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Overview

In our study, we propose a new method for combining several data streams, e.g. temporal, spatial and genetic
data, to identify clusters of related cases of an infectious disease.

A key step in our method consists in defining, for each data stream, a cutoff distance above which cases
are considered as not being part of the same outbreak cluster, i.e. not linked by local transmission. The
section on ’Choosing the cutoffs based on preexisting information about the pathogen of interest’ provides a
theoretical background for how to choose the cutoffs.

Once each observed case has been allocated to an outbreak cluster, we propose to use the distribution
of cluster sizes to estimate the underlying reproduction number (R, the average number of secondary cases
infected by an infected individual). The section on ’Estimation of the reproduction number’ describes the
method used to estimate R.

We applied our method to analyse dog rabies epidemics data collected in Central African Republic.
The section entitled ’Parameterisation for rabies’ describes how we parameterised the model for rabies; in
particular how we informed the choice of cutoff based on prior information on the serial interval, the spatial
kernel and the mutation rate of rabies.

To quantify the impact of the assumed reporting rate as well as the cutoff choice on our results, and to
assess the ability of our method to identify outbreak clusters in real-time, we performed sensitivity analyses
which are presented in the ’Sensitivity analyses’ section.

A more systematic assessment of the performance of our method was conducted through a simulation
study, which is presented in the ’Simulations’ section.

Choosing the cutoffs based on preexisting information about the
pathogen of interest

We consider the case where the pathogen of interest is already known, or where existing case-investigation
data exist, so that preexisting information on the distribution of expected distances between cases infected
by this pathogen can be used as input to inform the cutoff choice. If fn denotes the input probability density
function or probability mass function of expected distances between a case and its infector for data stream n,
the cutoff κn for that data stream could then be defined as a predetermined quantile of fn. Underreporting
will directly affect the distances between observed cases, with more underreporting leading to larger distances.

If the overall reporting probability, π, is known, and assuming that the probability of being reported
is identical for each case, the number of unobserved intermediate cases between two observed cases can be
described by a geometric distribution with probability π. Using this property, we propose, in that case, to
define the cutoff κn as a quantile of fn,π, the distribution of the expected distance between an observed case
and its closest observed ancestry, accounting for potential unobserved intermediate cases.

In this section, we derive the formula for the input distribution of distances f between a case and its
closest observed ancestry in a given data stream, given a certain level of under-reporting. After presenting
the general formula, we propose three special cases (i.e. parametric distributions of the distance between a
case and its closest observed ancestry) for which the formula simplifies greatly, and which are particularly
adapted to describe distances between cases in time, geographical space, and genetic space respectively.

Notations

In all the following, superscripts t, s and g are used to refer to time, geographical space, and genetic space
respectively. ’Pdf’ stands for probability density function and ’pmf’ for probability mass function. For both,
we use the same general notation f .

We denote i and j two cases suspected to be linked by a transmission chain, with i being ancestral to j,
so that i may be the infector of j, or the infector of its infector, etc.

We denote κi,j the (unobserved) number of generations between i and j, so that κi,j = 1 if i is the
infector of j, κi,j = 2 if i is the infector of the infector of j, etc. We denote π the probability for each infected
individual to be reported (assumed equal across all infected individuals).
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We denote di,j the (observed) distance between cases i and j in a given data stream, and φ the probability
density function of the distance (in time, geographical space or genetic space) between an infected individual
and their infector. This can be the serial interval, the spatial kernel, or the transmission divergence (defined,
as in Campbell et al. [1] as the number of single nucleotide polymorphisms (SNPs) between the pathogen in
a case and in their infector).

In all the following, we often omit the subscripts i, j referring to cases i and j, and we use κ = κi,j and
d = di,j for easier reading.

Distribution of the distance between two cases accounting for underreporting

We are interested in computing the probability density function f (d), which can be decomposed according
to the unobserved number of missing generations between i and j as follows:

f (d) =

+∞∑
k=1

f (d|κ = k) f (κ = k)

The first factor in the sum is f (d|κ = k) = φ(k) (d), where φ(k) denotes the convolution of φ with itself,
k times (φ(1) = φ). Note this is assuming that the distance d is additive, so that if i infected l who infected
j, then di,j = di,l + dl,j . This is the case for time, and we assume it is the same for genetic distance. For
spatial distance we perform a slightly more complicated reasoning (see below).

