Impacts of impaired face perception on social interactions and quality of life in age-related macular degeneration: A qualitative study and new community resources

Jo Lane¹, Emilie M. F. Rohan², Faran Sabeti^{2,7}, Rohan W. Essex³, Ted Maddess², Amy Dawel¹, Rachel A. Robbins⁴, Nick Barnes⁵, Xuming He⁶, Elinor McKone^{1*}

PLoS ONE 20 December 2018

Full vision assessment information, including rationale for ranking patients' functional vision based on best-eye BCVA (Includes Tables A & B).

Twenty of the 21 patients underwent a full vision assessment in a clinical setting at the Australian National University (approximately 90 minutes per patient; same payment and ethics/consent arrangements as for the interview part of the study). Visual acuity was assessed monocularly using Best Corrected Visual Acuity (BCVA) and Low Contrast Visual Acuity (LCVA) using a retro-illuminated logMAR chart mounted on a stand conforming to the ETDRS standard format [1]. Other tests were used to diagnose AMD type, and stage using the Age-Related Eye Disease Study (AREDS system) [2], and to exclude other visual disorders. These included: examination of the anterior segment of the eye using slit-lamp biomicroscopy; instilling Oxybuprocaine Hydrochloride 0.4% eye drops to anesthetise the eyes to measure intraocular pressure using Goldmann applanation tonometry and to measure central corneal thickness using a Pachmate (DGH Technology Inc., Exton, PA); 10-2

frequency doubling technology (FDT) threshold using Humphrey Matrix (Carl Zeiss Meditec, Inc., Dublin, CA). After the visual field test both eyes were dilated with Tropicamide 1% and Phenylephrine 2.5% and the following tests were done: Optical Coherence Tomography (OCT) Spectralis (Heidelberg Engineering, Heidelberg, Germany) of the retina (posterior-pole) and the peripapillary retinal nerve fibre layer (pRNFL); scan was done to measure the thickness of the RNFL surrounding the optic nerve and fundus autofluorescence images were also acquired; Fundus photography was performed using a Canon CR-2 (Canon Inc. Medical Equipment Group, Tokyo, Japan) digital non-mydriatic camera to get an image of the fovea, the macula and the optic nerve.

Table A shows BVCA, LCVA, AMD type, and AREDS stage for each eye separately.

In terms of ranking (and then grouping) our patients by severity of vision loss, we used best-eye BCVA. Empirical justification for this — rather than, for example, using LCVA or acuity information from the poorer eye — was as follows.

First, consider low-contrast visual acuity (LCVA), still from the best eye. Whichever was the patients' best eye by BCVA was also their best eye by LCVA. Best-eye LCVA was extremely highly correlated with best-eye BCVA (r = .93), indicating no statistical potential of LCVA to explain any additional variance in functional vision. Consistent with this, Table B (top half) shows that best-eye LCVA correlations with everyday visual function (on the National Eye Institute Visual Function Questionnaire, NEIVFQ [3]) were no higher than best-eye BCVA correlations, for any of the full-scale NEIVFQ-25 nor the two individual items relevant to face perception (A6 and Q11); indeed, LCVA correlations were slightly lower. Further, a stepwise regression predicting NEIVFQ-25 entering BCVA first followed by LCVA showed no independent effect of LCVA (on entering LCVA, *F change* (1, 18) = .264 *p*=.614, with *R square change* indicating only 1.1 % of variance was explained by LCVA).

Second, consider the other eye. Recall that the other eye also has AMD, but with lower acuity. Worst-eye BCVA was largely uncorrelated with best-eye BCVA in our sample (r = .28), meaning there is statistical potential for worst-eye BCVA to explain additional variance in functional vision. However, analysis discounted this possibility. Table B (top half) shows bivariate correlations with everyday functional vision (the NEIVFQ measures) were all nonsignificant. More importantly, stepwise regression predicting NEIVFQ-25 entering BCVA first followed by LCVA showed no independent effect of LCVA (on entering LCVA, F change (1, 18) = .786 p = .387, with R square change indicating only 3.3 % of variance was explained by worse-eye acuity). Additionally, note that worst-eye acuity showed only weak correlations with psychological wellbeing measures (Table B bottom half).

Table A. Detailed vision information for both eyes (bold indicates strongest eye).

