Supplementary Tables and Figures

		MNI Coordinates					
	Region	x	у	Z	voxels	mm3	max stat
Со	rtex						
Fr	ontal Lobe						
R	Inferior Frontal Gyrus	48	26	-18	1	8	-3.73
L	Middle Frontal Gyrus	-38	52	-10	256	2048	-5.73
R	Middle Frontal Gyrus	32	36	46	8	64	-3.92
R	Superior Frontal Gyrus	38	48	20	5	40	-3.90
R	Superior Frontal Gyrus	40	34	30	18	144	-4.56
L	Anterior Cingulate	-14	42	6	1	8	3.70
L	Cingulate Gyrus	-4	8	40	1	8	3.73
Те	mporal Lobe	1					
R	Insula	42	-16	14	4	32	3.80
L	Fusiform Gyrus	-44	-54	-8	12	96	4.17
R	Inferior Temporal Gyrus	28	-12	-42	7	56	3.94
		64	-14	-20	2	16	-3.84
R	Inferior Temporal Gyrus	64	-52	-18	7	56	4.27
L	Middle Temporal Gyrus	-52	-68	24	20	160	-4.13
		-62	-32	-12	2	16	-3.71
R	Middle Temporal Gyrus	54	-2	-8	9	72	-4.13
		66	-26	-4	4	32	-3.81
L	Superior Temporal Gyrus	-50	-2	6	1	8	3.70
		-48	-48	10	1	8	3.70
R	Parahippocampal Gyrus	12	-16	-16	2	16	3.96
L	Parahippocampal Gyrus	-24	-46	-4	4	32	4.23
R	Amygdala	24	-4	-6	11	88	4.03
Ра	rietal Lobe	1					
L	Inferior Parietal Lobule	-48	-66	40	106	848	-4.85
R	Postcentral Gyrus	54	-24	22	13	104	4.41
L	Precuneus	-32	-64	36	1	8	-3.83
R	Precuneus	14	-58	42	1	8	-3.79
R	Superior Parietal Lobule	14	-56	64	47	376	-4.35
0с	cipital Lobe	<u> </u>			<u>ı</u>		

Supplementary Table 1. Significant clusters within the neural threat-predictive pattern. Related to Figure 2A

R	Cuneus	16	-76	10	4	32	4.02	
Su	bCortex							
L	Basal Ganglia:Globus Pallidus	-12	0	-6	14	112	4.36	
L	Thalamus: Ventral Anterior Nucleus	-8	-4	8	7	56	4.28	
Ce	Cerebellum							
L	Cerebellum, Declive	-6	-74	-18	99	792	5.91	
		-8	-60	-18	32	256	4.12	
В	Midbrain							
L	Periacqueductal Gray	-2	-26	-6	204	1632	6.04	
R	Substania Nigra	12	-18	-12	3	24	3.93	

* Thresholded (bootstrapped 5,000 samples) and corrected for multiple comparisons (FDR p < 0.05, k = 1)

Supplementary Table 2. Significant clusters in univariate acquisition (CS+>CS-) map. Related to STAR METHODS QUANTIFICATION AND STATISTICAL ANALYSIS *Univariate Analysis* and Figure S1

