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S1 TEXT: MATHEMATICAL PROOFS AND
DERIVATIONS

Bid function

The bid function b(v) can be found following steps that
are identical to the derivation of the first part of Propo-
sition 8 in Hoppe et al. [22]. We repeat that derivation
here, almost fully verbatim.

Begin by dividing the investigator’s payoff function by
by (1 − k)g(v) to rescale the investigator’s optimization
problem (eq. 1) :

b(v) = arg max
x

{
(v0 + v)

(1− k)g(v)
η(x)− h(x)

}
. (S1)

Consider two projects of values v1 and v2, v1 > v2, with

equilibrium bids b(v1) and b(v2), respectively. The inves-
tigator with a project of value v1 should not submit a
bid as if her project had value v2, and similarly the in-
vestigator whose project has value v2 should not submit
a bid as if her project had value v1. This yields:

(v0 + v1)

(1− k)g(v1)
η(b(v1))− h(b(v1)) ≥

(v0 + v1)

(1− k)g(v1)
η(b(v2))− h(b(v2))

(v0 + v2)

(1− k)g(v2)
η(b(v2))− h(b(v2)) ≥

(v0 + v2)

(1− k)g(v2)
η(b(v1))− h(b(v1)).

Rearrange each inequality to isolate h(b(v1)) − h(b(v2))
and divide through by v1 − v2 to give

(v0+v2)
(1−k)g(v2) (η(b(v1))− η(b(v2)))

v1 − v2
≤ h(b(v))− h(b(v̂))

v1 − v2
≤

(v0+v1)
(1−k)g(v1) (η(b(v1))− η(b(v2)))

v1 − v2
.

Take the limit as v2 → v1 to give

d

dv
h(b(v)) =

v0 + v

(1− k)g(v)

d

dv
η(b(v)). (S2)

Essentially, after rescaling investigators’ benefits and
costs so that the cost function (h(x)) is the same for all
investigators, eq. S2 says that, at equilibrium, an investi-
gator’s marginal (re-scaled) cost and marginal (re-scaled)
benefit of preparing an infinitesimally stronger proposal
are equal [22]. Proceeding with the derivation, multi-
ply both sides of eq. S2 by dv to separate variables and
integrate from 0 to v to obtain∫ v

0

dh(b(t)) =

∫ v

0

v0 + t

(1− k)g(t)
ξ′(t) dt (S3)

where ξ(v) = η(b(v)). Then use h(b(0)) = h(0) = 0 to
give

∫ v
0
dh(b(t)) = h(b(v)), and thus

h(b(v)) =

∫ v

0

v0 + t

(1− k)g(t)
ξ′(t) dt. (S4)

Take h−1 on both sides to complete the derivation.
To make our derivation somewhat more general than in

the main text, suppose that both v0 and k are themselves
functions of v, such that the investigator’s optimization
problem now becomes

b(v) = arg max
x

{
(v0(v) + v)

(1− k(v))g(v)
η(x)− h(x)

}
. (S5)

We require the key condition that the quantity
(v0(v)+v)

(1−k(v))g(v) is a strictly increasing function of v, so

that investigators with higher value projects will submit
stronger proposals. This condition rules out the possibil-
ity that, say, variation in v0 or k is large enough that
either replaces v as the primary correlate of proposal
strength. When this key condition holds, the derivation
above proceeds as before, leading to a bid function of

b(v) = h−1
[∫ v

0

v0(t) + t

(1− k(t))g(t)
ξ′(t) dt

]
. (S6)

In this case, variation in v0 or k among investigators may
change the value of investigators’ bids, but it does not
change the rank of investigators’ bids (that is, higher-
value projects are still associated with stronger propos-
als). Because we use a copula to capture noisy assessment
of proposals, an investigator’s probability of funding de-
pends only on the rank of the investigator’s bid, and thus
the portfolio of funded projects does not change.

Finally, we can extend the model to accommodate re-
searchers’ differing needs for time and money, as long
as the marginal rate of technical substitution for time vs.
money is also a function of v. In this case, we re-interpret
the cost function c(v, x) = g(v)h(x) as the time cost of
writing a proposal, and we assume that the monetary cost
of writing a proposal is negligible. Let φ be a conversion
factor that converts time into scientific productivity, such
that the disutility cost of writing a proposal in terms of
lost productivity is φc(v, x). Moreover, suppose φ is also
a function of v. Then, we can write the investigator’s
optimization problem as

b(v) = arg max
x

{(v0(v) + v)η(x)− (1− k(v))φ(v)g(v)h(x)} .