The second factor in the sum is the probability of k − 1 intermediate cases having been unobserved, and
the kth case (going back in time, that is i) having been observed. Assuming all infected individual have the

same probability π of being reported, this is given by the geometric distribution f (κ = k) = π (1− π)
k−1

.
Therefore:

f (d) =

+∞∑
k=1

φ(k) (d)π (1− π)
k−1

In the next three paragraphs, we explore special cases where the equation above simplifies greatly, and
which are particularly adapted to describe distances between cases in time, geographical space, and genetic
space respectively.

Special case 1: φ is the pdf of a Gamma distribution (typical for serial interval
distribution)

In this section we consider the special case where φ is the pdf of a Gamma distribution with shape α and
scale β: φ (x) = 1

Γ(α)βαx
α−1e−x/β . The sum of k independent variables with same Gamma distribution with

parameters (α, β) also has a Gamma distribution, with parameters (kα, β). Therefore:

f (d) =

+∞∑
k=1

1

Γ(kα)βkα
dkα−1e−d/βπ (1− π)

k−1

Special case 2: φ is the pmf of a negative binomial distribution (typical for
transmission divergence distribution)

The transmission divergence, the expected number of SNPs between two cases, will typically depend on the
serial interval (amount of time available to evolve) and the mutation rate. Using a Gamma distribution for
the serial interval (with shape α and scale β), and a Poisson distribution for the number of mutations in a

given time interval dt (with mean µ∗dt) leads to a negative binomial distribution with parameters
(
α, βµ

βµ+1

)
for the number of mutations between two cases. Indeed, if i infected j and dgi,j is the genetic distance (defined
as number of SNPs) between i and j, φt the (Gamma) pdf of the serial interval, and µ the mutation rate,
then the pmf of the genetic distance between i and j is:
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φg (dg) = f (dg|κ = 1) =

∫ +∞

t=0

f
(
dg|κ = 1, dt = t

)
φt (t) dt

=

∫ +∞

t=0

(µt)
dg
e−µt

dg!

1

Γ(α)βα
tα−1e−t/βdt

=
Γ(α+ dg)µd

g

(µ+ 1/β)
α+dg

dg!Γ(α)βα

∫ +∞

t=0

tα+dg−1e−t(µ+1/β)

Γ(α+ dg)
(

1
µ+1/β

)α+dg
dt

=
Γ(α+ dg)

dg!Γ(α)

µd
g

(µ+ 1/β)
α+dg

βα

=

(
α+ dg − 1

dg

)(
βµ

βµ+ 1

)dg (
1− βµ

βµ+ 1

)α
which is indeed the pmf of a negative binomial distribution with parameters

(
α, βµ

βµ+1

)
.

Now, the sum of k independent variables with same Negative Binomial distribution with parameters (r, p)
also has a Negative Binomial distribution, with parameters (kr, p). Therefore:

f (dg) =

+∞∑
k=1

φg(k) (dg)π (1− π)
k−1

=

+∞∑
k=1

(
kα+ dg − 1

dg

)(
βµ

βµ+ 1

)dg (
1

βµ+ 1

)kα
π (1− π)

k−1

Special case 3: φ is the pdf of a Rayleigh distribution (typical for spatial kernel
distribution)

We assume that the geographical location of an individual i is given by coordinates (xi, yi) in an orthonormal
system. We assume that the coordinates of an individual j infected by i are so that xj − xi and yj − yi are
independent and identically distributed according to a centered normal distribution N

(
0, σ2

)
:

f (xj − xi|κi,j = 1) =
1√

2πσ2
e−

(xj−xi)
2

2σ2

Now if i infected an unobserved case l who infected j, then xj − xi = xj − xl + xl− xi so the distribution
of xj − xi is that of the sum of two independent identical normal variables. This is true as well for yj − yi,
and easily extends to more than 1 unobserved intermediate case. Now, the sum of k independent univariate
Normally distributed variables with same mean ν and same variance σ2 is a univariate Normally distributed
variable with mean kν and variance kσ2 (see http://www.tina-vision.net/docs/memos/2003-003.pdf for
a proof for k = 2). Therefore,

f (xj − xi|κi,j = k) =
1√

2πkσ2
e−

(xj−xi)
2

2kσ2

Using the change of variable technique, one can show that the pdf of s = (xj − xi)2
, conditional on