		MNI Coordinates		wawala		maystat	
Re	gion	x	у	z	voxeis	шпэ	maxstat
Со	rtex						
Fr	ontal Lobe						
L	Medial Frontal Gyrus	-10	56	-14	75	600	-4.08
		-38	54	-8	753	6024	-5.01
L	Middle Frontal Gyrus	-42	18	42	51	408	-3.76
		-58	26	28	8	64	-3.41
L	Premotor Cortex	-10	-26	46	12	96	3.89
L	Orbitofrontal Cortex	-6	42	-28	17	136	-3.6
		-4	30	18	63	504	4.48
т	Antonion Cinquiato Curruc	-2	24	24	356	2848	4.92
	Anterior Cingulate Gyrus	-20	22	24	33	264	4.37
		-4	8	40	427	3416	6.2
R	Middle Frontal Gyrus	58	44	-8	6	48	-3.38
R	Inferior Frontal Gyrus	36	20	-6	206	1648	4.2
R	Superior Frontal Gyrus	20	48	38	6	48	-3.43
		34	-22	48	26	208	3.73
к	Precentral Gyrus	48	-12	48	19	152	3.43
R	Mid Cingulate Gyrus	6	-20	28	9	72	3.51
		8	-22	44	109	872	4.15
K	Anterior Cingulate Gyrus	6	2	42	461	3688	6.53
Те	mporal Lobe						
L	Middle Temporal Gyrus	-60	-30	-12	685	5480	-5.73
		-38	-20	16	44	352	3.95
		-36	10	2	285	2280	4.94
L	Insula	-36	0	-6	116	928	4.1
		-30	20	8	417	3336	6.05
		-40	0	10	616	4928	6.65
L	Superior Temporal Gyrus	-56	2	6	146	1168	5.48
L	Transverse Temporal Gyrus	-52	-22	12	290	2320	5.15
L	Fusiform Gyrus	-40	-52	-6	14	112	7.82
R	Middle Temporal Gyrus	66	-20	-18	276	2208	-5.29
		58	-36	20	119	952	4.42
R	Insula	36	-22	18	153	1224	5.12
		48	-18	16	250	2000	5.24
•		-			-		•

		38	-10	-2	81	648	4.23
		36	-16	10	104	832	4.21
D	Superior Temporal Curuc	48	-58	28	90	720	-4.19
к	Superior reliporar Gyrus	56	-2	4	61	488	4.61
R	Amygdala	22	-14	-8	69	552	4.43
Pa	rietal Lobe	-					
		-46	-66	40	1337	10696	-5.98
L	Inferior Parietal Lobule	-56	-28	24	627	5016	6.72
		-50	-38	22	123	984	4.48
L	Precuneus	0	-60	36	99	792	-3.75
Б	Informer Derivated Labula	56	-26	22	303	2424	6.46
Г		50	-32	24	86	688	4.62
R	Superior Parietal Lobule	40	-68	52	36	288	-3.91
R	Angular Gyrus	38	-62	34	14	112	-3.69
0	ccipital Lobe	-					
L	Middle Occipital Gyrus	-38	-92	14	30	240	-4.13
Su	bCortex				_		
L	L Caudate		-12	20	6	48	3.37
L	Lentiform Nucleus	-14	4	-6	476	3808	7.82
R	Caudate	10	10	2	232	1856	4.16
R	Lentiform Nucleus	24	2	-4	251	2008	5.34
R	Nucleus Accumbens	22	12	-12	232	1856	4.32
R	Claustrum	32	6	8	391	3128	5.72
R	Thalamus: Medial Dorsal Nucleus	6	-18	10	83	664	3.97
Ce	rebellum						
т	Careballum Culmen	-28	-50	-28	147	1176	5.01
	Cerebenum, Cuimen	-6	-56	-14	171	1368	4.83
L	Cerebellum, Declive	-6	-70	-18	77	616	4.39
Б	Caraballum Culman	4	-58	-28	27	216	3.66
к	Cerebenum, Cumen	40	-50	-32	26	208	3.7
	Cauchallum Antonian Laba	2	-46	-16	5	40	3.34
ĸ	Cerebellum, Anterior Lobe	2	-48	-12	16	128	3.62
B	rainstem						
L	Midbrain, Periacqueductal Gray	-2	-14	-12	356	2848	5.41
R	Pons	8	-34	-42	40	320	4.27
R	Midbrain, Substantia Nigra	10	-20	-12	317	2536	5.79

* Thresholded and corrected for multiple comparisons (FDR p < 0.05, k=5)

Supplementary Table 3. Univariate activation during recovery test (CS + > CS-). Related to STAR METHODS QUANTIFICATION AND STATISTICAL ANALYSIS *Univariate Analysis* and Figure S4.

