
Triple Matrix Factorization 

Problem of Triple Matrix Factorization 

Given the  DTI matrix denoted as A , the m p  feature matrix as dF  and 

the n q   feature matrix  as tF   respectively. Suppose that dA   is the m r   latent 

interacting matrix of drugs, tA  is the n r  latent interacting matrix of targets. Our 

task is to minimize the following objective function: 

2 2 2 2 2 2 2|| || || || || || || || || || || || || ||T

d t F d d d F t t t F d F t F d F t FJ             A A A A F B A FB A A B B  (1) 

Solution for S2, S3 and S4 

The detailed solution can be achieved by Alternating Least Square (ALS), which 

iteratively solves a specific variable in turn by fixing other variables until reaching a 

convergence. In each round of its iterations, this procedure solves a set of equations in 

turn as follows { 0
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First, we solve the equations by the matrix-form formulas in the case of S2, S3 and 

S4 as follows: 
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Solution for S1 

Since some entries of A in S1 are unobserved, we cannot get the matrix-form 

solution involving A, but only the entry form of solution. To avoid the confusion of 

notions in the previous solution, we redefined the objective function: 
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where ija   is the entry with the subscripts  ,i j   in A,    denotes the set of the 

observed entries of A, iku , ikv , f and b are the entries of dA  , tA , feature matrices and 

regression coefficient matrices respectively.  Thus, ALS can be used again to solve a 

set of equations in turn as follows { 0
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two equations are not coupled with A, we may still solve it by Formula (3). The solution 

of the first two equations for  ,i j  is as follows. 
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