κi,j = k is 1√
2πkσ2

e−
s

2kσ2
1

2
√
s
. Therefore, conditional on κi,j = k, (xj − xi)2

follows a Gamma distribution

with shape 1
2 and scale 2kσ2.

The same reasoning holds for (yj − yi)2
.

The square of the Euclidean distance between individuals i and j can be computed as dsi,j
2 = (xj − xi)2

+

(yj − yi)2
. Conditional on κi,j = k, this is the sum of the squares of 2 independent Gamma distributed
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variables with same shape 1
2 and scale 2kσ2. Therefore, conditional on κi,j = k, dsi,j

2 is also Gamma

distributed with shape 2× 1
2 = 1 and scale 2kσ2, i.e. it is Exponentially distributed with rate 1

2kσ2 .
This means that conditional on κi,j = k, the Euclidean distance between individuals i and j, dsi,j follows

a Rayleigh distribution with scale σ
√
k (see general proof here http://www.math.wm.edu/~leemis/chart/

UDR/PDFs/ExponentialRayleigh.pdf).
Finally,

f (ds) =

+∞∑
k=1

φs(k) (ds)π (1− π)
k−1

=

+∞∑
k=1

ds

kσ2
e−

ds2

2kσ2 π (1− π)
k−1

Estimation of the reproduction number

In this section we derive key results to estimate the reproduction number and the rate of importation from
the number of observed clusters (or outbreaks) and their respective sizes. In the following we assume that
the composition of clusters, and most importantly their respective sizes, is known. Therefore, the analysis
outlined below does not account for uncertainty in clusters sizes.

General approach

To estimate the reproduction number

Here, we are interested in determining the reproduction number, R, for a given observed outbreak size
(assumed to be initiated from a single importation). Following Farrington et al. [2], and assuming a Poisson
offspring distribution, we define the probability of an outbreak of size Z occurring given a reproduction
number R < 1 as:

h (z;R) = Pr (Z = z|R) =
zz−2Rz−1e−zR

(z − 1)!
.

However, due to underreporting, only Y cases are observed, with Y ≤ Z. Denoting π the reporting rate
(i.e. the probability for each case to be observed), the probability of observing Y cases from an outbreak
characterised by Z cases follows a binomial distribution with parameters Z and π:

g (y; z, π) = Pr (Y = y|Z = z, π) ∼ Bin (Z, π) .

Therefore, the probability of observing Y cases given π and R follows:

Pr (Y = y|R) =

+∞∑
z=y

Pr (Y = y|Z = z, π)Pr (Z = z|R) =

+∞∑
z=y

g (y; z, π)h (z;R) .

For R > 1, Waxman et al. (2018) demonstrated that h (z;R) becomes h (z;Re−α) e−α, with α =
R (1−Re−α) [3]. Using this correction, inference is not limited to subcritical reproduction numbers.

Given a set of {Yi}i=1,...,n observed outbreak sizes, with n the number of observed outbreaks, the likelihood
of {Yi} given R becomes:

L (R; {Yi}) = Pr ({Yi}|R) = Πn
i=1

[
+∞∑
z=yi

g (yi; z, π)h (z;R)

]
.

We must then account for unobserved outbreaks. All of the above assumes that we observe the size of
every outbreak. However, an outbreak for which no cases are observed will be missed in our sample, and
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thus we need to correct for this form of censoring. Therefore, we normalise the probability of observing Y
cases by the probability of observing an outbreak:

Pr (Y |R, π, Y > 0) =
Pr (Y |R, π)

1− Pr (Y = 0|R, π)
.

Having observed n outbreaks of sizes {Yi}, the likelihood of {Yi} given R becomes:

L (R; {Yi}) = Pr ({Yi}|R) =

n∏
i=1

[
1

1−
∑+∞
z=0 g (0; z, π)h (z;R)

+∞∑
z=yi

g (yi; z, π)h (z;R)

]
.