Imagined	Region	MNI	Coordi	nates	vovels	mm3	max stat
imagineu	Kegion	x	у	Z	VUACIS	mms	max stat
Cortex					•		
Temporal L	obe						
R	'Temporal_Inf_R (aal)'	46	-70	-4	284	2272	-5.07
Occipital Lo	obe						
L	'Calcarine_L (aal)'	-10	-98	-6	111	888	-4.69
L	'Cuneus_L (aal)'	-6	-86	16	234	1872	-5.09
L	Occipital_Mid'	-26	-86	34	191	1528	-4.8
R	Occipital_Mid'	32	-74	32	151	1208	-4.59
Pool	Destau	MNI	Coordi	nates	vovolc	mm2	maystat
Keal	Region	x	у	Z	voxeis	IIIIII5	max stat
Cortex							
Frontal Lob	0e						
R	'Inferior Frontal Gyrus'	48	38	2	43	344	-4.57
R	'Inferior Frontal Gyrus'	58	8	36	80	640	-4.59
R	R 'Middle Frontal Gyrus'		28	-18	108	864	-4.29
R	'Middle Frontal Gyrus'	24	-2	48	98	784	-4.47
Temporal L	obe						
L	Amygdala	-16	-8	-32	120	960	-5.01
R	'Insula'	46	8	12	50	400	-4.43
R	Insula	42	4	24	71	568	-4.73
R	'Fusiform Gyrus'	56	-50	-24	68	544	-4.37
L	'Superior Temporal Gyrus'	-36	0	-20	66	528	-4.32
L	'Superior Temporal Gyrus'	-54	-42	8	76	608	-4.32
R	'Superior Temporal Gyrus'	40	6	-22	75	600	-4.33
L	Hippocampus	-40	-22	-14	52	416	-4.41
Parietal Lo	be	1					
R	'Inferior Parietal Lobule'	56	-38	24	254	2032	-4.85
R	'Parietal_Inf_R (aal)'	32	-46	50	634	5072	-5.01
L	'Postcentral Gyrus'	-58	-24	40	205	1640	-4.52
Occipital Lo	obe						
L	'Middle Occipital Gyrus'	-32	-82	8	1349	10792	-6.02

R	'Precuneus'	20	-72	28	2978	23824	-6.19	
Cerebellur	n							
L	'Culmen'	-44	-44	-30	294	2352	-5.56	
L	'Declive'	-28	-84	-24	96	768	-5.37	
Brainstem								
L	L 'Pons'			-32	240	1920	-5.01	
None	Region	MNI	Coordi	nates	vovels	mm3	may stat	
None	Kegion	х	у	Z	VUACIS	mms	max stat	
Cortex								
Cortex Frontal Lob	ne							
Cortex Frontal Lob L	e 'Cingulate Gyrus'	-6	-12	30	60	480	5.11	
Cortex Frontal Lob L R	e 'Cingulate Gyrus' 'Middle Frontal Gyrus'	-6 32	-12 28	30 36	60 50	480 400	5.11 -4.14	
Cortex Frontal Lob L R L	e 'Cingulate Gyrus' 'Middle Frontal Gyrus' 'Inferior Frontal Gyrus'	-6 32 -30	-12 28 32	30 36 -4	60 50 117	480 400 936	5.11 -4.14 5.45	
Cortex Frontal Lok L R L Temporal L	e 'Cingulate Gyrus' 'Middle Frontal Gyrus' 'Inferior Frontal Gyrus'	-6 32 -30	-12 28 32	30 36 -4	60 50 117	480 400 936	5.11 -4.14 5.45	
Cortex Frontal Lob L R L Temporal L	e 'Cingulate Gyrus' 'Middle Frontal Gyrus' 'Inferior Frontal Gyrus' obe Amygdala	-6 32 -30	-12 28 32 -8	30 36 -4 -14	60 50 117 68	480 400 936 544	5.11 -4.14 5.45 4.21	
Cortex Frontal Lob R L Temporal L L	e 'Cingulate Gyrus' 'Middle Frontal Gyrus' 'Inferior Frontal Gyrus' obe Amygdala Hippocampus	-6 32 -30 -10 -36	-12 28 32 -8 -28	30 36 -4 -14 -12	60 50 117 68 80	480 400 936 544 640	5.11 -4.14 5.45 4.21 4.62	