(S7)
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As before, we require the key condition that
(v0(v)+v)

(1−k(v))φ(v)g(v) is a strictly increasing function of v,

to ensure that proposal strength is positively corre-
lated with scientific value at equilibrium. Under this
condition, the same steps give a bid function of

b(v) = h−1
[∫ v

0

v0(t) + t

(1− k(t))φ(t)g(t)
ξ′(t) dt

]
. (S8)

To demonstrate that b(v) maximizes the investiga-
tor’s payoff (as opposed to minimizing it), we follow
Moldovanu & Sela’s [20] “pseudo-concavity” argument.
This argument requires that b′(v) > 0, which we estab-
lish first. To do so, note that h−1 in eq. 2 is an increasing
function (because h is an increasing function), and that
(v0 + t)/g(t) > 0 in the integrand of eq. 2. Thus, to
show that b′(v) > 0, it suffices to show that ξ′(v) > 0,
that is, that the probability of being funded increases as
the value of the scientific project increases. We expect
this condition to hold under any reasonable model of how
proposals are assessed. Basic but tedious calculus estab-
lishes that it does hold for the Clayton copula that we
describe below.

Having established that b′(v) > 0, the pseudo-
concavity argument of Moldovanu & Sela [20] proceeds
as follows. Let $(v, x) = (v0 + v)η(x)− (1− k)g(v)h(x)
be the payoff associated with a project of value v and a
proposal of quality x. Let $x = ∂$(v, x)/∂x. We claim
that $x > 0 for x < b(v), and $x < 0 for x > b(v).
These claims, together with the continuity of b(v), estab-
lish that x = b(v) maximizes $(v, x).

We first show that $x > 0 for x < b(v). Choose a
value of x < b(v), and let v? be the value of a project
that will generate a bid of x, that is, b(v?) = x. Because
b′(v) > 0, it follows that v? < v. Simple differentiation
gives

$x(v, x) = (v0 + v)η′(x)− (1− k)g(v)h′(x). (S9)

Now differentiate $x with respect to v to give the mixed
derivative

$xv(v, x) = η′(x)− (1− k)g′(v)h′(x). (S10)

Under the assumptions of our model, η′(x) > 0, g′(v) <
0, and h′(x) > 0; thus, $xv > 0. Therefore, $x is an
increasing function of v, and thus $x(v?, x) < $x(v, x).
By virtue of the fact that b(v?) = x, we have $x(v?, x) =
0. Therefore, $x(v, x) > 0.

The proof that $x < 0 for x > b(v) follows similarly.

Copulas for noisy assessment

A bivariate copula is simply a bivariate probability dis-
tribution on the unit square with uniform marginal dis-
tributions [26]. Let U = F (v) be the actual quantile
of a proposal, and let W be the assessed quantile. The
joint distribution of U and W is given by the copula

C(u,w) = Pr{U ≤ u,W ≤ w}. Given a value of U , the
conditional distribution of W given U is CW |U (u,w) =
Pr{W ≤ w|U = u} = ∂C(u,w)/∂u. (Here we use the fact
that U is uniformly distributed on the unit interval.) To
find ξ(v), evaluate CW |U at u = F (v) and w = 1 − p to
find 1−ξ(v), the probability that an idea of value v is not
funded. Take the complement to find ξ(v). Differentiate
with respect to v to find ξ′(v), which can then be plugged
in to eq. 2.

The distribution function for a Clayton copula [27] is
[26, §4.2]

C(u,w) =
(
u−θ + w−θ − 1

)−1/θ
. (S11)

The parameter θ ≥ 0 controls the strength of the associ-
ation between U and W , with larger values of θ giving
stronger associations (i.e., more accurate assessment of
grant proposals).

Alternative parameter sets

To complement the example in the main text, we show
numerical results for two alternative parameter sets. In
the first alternative set, scientific value is uniformly dis-
tributed across projects, the disutility cost increases lin-
early with proposal quality, and assessment is less precise
than we assume in the baseline parameter set. In this set,
v is uniformly distributed between 1/3 and 1. We use
c(v, x) = xe−v for the cost function, and we use θ = 5 in
the Clayton copula (Fig. S2B).

The second alternative parameter set captures a sce-
nario where the pool of possible project values is bi-
modal, with many minimal-value projects and equally
many maximal-value projects. In this alternative set,
v ranges from 1/2 to 1. To construct the distribution
of v, let Y be a beta random variable with both shape
parameters equal to 1/2. Thus, Y has a symmetric,
U-shaped distribution on the unit interval. Then v is
given by (1 + Y )/2. In this parameter set, we choose
c(v, x) = (1.5 − v)x2, and we set θ = 7.5 in the Clayton
copula.

Both alternative parameter sets use k = 1/3.

Perfect discrimination

In the perfect discrimination case, we require that
there is a maximum possible value of v, which we write
vmax. The previous derivation of the bid function does
not work for perfect discrimination, because b(v) becomes
a step function and thus is not differentiable. Instead, let
v? denote the threshold value, that is, v? = F−1(1− p).
Under perfect discrimination, the threshold investigator
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will break even regardless of her bid. Thus,

η(x) =


gk(v?)h(x)

v0 + v?
x ≤ x?