To estimate the number of importations

In a second step, we estimate the number of importations. The total number of importations, N imp, can be
split between the number of observed importations, N imp

obs = n, and the number of unobserved importations,

N imp
unobs. While the number of observed importations is known (it is the number of distinct outbreaks or

clusters observed), the number of unobserved importations needs to be estimated. As seen above, given a
reproduction number R, the probability of observing an outbreak is:

Pobs = Pr (Y > 0|R, π) = 1−
+∞∑
z=0

g (0; z, π)h (z;R) .

Therefore, conditional on the reproduction number R and the reporting rate π, the distribution of the
number of unobserved importations can be estimated assuming that the number of unobserved outbreaks
follows a Negative Binomial with parameters n, Pobs.

Hence, it is straightforward to estimate the number of unobserved importations at the reproduction
number’s MLE. However, to obtain a full estimate of the number of unobserved importations, and in particular
to obtain a 95%CI, one needs to integrate over all possible values of R.

Therefore the likelihood of N imp
unobs given {Yi} and π can be defined as:

Pr
(
N imp
unobs|{Yi}, π

)
=

∫ +∞

R=0

Pr
(
N imp
unobs|R, {Yi}, π

)
Pr (R|{Yi}) dR.

The probability Pr
(
N imp
unobs|R, {Yi}, π

)
can be evaluated as it follows a Negative Binomial distribution

with parameter n, Pobs. Regarding Pr (R|{Yi}), we assume it is proportional to the likelihood of {Yi} given
R as defined above (i.e. Pr (Yi|R) ). Implicitly, in a Bayesian language, this is to say that the posterior
distribution of R is proportional to the likelihood assuming a non-informative prior on R.

Practical considerations

Having established the theoretical framework for inference above, we proceed to explain how it was
implemented. In particular, we provide practical solutions to deal with the infinte sum when estimating
the reproduction number and how to numerically evaluate the integral when estimating the number of
importations.

To estimate the reproduction number

First we evaluate the likelihood of {Yi} given R on a grid of R uniformly distributed. The limits of the
distribution can be adjusted and, in our analysis, we chose a grid bounded between 0 and 20 with an
accuracy of 0.01. Numerically, we evaluate the likelihood of {Yi} given R by setting an upper threshold on Z,
defined as θ. The threshold is internally computed based on the largest outbreak size and the reporting rate.
Its value is calculated to ensure that, in the calculation of the likelihood of {Yi} given R , g (max ({Yi}) ; z, π)
is lower than 10−4.

After obtaining the profile likelihood across the range of R values, we extracted the maximum likelihood
estimate (MLE) and its 95% confidence interval (CI) using the Likelihood ratio test framework.
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To estimate the number of importations

Once again, a likelihood profile is obtained for a total number of importations ranging from the number
of outbreaks observed (no unobserved outbreaks) up to θimp outbreaks. We then extracted the maximum
likelihood estimate (MLE) and its 95% confidence interval (CI) using the Likelihood ratio test framework.

In practice, we manually set the threshold for the maximum number of importation, θimp. The threshold
represents the maximum number of unobserved outbreaks for which the likelihood is evaluated. In our
analysis, we manually set this at 1,000.

In our baseline scenario where π = 0.2 (a fifth of the cases are reported) and the total number of observed
outbreaks is smaller than 150, there is more than 99.9% probability that the true number of importations
was below 1,000.

In alternative scenarios considered, we set π = 0.5 and π = 0.1. If π = 0.5 (half of the cases are reported)
and the total number of observed outbreaks is smaller than 450, then there is more than 99.9% probability
that the true number of importations was below 1,000. If π = 0.1 (a tenth of the cases are reported) and the
total number of observed outbreaks is smaller than 70, then there is more than 99.9% probability that the
true number of importations was below 1,000.

Those are conservative estimates, as they assume that all unobserved outbreaks are of size 1. In reality
unobserved outbreaks may be much larger, therefore the probability of observing them would be larger than
π. Should the reporting be much lower or the total number of outbreaks much larger, the threshold can be
adjusted (i.e. increased in this case).