* Thresholded uncorrected (p < 0.05, k = 5)

Supplementary Table 4. There was no effect of order or stimulus counterbalancing on SCR, Related to Figure 3 and Figure S4

Source	df	SS	MS	F	Р
Group	2,60	0.003	0.002	0.325	0.724
Order	1,60	0.002	0.002	0.355	0.554
Group:Order	2,60	0.001	0.001	0.128	0.880

Type III ANOVA with Satterthwaite's method

Post hoc within group contrasts (all phases): Order A – Order B

Group	df	Estimate	SE	t.ratio	Р
Imagined	60	-0.001	0.016	-0.042	0.967
Extinction					
Standard	60	0.010	0.014	0.735	0.465
Extinction					
No Extinction	60	0.006	0.014	0.412	0.682

Within Acquisition Phase (all groups) ANOVA Contrast: Order A – B

	df	SS	MS	F	Р
Order	1	0.004	0.004	0.256	0.614
Residuals	64	0.885	0.014		

Supplementary Table 5. Post hoc analyses of the neural network supporting imagined extinction. Related to Figure 4D

10 out of 12 nodes yielded group significant differences in betweenness centrality in a one-way ANOVA test, FDR corrected for multiple comparisons.

Source	df	SS	MS	F	Р	η 2	
Between groups	2	18008.8	9004.42	35.17	5.54e-11	0.53	
Within groups	63	16131.1	256.05				
Total	65	34139.9					
Significant pair-wise t	vo-sample	t-tests with une	equal variance:				
None > Imagined $t(23) = 8.68, P < 0.0001, CI = [30.92, 50.26], Hedges g = 2.35$ None > Real $t(38.39) = 3.03, P = 0.004, CI = [5.56, 27.97], Hedges g = -0.86$							

t(21) = 8.04, *P* < 0.0001, CI=[17.66, 29.98], Hedges *g*=2.32

One-way Analysis of Variance of the Betweenness Centrality of the L NAc Node by Group

One-way Analysis of	Variance of the Betweenness	Centrality of the R NAc	Node by Group
			~ 1

Source	df	SS	MS	F	Р	η 2
Between groups	2	12522.6	6261.31	21.03	1.01e-07	0.40
Within groups	63	18757.9	297.74			
Total	65	31280.5				
Cignificant pain wice	huo came	la t toota with	in aqual yarian aa			

Significant pair-wise two-sample t-tests with unequal variance:

Real > Imagined

Imagined > Nonet(25.42) = 5.79, P < 0.0001, CI = [17.57, 36.93], Hedges g = 1.58Imagined > Realt(24.17) = 8.13, P < 0.0001, CI = [24.05, 40.40], Hedges g = 2.36

One-way Analysis of Variance of the Betweenness Centrality of the L Amygdala-CM Node by Group

Source	df	SS	MS	F	Р	η 2
Between groups	2	20386.3	10193.2	58.51	4.33e-15	0.65
Within groups	63	10975.5	174.2			
Total	65	31361.8				

Significant pair-wise two-sample t-tests with unequal variance:

Imagined > Real	t(25.8) = 13.59, P < 0.0001, CI = [32.08, 43.53], Hedges g = 3.96
None > Real	t(40.87) = 8.14, P < 0.0002, CI = [27.69, 45.96], Hedges $g = 2.32$

One-way	/ Analvsis d	of Variance o	of the Betweenness	: Centralitv o	f the R Amva	dala-CM Node b	v Group
			, =		1		

Source	df	SS	MS	F	Р	η 2
Between groups	2	492.1	246.038	1.59	0.211 <i>n.s.</i>	0.04
Within groups	63	9725.2	154.368			
Total	65	10217.3				