Patient code (from Table 1)	Eye	Visual Acuity 1		Diagnosis	Visual Acuity Repeated test ²		AREDS Stage 4
,		BCVA	LCVA		BCVA	LCVA	9
P1	L	6/240	6/240	Wet AMD			4
	R	6/7.5	6/15	Dry AMD			4
P2	L	6/9.5	6/19	Wet AMD	6/12	6/24	4
	R	6/120	6/190	End-stage AMD	6/120	6/200	4
P3	L	6/15	6/60	Dry AMD			4
	R	6/12	6/30	Dry AMD			4
P4	L	CF	<6/240	End-stage AMD			4
	R	6/12	6/19	Wet AMD			4
P5	L	6/15	6/38	Wet AMD	6/12	6/19	4
	R	6/190	<6/240	Wet AMD	6/240	$<6/240^5$	4
P6	L	6/95	6/120	End-stage AMD			4
	R	6/15	6/30	Wet AMD			4
P7	L	6/15	6/60	Dry AMD			4
	R	6/95	6/240	Dry AMD			4
P8	L	CF	<6/240	Wet AMD			4
	R	6/15	6/60	Early AMD			3
Р9	L	6/24	6/38	Early AMD			3
	R	6/19	6/30	Wet AMD			4
P10	L	6/30	6/60	Dry AMD			4
	R	6/19	6/48	Dry AMD			4
P11	L	6/19	6/48	Wet AMD			4
	R	6/190	<6/240	End-stage AMD			4
P12	L	6/24	6/38	Early AMD			3
	R	6/95	6/120	End-stage AMD			4
P13	L	6/24	6/60	Wet AMD	6/24	6/60	4
	R	CF	<6/240	End-stage AMD	CF	<6/240	4
P14	L	6/190	<6/240	End-stage AMD			4
	R	6/38	6/48	Wet AMD			4
P15	L	6/38	6/60	Wet AMD			4
	R	CF	<6/240	End-stage AMD			4
P16	L	6/60	6/95	Dry AMD			4
	R	6/95	6/120	Dry AMD			4
P17 ³	L	3/60	-	Wet AMD			-
	R	<6/60**	-	Wet AMD			-
P18	L	6/150	6/240	Dry AMD			4
	R	6/75	6/150	Dry AMD			4
P19	L	6/75	6/120	Wet AMD	6/24	6/48	4
	R	6/240	<6/240	End-stage AMD	6/240	<6/240	4
P20	L	6/75	6/190	Wet AMD			4
	R	HM	<6/240	End-stage AMD			4
P21	L	6/190	<6/240	End-stage AMD			4
	R	6/240	<6/240	End-stage AMD			4

Notes:

¹ BCVA = best corrected visual acuity (high contrast), LCVA = low contrast visual acuity; CF = counting fingers, HM = hand movements. LCVA results with <6/240 indicates the patient could not read all letters on the largest line of the LCVA chart. L = left eye (i.e., OS, ocular sinister), R = right eye (i.e., OD, oculus dextrus).

² For the 4 patients with more than 6 months between interviews, vision testing was repeated close in time to Interview 2. Note diagnosis and AREDS stage was unchanged at the second vision assessment.

³ P17 did not have a vision assessment at ANU. Visual acuity (BCVA only) was reported by ophthalmologist. ⁴ AREDS = Age-related Eye Disease Study [2]. AREDS stages are based on anatomy of the central 6mm of the retina. Stage 1 = Early AMD, small drusen. Stage 2 = Early AMD, intermediate drusen. Stage 3 = Early AMD, large drusen. Stage 4 = Active exudative AMD, CNV (choroidal neovascularisation)/Wet AMD; or End-stage Dry AMD/sub-foveal GA (geographic atrophy). For AREDS Stages 1 to 3 it is expected visual acuity would be close to normal; for Stage 4 acuity can vary from normal to <6/60 (e.g., depending on treatment).

Table B. Correlations (r) between different possible acuity measures and everyday visual function and psychological wellbeing.

		Acuity measure used as predictor			
	-	Best-eye	Best-eye	Worst-eye	
	Dependent measures	BCVA	LCVA	BCVA	
Everyday visual function					
	NEIVFQ-25	47*	36	39	
	NEIVFQ-25 A6	58**	55**	33	
	NEIVFQ-25 Q11	48*	45	44	
Psychological wellbeing					
	Anxiety (GAI)	.44*	.49*	.10	
	Depression (GDS)	.12	.23	08	
	MacDQoL	41	39	23	

Notes:

References for S4 File

- Ferris FL, Freidlin V, Kassoff A, Green SB, Milton RC. Relative letter and position difficulty on visual acuity charts from the Early Treatment Diabetic Retinopathy Study. Am J Ophthalmol. 1993;116(6): 735–740. doi: 10.1016/S0002-9394(14)73474-9
- Age-Related Eye Disease Study (AREDS) Research Group. The Age-Related Eye
 Disease Study system for classifying age-related macular degeneration from stereoscopic
 color fundus photographs: the Age-Related Eye Disease Study Report Number 6. Am J
 Ophthalmol. 2001;132(5): 668-681.
- Mangione CM, Lee PP, Gutierrez PR, Spritzer K, Berry S, Hays RD. Development of the 25-Item National Eye Institute Visual Function Questionnaire. Arch Ophthalmol. 2001;119(7): 1050-1058. doi: 10.1001/archopht.119.7.1050

^{*} p < 0.05 (2 tailed) ** p < .001(2-tailed). Correlations performed with acuity scores in LogMAR. See main text Table 2 for dependent measure details. Patient P17 did not have a vision assessment; her ophthalmologist reported her BCVA was <6/60, however 6/60 or logMAR +1.0 was entered into the correlation. P17 did not have a LCVA score; a score of 6/120 or logMAR +1.3 was entered into the correlation (which is her expected LCVA score based on her BCVA score). NEIVFQ [3], GAI [4], GDS [5], MacDQoL [6].

- 4. Pachana NA, Byrne GJ, Siddle H, Koloski N, Harley E, Arnold E. Development and validation of the Geriatric Anxiety Inventory. Int Psychogeriatr. 2007;19(1): 103-14. doi: 10.1017/S1041610206003504
- 5. Sheikh JI, Yesavage JA. Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. Clin Gerontol. 1986;5: 165-173.
- 6. Mitchell J, Bradley C. Design of an individualised measure of the impact of macular disease on quality of life (the MacDQoL). Qual Life Res. 2004;13: 1163-1175.