Implementation

The method to estimate the reproduction number and the number of importations is implemented in the R
package branchr, available at https://github.com/reconhub/branchr

Parameterisation for rabies

As explained in the methods section, we retrieved information on the typical distances (in time, geographical
space, and genetic space) between a case of rabies and its infector from the literature.

Following Hampson et al. [4], we assumed a Gamma distributed serial interval, with mean 23.6 days and
standard deviation 20.9 days. Note that throughout our study, we refer to the serial interval, traditionally
defined as the time from symptom onset of a case and its infector, however the data from the rabies outbreak
we analyse consists in dates of report of the infected animals. Furthermore, in their study, Hampson and
colleagues generate estimates of the generation interval, i.e. the time from infection of a case and its infector,
which is yet slightly different. Although the serial interval and the generation interval may have different
distributions, in general they have the same mean and are often taken as synonymous (see Svensson et al.
[5] for more detail).

We assumed a Rayleigh distributed spatial Kernel with scale 0.70km, consistent with a mean transmission
distance of 0.88km, as in Hampson et al. [4]. We assumed a substitution rate of 5.9 × 10−4 substitutions
per site per year for rabies, as estimated in Bourhy et al. [6]. The corresponded distributions for the serial
interval, spatial kernel, and number of mutations between an index and a secondary case are shown in S1
Fig.

Sensitivity analyses

Reporting rate and cutoff choice

The analyses presented in the main text assume a reporting rate of 20%, following Bourhy et al. [6]. Here,
we present sensitivity analyses assuming two extreme scenarios (based again on Bourhy et al.) with reporting
rates of 10 and 50% respectively. Additionally, the analyses presented in the main text were based on using
the 95% quantile of all distributions as cutoff at the pruning step. Here, we present results obtained using
cutoffs corresponding to the 90% and the 0.951/3 ≈ 98% quantiles respectively. S2 Fig shows, overlaid
onto the observed pairwise distances between cases of rabies in this outbreak, the input probability density
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function for the distances (in time, space or genetic) between a case and its closest observed ancestry, given
an assumed reporting rate of 10, 20, or 50%. Cutoffs corresponding to the 90, 95 and 98% quantiles of these
distributions are shown on S2 Fig. Nine combinations of reporting rates (10, 20 or 50%) and quantiles (90,
95 or 98%) were considered in sensitivity analyses. Each analysis differed from the others in that, at the
pruning step of our algorithm (see methods and Figure 1C,F in main text), the cutoff used for pruning the
graphs corresponding to each data stream were different, directly determined, as shown in S2 Fig, by the
choice of reporting rate and quantile.

## NULL

S3 Fig presents the clusters of cases identified using the different combinations of reporting rates and
cutoffs. Lower reporting rates and higher quantiles led to higher cutoffs (see S2 Fig), and hence fewer edges
removed at the pruning step. Therefore lower reporting rates and higher quantiles generally led to fewer,
larger clusters. The most extreme scenarios considered here corresponded to i) a reporting rate of 50% and
cutoffs corresponding to the 90% quantiles (bottomleft graph in S3 Fig) and ii) a reporting rate of 10% and
cutoffs corresponding to the 98% quantiles (topright graph in S3 Fig). The former scenario led to a total of
89 clusters including 77 singletons, four pairs, and three clusters of respective sizes 3, 4 and 20. The latter
led to a total of 8 clusters including 2 singletons, two pairs, and three clusters of respective sizes 7, 18 and 90.
The clustering of cases in time, geographical space and genetic space, for the nine combinations of reporting
rates and cutoffs are shown in S4 Fig, S5 Fig and S6 Fig respectively.