* ANOVA not significant; pair-wise t-tests not reported

Source	df	SS	MS	F	Р	η 2
Between groups	2	225.12	112.56	3.49	0.039 <i>n.s.</i>	0.10
Within groups	63	2031.91	32.25			
Total	65	2257.03				

One-way Analysis of Variance of the Betweenness Centrality of the L Amygdala-LB Node by Group

* ANOVA not significant; pair-wise t-tests not reported

One-way Analysis of Variance of the Betweenness Centrality of the R Amygdala-LB Node by Group

Source	df	SS	MS	F	Р	η 2
Between groups	2	5558	2779.00	17.6	8.44e-07	0.36
Within groups	63	9945.03	157.858			
Total	65	15503.03				

Significant pair-wise two-sample t-tests with unequal variance:

Real > Imagined	t(39.42) = 4.21, P = 0.0001, CI = [9.26, 26.34], Hedges g = 1.26
Real > None	t(35.89) = 5.38, P < 0.0001, CI = [12.83, 28.34], Hedges $g = 1.59$)

One-way Analysis of Variance of the Betweenness Centrality of the L Auditory (Te1.0) Node by Group

Source	df	SS	MS	F	Р	η 2
Between groups	2	6524.12	3262.06	761.66	7.36e-45	0.96
Within groups	63	269.82	4.28			
Total	65	6793.94				

Significant pair-wise two-sample t-tests with unequal variance:

Real > Imaginedt(21) = 27.60, P < 0.0001, CI = [19.50, 22.68], Hedges g = 7.97Real > Nonet(21) = 27.59, P < 0.0001, CI = [19.50, 22.68], Hedges g = 8.37

One-way Analysis of Variance of the Betweenness Centrality of the R Auditory (Te1.0) Node by Group

Source	df	SS	MS	F	Р	η 2
Between groups	2	5551.62	2775.81	45619.84	2.65e-100	1.00
Within groups	63	3.83	0.06			
Total	65	5555.45				
Significant pair-wise	two-samp	ole t-tests with	unequal variance:			
Imagined > Real	t(23) = Inf, P < 0.00	01, CI = [20,20], I	Hedges g = Inf		

Imagined > None t(23) = 239.00, P < 0.0001, CI = [19.74, 20.01], Hedges g = 64.74

One-way Analysis of Variance of the Betweenness Centrality of the L CA1 Node by Group

Source	df	SS	MS	F	Р	η 2
Between groups	2	31964.4	15982.2	251.05	9.71e-31	0.89
Within groups	63	4010.6	63.7			

Total	65	35975
Significant pair-wise two	-sample	e t-tests with unequal variance:

Real > Imagined	t(21.84) = 15.73, P < 0.0001, CI = [40.28, 52.52], Hedges g = 4.55
Real > None	t(21.03) = 16.06, P < 0.0001, CI = [40.84, 52.99], Hedges $g = 4.87$

One-way Analysis of Variance of the Betweenness Centrality of the R CA1 Node by Group

Source	df	SS	MS	F	Р	η 2
Between groups	2	2978.95	1489.48	78.75	7.27e-18	0.71
Within groups	63	1191.53	18.91			
Total	65	4170.48				

Significant pair-wise two-sample t-tests with unequal variance:

None > Real	t(23) = 11.48, $P < 0.0001$, CI = [12.01, 17.31], Hedges $g = 3.18$
Imagined > Real	(t(19) = 15.68, P < 0.0001, CI = [11.87, 15.53], Hedges g = 4.99)

One-way Analysis of Variance of the Betweenness Centrality of the PAG Node by Group

Source	df	SS	MS	F	Р	η 2
Between groups	2	3931.62	1965.81	46.95	3.29e-13	0.60
Within groups	63	2637.65	41.87			
Total	65	6569.27				

Significant pair-wise two-sample t-tests with unequal variance:

None > Imagined	t(29.74) = 2.84, P = 0.008, CI = [1.80, 11.04], Hedges g = 0.88
None > Real	$t(44) = 12.26$, $P < 0.0001, \mathrm{CI} = [15.31, 21.34], \mathrm{Hedges} g = 3.54$
Imagined > Real	<i>t</i> (28.77) = 5.32, p< 0.0001, CI=[7.33, 16.49], Hedges <i>g</i> =1.65

