TMT B/A 0.69 

Abbreviations: CERAD = Consortium to Establish a Registry for Alzheimer’s Disease; MSA = Measure of 

Sampling Adequacy; SIDAM = the Structured Interview for Diagnosis of Dementia of Alzheimer type; TMT = 

Trail Making Test 

  



 

 

 

Supplementary Figure 5: Scree plot of 16 items 

  



 

 

Factor extraction 

To reduce the number of cognitive items and to detect the latent cognitive structure, principal 

axis factoring was conducted on the sixteen cognitive items (Supplementary Table 1). We 

chose an oblique rotation “oblimin” because we expected the cognitive latent variables not to 

be entirely independent from each other. Because not all cognitive items were available for all 

participants, only n = 702 subjects could be included, resulting in a subject to item ratio of 

43.875. The Kaiser-Meyer-Olkin (KMO) criterion verified the sampling adequacy for the 

analysis with an overall measure of sampling adequacy (MSA) = 0.78 and KMO values for 

individual items between 0.60 and 0.86 (Supplementary Table 1). Four components in the 

data had an eigenvalue above one (see scree plot, Supplementary Figure 5) and cumulatively 

explained 47% of the variance. For the exploratory factor analysis, the psych package6 was 

used as implemented in R (v3.3.1).7 Scores were extracted with the regression method. Factor 

1, Factor 2, and Factor 3 were roughly normally distributed while Factor 4 was negatively 

skewed due to the high loadings of visuoconstructive tasks with consistent ceiling effects.  

Meaningful names for the extracted factors were chosen after considering items with 

substantial loading (Supplementary Table 2). Factor 1 represented executive function with 

highest loadings of the Wortschatztest (German vocabulary test), verbal fluency tests, and the 

Trail Making Test (B/A). Factor 2 included tests related to memory and learning with high 

loadings of the word recall tests as well as the short term memory test. Factor 3 had a very 

high loading of the Trail Making Test A, which represented psychomotor speed. Factor 4 

comprised all assessments that required visuoconstructive abilities, namely figure drawing 

tests. 

  



 

 

 

 

Supplementary Table 2: Items of the exploratory factor analysis: Cognitive items with 

loadings for each respective factor (substantial loadings > 0.4 are marked bold) 

Factor  

(meaningful name) 

Factor 1 

(“Executive 

Function”) 

Factor 2 

(“Memory”) 

Factor 3 

(“Motor Speed 

Performance”) 

Factor 4 

(“Visuoconstruc

tive Abilities”) 

Wortschatztest (German 

vocabulary test) 

0.562 -0.044 -0.034 0.077 

Phonetic Verbal Fluency 0.561 0.005 0.161 -0.062 

Semantic Verbal Fluency 0.556 0.055 0.064 -0.013 

SIDAM Working Memory 0.399 0.016 0.057 0.046 

SIDAM Language 0.381 0.026 -0.053 0.008 

SIDAM Long Term Memory 0.298 -0.058 -0.063 0.207 

Boston Naming Test 0.295 -0.031 0.079 0.068 

Delayed Recall Words -0.026 0.829 0.032 0.011 

Recognition Words -0.042 0.630 -0.067 -0.041 

Immediate Recall Words 0.087 0.574 0.041 0.021 

SIDAM Short Term Memory 0.216 0.262 -0.020 0.110 

CERAD Figure Drawing -0.039 -0.013 -0.013 0.702 

SIDAM Figure Drawing 0.001 0.008 0.010 0.536 

Delayed Figure Drawing 0.151 0.087 0.139 0.396 

TMT A 0.066 0.049 0.784 0.018 

TMT B/A 0.413 0.120 -0.421 0.031 

Abbreviations: CERAD = Consortium to Establish a Registry for Alzheimer’s Disease; SIDAM = the Structured Interview 

for Diagnosis of Dementia of Alzheimer type; TMT = Trail Making Test 

  



 

 

 

 

 

Supplementary Figure 6: Voxel wise lesion symptom mapping with the non-parametric 

Brunner-Munzel test; Z-values are shown for executive function depicted in red, for memory 

depicted in green, and for motor speed performance depicted in blue; All major significant 

clusters overlap with the the results depicted in Figure 2  
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