For each of the nine scenarios considered, we used the distribution of cluster sizes and the assumed
reporting rate to estimate the reproduction number, as well as the total number of outbreaks (or clusters,
i.e. separate introductions of rabies in the canine population) which occurred over the observation period,
including the unobserved ones. The total number of outbreaks was translated into a rate of introductions by
dividing the number of outbreaks by the duration of the monitoring period. Results are presented in S7 Fig.
As discussed above, reporting rates and higher quantiles generally led to fewer, larger clusters, and hence
higher estimates of the reproduction numbers, and lower estimates of the rate of introduction. Estimates of
the reproduction number for the two extreme scenarios were 0.41 [95%CI 0.31, 0.52] and 0.98 [95%CI 0.93,
1.04]; the corresponding estimates of the yearly rate of introduction of rabies in the population were 6.4
[95%CI 4.5, 8.8] and 1.6 [95%CI 0.76, 3.2].

Real-time application

So far, we have illustrated our method by applying it retrospectively to analyse an outbreak of dog rabies in
Central African Republic. However, our method would also be extremely useful if used during an ongoing
outbreak, in particular to disentangle clusters of related cases from isolated cases due to separate introductions
of the pathogen in the population. This could have a direct impact on control policies, providing information
on whether to prioritise control measures aiming at reducing transmission or at reducing importations (or
both).

In this section, we propose to mimic the real-time application of our method on the same rabies outbreak.
We split the outbreak into three phases; each phase containing the same number of reported rabies cases
with temporal, spatial and genetic data available (41 cases per time period). We apply our algorithm on the
data restricted to the cases which appeared before the end of each of these phases. The ’early phase’ analysis
is restricted to cases before or on 24 April 2007; the ’early and peak phase’ analysis further considers cases
up to 06 June 2008. Finally, the full analysis (same as that presented in the main text) considers all cases.
In this section, we assume a reporting rate of 20% and use a cutoff corresponding to the 95% quantile at the
pruning step.

S8 Fig presents the epidemic curve available at the end of each of the three time periods considered,
coloured according to the cluster allocation obtained at these three time points. There were very few changes
in cluster allocation as more data got collected, with only 1 reclassification (out of 41 cases) between the
early and the peak phase, and 3 reclassifications (out of 82 cases) between the peak phase and the end of the
epidemic. This example therefore suggests that our method would provide useful insights into the epidemic
dynamics in real-time.
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Simulations

Simulation and reconstruction scenarios

We considered six simulation scenarios mimicking the transmission of rabies among dogs. Our baseline
scenario was designed to closely mirror the transmission characteristics underlying the transmission of rabies
in our dataset from Central African Republic. We then considered five variations of this scenario: a ‘low’,
‘high’ and ‘perfect’ reporting scenarios similar to the baseline scenario but with varying levels of reporting,
and a ‘low’ and ‘high’ diversity scenarios, similar to our baseline but where the imported cases had pathogen
genetic sequences respectively much more similar and much more different to one another (i.e. their most
recent common ancestor was respectively more recent and more distant in the past). The scenarios are
described in S1 Table.

For each simulation scenario, we used our method to reconstruct the clusters of cases linked by
transmission, as well as re-estimate the reproduction number and the importation rate. In the reconstruction
process, we used input distributions obtained by assuming the same mutation rate, genome length, serial
interval and spatial kernel as in the simulation. For the baseline simulation scenario, we systematically varied
the cutoffs and the assumed reporting rate, as described in S2 Table.

Simulation process

We adapted a simulation implemented in the function simOutbreak from the outbreaker R package, provided
as supporting script. We also used simulation tools implemented in the R package quicksim, available from
https://github.com/thibautjombart/quicksim.

We used a simple branching process for simulation. We considered a square of 15km × 15km. Each
simulation was seeded with one initial case, randomly located in that square, and with symptom onset
on day 0. The pathogen sequence for this index case was determined through random evolution from an
ancestral sequence it diverged from for a fixed number of days determined by a simulation parameter (see S1
Table). We used a simple mutational model, in which every nucleotide of the ancestral genome (n = 11, 820)
mutates independently with a probability 1.62× 10−6 per day, and mutations from and to every nucleotide
are equiprobable. For each subsequent day t, newly infected cases emerging from local transmission as well
as newly imported cases were simulated as follows.

