Supplementary materials

- **Figure S1** Context scoring matrix measures the similarity of Kozak sequence (human)
- **Figure S2** Distribution of all feature scores in human
- **Figure S3** Distribution of all feature scores in mouse
- **Figure S4** Correlations (r) of features indicates redundant features in mouse
- **Figure S5** Feature selection by using *L*1-logistic regression in mouse
- **Figure S6** Training *L*1-logistic regression model on the dataset of **a** ribo-lncRNAs and mRNAs; **b** noribo-lncRNAs and mRNAs in human
- **Figure S7** Training *L*1-logistic regression model on the dataset of **a** ribo-lncRNAs and mRNAs; **b** noribo-lncRNAs and mRNAs in mouse
- **Table S1.** Sequence features were considered to influence the ribosomal association
- **Table S2.** Low-redundant features in human and mouse

Figure S1 Context scoring matrix measures the similarity of Kozak sequence (human). We calculated the context scoring matrix from 5,000 CDSs (see "Method"). This indicates a Kozak sequence motif (gcc[a/g]ccATGg) surrounding the start codon.

Figure S2 Distribution of all feature scores in human. Each feature was ranked by -log(KS p-value), in which KS represents two samples Kolmogorov-Smirnov test between ribo-lncRNAs (red) and noribolncRNAs (blue).

Figure S2 Distribution of all feature scores in human (continued).

Figure S3 Distribution of all feature scores in mouse. Each feature was ranked by -log(KS p-value), in which KS represents two samples Kolmogorov-Smirnov test between ribo-lncRNAs (red) and noribolncRNAs (blue).

Figure S3 Distribution of all feature scores in mouse (continued).

Figure S4 Correlations (r) of features indicates redundant features in mouse. **a** Correlations of all extracted features shows that features of several sub-regions are highly correlated (redundant). **b** After removing high redundant (| r | > 0.8) features, we obtained a low redundant feature set for further analysis in this study.

Figure S5 Feature selection by using *L*1-logistic regression in mouse. Total data was separated into 80% for training the model and 20% for the calculation of accuracy (blue dashed line, left y-axis). On the x-axis, C indicates the inverse of regularization strength. As C is increased, the number of features with non-zero coefficients (right y-axis) is increased and the model becomes more complicated. The black dashed line shows the final model chosen in this study, and outputs 9 features with non-zero coefficients. These features were ranked by the absolute value of coefficient, which represents the importance for prediction, and shown in the upper left.

Figure S6 Training *L*1-logistic regression model on the dataset of **a** ribo-lncRNAs and mRNAs; **b** noribo-lncRNAs and mRNAs in human.

Figure S7 Training *L*1-logistic regression model on the dataset of **a** ribo-lncRNAs and mRNAs; **b** noribo-lncRNAs and mRNAs in mouse.

No.	Feature	Description	
Basic			
$\mathbf{1}$	fLen	$Log10(length+1)$ of the mature lncRNA	
$\overline{2}$	gc	G+C content of the mature lncRNA	
RNA splicing			
3	nE	Number of exons	
4	fELen	$Log_{10}(length+1)$ of the first exon	
5	minELen	$Log10(length+1)$ of the shortest exon	
6	maxELen	$Log10(length+1)$ of the longest exon	
7	avgELen	$Log_{10}(averaged_length+1)$ of exons	
8	fEgc	$G+C$ content of the first exon	
9	minEgc	$G+C$ content of the shortest exon	
10	maxEgc	$G+C$ content of the longest exon	
11	avgEgc	Averaged G+C content of exons	
12	flLen	$Log_{10}(length+1)$ of the first intron	
13	minlLen	$Log10(length+1)$ of the shortest intron	
14	maxlLen	$Log_{10}(length+1)$ of the longest intron	
15	avglLen	$Log_{10}(averaged_length+1)$ of introns	
16	flgc	$G+C$ content of the first intron	
17	minlgc	$G+C$ content of the shortest intron	
18	maxlgc	$G+C$ content of the longest intron	
19	avglgc	Averaged G+C content of introns	

Table S1. Sequence features were considered to influence the ribosomal association.

Putative ORF (pORF: primary ORF; fORF: first ORF; uORF: upstream ORF)

K-mer frequency

Table S1. Sequence features (continued).

Table S2. Low-redundant features in human and mouse.