One-way Analysis of Variance of the Betweenness Centrality of the vmPFC Node by Group

Source	df	SS	MS	F	Р	η 2
Between groups	2	19691.5	9845.73	30.79	4.72e-10	0.49
Within groups	63	20148.3	319.81			
Total	65	39839.8				

Significant pair-wise two-sample t-tests with unequal variance:

Imagined > Real	t(25.48) = 4.33, P = 0.0002, CI = [11.05, 31.04], Hedges g = 1.26
Imagined > None	t(29) = 9.63, P < 0.0001, CI = [33.41, 51.42], Hedges g = 2.66
Real > None	<i>t</i> (42.96) = 3.45, <i>P</i> = 0.001, CI=[8.88, 33.87], Hedges <i>g</i> = 1.00

Supplementary Figure 1. Univariate activation during threat Acquisition (CS + > CS-), Related to Figure 2. This the FDR corrected contrast map (CS+ > CS-) resulting from a univariate general linear model applied to all subjects (n = 68) during the Threat Acquisition phase. This map is similar to the multivariate Neural Threat-Predictive Pattern in the main text. Regions with positive activations include the dACC, PAG, amygdala and insula. Regions with negative activations include the precuneus and orbitofrontal cortex. See Table S2 for a detailed list of regions.

Supplementary Figure 2. Imagined and real extinction reduce neural and physiological threat expression, Related to Figures 2 and 3. A-B. Violin plot version of Figure 3 panels A and B in the main text. See Figure 3 in main text for details. **C.** The unthresholded classification weights in the amygdala extracted from the whole brain threat predictive pattern in Figure 2 of the main text. The neural threat-predictive pattern was masked with a bilateral anatomical mask of the amygdala and then applied to the threat recovery test phase (late re-extinction) in order to determine if threat expression was altered in this region of interest. **D.** The partial threat pattern expression of the amygdala was assessed in the three groups (analogous to Figure 3A). Group differences were not significant, but there is a trend consistent with the findings in this paper: The no extinction group increased threat expression in the amygdala during the recovery test but the imagined and real extinction groups did not (*F*(2,63) = 2.35, p = 0.11, η^2 = 0.07). The no extinction group (*x* = 0.02, n = 24) is greater than real (*x* = -0.02, n = 22; *t*(38.68) = 2.00, p = 0.05, Hedges g = 0.59), and is non-significantly greater than imagined (*x* = -0.0005, n = 20, *t*(41.04) = 1.46, p = 0.15, Hedges g = 0.43). No difference was found between the imagined and real (*t*(38.10) = 0.75, p = 0.46, Hedges g = 0.22) extinction groups.