The number of newly infected cases emerging from local transmission on day t was drawn from a Poisson
distribution with mean λ = R0

∑t
s=1 It−sws, where R0 is the basic reproduction number, It−s is the total

number of cases that appeared at time t-s (both through local transmission and through importation) and w
is the probability mass function of the serial interval. Each newly infected case was then allocated an infector,
chosen among all cases who appeared in the past, with weights for cases who appeared at time t − s equal
to ws. The location (x, y) of each newly infected case was then obtained by drawing x and y in independent
normal distributions centered on the location of the infector. Whenever new coordinates would have been
located outside the epidemics area, we implemented a ’mirror effect’ which placed them back into the study
area by symmetry with the existing borders.

The number of newly imported cases on day t was drawn from a Poisson distribution with mean the
daily importation rate. The location of the newly imported cases was drawn at random within the square of
15kmx15km. The pathogen sequence for the newly imported cases were determined as for the index case, by
modelling evolution from a common ancestral sequence.

The simulation was run for 8 years.
We assumed a constant reporting rate; observed cases were drawn from all cases according to a binomial

distribution with probability given by the reporting rate.

Simulated datasets

We ran 200 simulations for each simulation scenario. For the baseline, low, high and perfect reporting
scenarios, we used the same simulated epidemics but simulated different reporting levels.

The resulting simulated dataset sizes, i.e. the simulated number of observed cases for each simulation
scenario, are shown in S9 Fig.
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Reconstruction results

We quantify the ability of our method to correctly identify clusters of cases linked by transmission, through
measuring 1) the true positive rate (TPR, proportion of pairs of cases actually linked by transmission who
are inferred to be in the same outbreak cluster), i.e. the sensitivity of detecting a transmission link and
2) the true negative rate (TNR, proportion of pairs of cases not linked by transmission who are inferred to
not be in the same outbreak cluster), i.e. the specificity of detecting a transmission link. We also compare
the estimates of the reproduction number and importation rate to the values used in the simulation. A
summary of the results of our simulation study are shown in the main text in Figure 5. S10 Fig shows the full
estimates of the reproduction number and importation rate, i.e. central estimates as well as 95% confidence
intervals. S11 Fig presents the root mean square error on the estimates of the reproduction number and the
importation rate for all simulation and reconstruction scenarios considered, and suggests that estimates were
precise across all scenarios.

Comparing different cutoffs

Our simulation study highlights the importance of adequately choosing the cutoff used at the pruning step
to yield a high sensitivity and specificity of detecting outbreak clusters. We applied our method to the
same set of baseline simulations but with different cutoffs, corresponding respectively to the 50%, 90%, 95%,
95%1/3 = 98% and 99.9% quantiles of the input distributions. For each simulation, we computed the TPR
(or sensitivity) and the TNR (or specificity) obtained with each cutoff, and we recorded which of the cutoffs
yielded the best performance, i.e. the highest average between sensitivity and specificity. Results, presented
in S12 Fig, suggest that for rabies and with a reporting rate of 20%, a cutoff corresponding to the 95%
quantiles is optimal.

Although impractical to plot for all 200 simulations together, for a single simulation, we can plot a
ROC (Receiver Operating Characteristic) curve to graphically illustrate the trade-off between sensitivity and
specificity and the cutoff maximising the combination of the two.

We selected, among the 200 baseline simulations, the only simulated dataset which happened to have the
same size as our rabies dataset, i.e. 151 observed cases. For this dataset, we applied our method with 9
cutoffs, defined by the 50%, 75%, 90%, 95%, 95%1/3 = 98.3%, 99%, 99.9%, 99.95%, and 99.99% quantiles.
The corresponding ROC curve is shown in S13 Fig. In this specific simulation, the 95% cutoff is the optimal
one; but as shown in S12 Fig this can vary from one simulation to the other.

Computing time

For all simulation scenarios, we recorded the computing time associated with the identification of outbreak
clusters under the ’control’ reconstruction scenario (see ’Simulation and reconstruction scenarios’ section, S1
Table and S2 Table for a definition of the simulation and reconstruction scenarios). Pooling results from
all six simulation scenarios together, we then considered linear regressions between the computing time and
various powers of the simulated dataset size. We considered powers from 0.5 to 4, with 0.1 increments, and
measured the associated adjusted R2, which was maximal for a power of 2.2, with an adjusted R2 of 0.985.
These results are presented in S14 Fig.
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