Supplementary Figure 3. Univariate Activation during Recovery Test (CS + > CS-), Related to Figure 3. A general linear model contrasting activation to the last 5 trials of re-extinction CS+ > CSwas applied across the whole brain within each group. Uncorrected t-statistics are plotted for each map (P < 0.05, cluster size k = 5; see Table S3 for complete list of activations). A. Imagined Extinction. Amongst the significant clusters was the cuneus, which was negatively activated to the CS+ relative to CS-. This map demonstrates no evidence for threat recovery in the Imagined Extinction group. B. Real Extinction. Activations were distributed and largely negative. Notably, there were decreased responses to the CS+ relative to the CS- in the amygdala and the Inferior Parietal Lobule (IPL). C. No Extinction. The no extinction group demonstrated distributed positive activations, that is, greater responding to the threatening relative to the safety stimulus, in several regions known to be involved in threat expression, including the amygdala, anterior insula, hippocampus (CA1), and cingulate cortex. D. Comparison of average signal in a priori ROIs. Unthresholded beta-weights in bilateral a priori ROIs, the amygdala and CA1, were extracted and averaged from the maps in A-C and then compared across groups. A one-way ANOVA revealed a non-significant trend of group effects in the amygdala (F(2,63) = 2.23, p = 0.12, $\eta^2 = 0.07$). Pairwise differences, revealed by two-sample t-tests, were not significant, but demonstrate a trend that activation in the amygdala is greater in the no extinction group (x = 0.09, n = 24) than in the imagined t(35.64) = 1.95, p = 0.06, CI=[0.36 -0.01], Hedges g = 0.59) or real extinction groups (t(39.77) = 1.734, p = 0.09, CI=[0.33, -0.03], Hedges g = 0.51). There was no difference between the imagined (x = -.09, n = 20) and real extinction (x = -0.06, n = 22) groups (t(39.61) = -0.25, p = 0.81, CI=[-0.23, 0.18], Hedges g = -0.07). A one-way ANOVA revealed group effects in the CA1 (F(2,63) = 3.61, p = 0.03, $\eta^2 = 0.10$). Pairwise *t*-tests revealed that activation in CA1 is greater in the no extinction group (x = 0.09) than in the imagined (t(38.86) = -2.38, p = 0.02, CI=[-0.27, -0.02], Hedges g = -0.71) or real extinction groups (t(43.20) = -2.24, p = 0.03, CI=[-0.25, -0.01], Hedges g = -0.65). There was no difference between the imagined (x = -0.06) and real extinction (x = -0.04) groups (t(39.13) = -0.25, p = 0.80, CI=[-0.15, 0.11], Hedges g = -0.08).

Supplementary Figure 4. Average skin conductance responses across all phases, Related to Figure 3. *A. Average Differential SCR Across Each Phase.* A linear mixed effects model including group and phase as predictors, indicated a significant effect of phase across the entire experiment (F(4,156) = 9.19, P = 1.08e-06). There was a trend towards a significant group by phase interaction (F(8,156) = 1.78, P = 0.08). The planned group comparison of threat-related SCRs during late re-extinction was significant and included in the main text. Post hoc analysis of group differences during early and late extinction phases revealed a significant group by phase interaction (F(2,39) = 5.01, P = 0.01) and a significant pairwise difference between imagined and real extinction groups during early extinction (t(77.96) = -2.770, P = 0.02; P value adjustment via tukey method for comparing a family of 3 estimates) Participants who did not demonstrate greater SCRs to the CS+ relative to the CS- on average across all acquisition trials (n = 24) were removed from analysis because it would be

meaningless to investigate threat recovery in the signal of participants who did not demonstrate initial learning. *B. Average Differential SCR Across Each Phase for All Subjects (n = 66).* When participants who did not show a discriminatory SCR are not removed from the analysis, effects are diminished, but the trend remains. Additionally, this plot shows why it was necessary to remove participants who did not demonstrate a discriminatory SCR during learning; if there is no acquisition baseline it is difficult to assess the importance of recovery during late re-extinction.

Supplementary Figure 5. Imagined and real extinction yield similar patterns in the vmPFC during extinction, Related to Figure 5. To assess the similarity of the representational content in the vmPFC across 'extinction' sessions, voxel-wise activations were tested for correlations between groups during extinction (the third time bin; Figure 4B). The third time bin was selected *post hoc*, based on the average temporal activation data in order to focus on the peak activation during extinction. Imagined and real extinction had the highest correlation coefficient (R = 0.51, *P* = 0.25.). Imagined and no extinction were weakly positively correlated (R = 0.20, *P* = 0.76) and real and no extinction were also weakly positively correlated (R = 0.27, *P* = 0.66). These correlations were not significant according to a nonparametric bootstrap test (10,000 samples). These results suggest that activations in the vmPFC are spatially analogous in imagined and real extinction, but require further data.

Supplementary Figure 6. Distribution of data supporting the effects in ROIs that predict the success of imagined and real extinction, Related to Figure 6. Scatterplots are shown for descriptive purposes. These plots illustrate the distribution of individual data values in Figure 6, but should not be taken as indicative of the true effect sizes (Reddan, Lindquist, & Wager, 2017).