1 x > x?
(S12)

where

x? = h−1
[
v0 + v?

gk(v?)

]
. (S13)

Consequently, it is straightforward to show that the bid
function is

b(v) =

{
x? v > v?

0 v < v?.
(S14)

The following results are all immediate. First, as the
payline drops, v? increases, and hence x? increases. (Re-
call that g is a strictly decreasing function, and h−1 is
a strictly increasing function.) Thus, investigators with
v > v? experience a reduced payoff and increased costs,
leading to a reduced ROI. Second, the average scientific
benefit per funded proposal, which can be written as∫ vmax

v?
v dF (v)

/∫ vmax

v?
dF (v), (S15)

increases as v? increases. Third, as p approaches 0 from
above, v? approaches vmax from below. Thus, in the
limit, the bid function approaches

lim
p→0+

b(v) =

h−1
[
v0 + vmax

gk(vmax)

]
v = vmax

0 v < vmax.
(S16)

Thus, the payoff to all investigators approaches 0 as p
approaches 0 from above.

Lotteries

We consider the more general case of a multi-tier lot-
tery. Proposals deemed worthy of funding are placed
into one of z tiers, with tier 1 representing the highest-
ranked proposals, etc. Write the proportion of propos-
als in tier i as qi, and let πi represent the probabil-
ity that a proposal placed in tier i is funded, where
1 ≥ π1 > π2 > . . . > πz > 0. We assume that the fund-
ing agency determines q1, q2, . . . , qz and π1, π2, . . . , πz in
advance. Because the payline is still p, we must have∑z
i=1 qiπi = p. The single-tier lottery proposed by Fang

& Casadevall [16] and others is a special case with z = 1,
with a probability of funding π1 = p/q1 in that tier.

In a tiered lottery, the investigator’s maximization
problem becomes

b(v) = arg max
x

{
(v0 + v)

z∑
i=1

πiηi(x)− (1− k)c(v, x)

}
(S17)

where ηi(x) is the probability that a proposal of quality
x is placed in tier i. A similar derivation to the steps in
eq. S2–S4 yields the bid function

b(v) = h−1

[
z∑
i=1

πi
1− k

∫ v

0

v0 + t

g(t)
ξ′i(t) dt

]
. (S18)

where ξi(v) = ηi(b(v)).
We now show that the efficiency of a lottery depends

entirely on the structure of the lottery, and is indepen-
dent of the payline. For multi-tier lotteries, we require
that the ratios of the πi’s — the probabilities of funding
in each tier — are fixed. To establish these ratios, write
κi = πi/π1. The condition

∑z
i=1 qiπi = p implies that

the probability that a proposal in tier i is funded is

πi =
pκi∑
i κiqi

, (S19)

as long as p ≤
∑
i κiqi. (If p >

∑
i κiqi, then we would

have π1 > 1.)
All of our results follow from showing that an investi-

gator’s benefit and cost are proportional to p, and thus
the payline p cancels out of the efficiency calculations in
eqq. 3–5. The investigator’s benefit from entering the
competition is (v0 + v)

∑z
i=1 πiηi(x). A simple substitu-

tion shows that this benefit is proportional to p:

(v0 + v)

z∑
i=1

πiηi(x) = (v0 + v)

z∑
i=1

pκiηi(x)∑
j κjqj

= p(v0 + v)

∑
i ηi(x)κi∑
j κjqj

.

To show that the investigator’s cost is proportional to
p, we have

c(v, b(v)) = g(v)h(b(v))

= g(v)

z∑
i=1

πi
1− k

∫ v

0

v0 + t

g(t)
ξ′i(t) dt

= p g(v)

∑
i κi
∫ v
0
v0+t
g(t) ξ

′
i(t) dt

(1− k)
∑
j κjqj

.

It thus follows that the investigator’s ROI (eq. 3), the
average value per funded grant (eq. 4), and the average
waste per funded grant (eq. 5) are all independent of p.

Hoppe et al. [22] provide an argument based on the
economic principle of revenue equivalence that explains
why costs are independent of the payline in a lottery.
This argument applies both to proposal competitions and
to lotteries of any structure, and it applies regardless
of whether panels discriminate perfectly among propos-
als, or not. The argument is most easily explained in a
single-tier lottery with perfect discrimination, so we con-
sider that setting. First, for revenue equivalence to apply,
we need to re-scale the model so that only benefits vary
among investigators. That is, re-scale the investigator’s
equilibrium benefit function to

p

q

(v0 + v)

(1− k)g(v)
ξl(v) (S20)
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and write her cost function as h(x). Having re-scaled
the investigator’s benefits and costs, the principle of rev-
enue equivalence suggests that the (re-scaled) cost paid
by an investigator will be exactly equal to the negative
externality that her entrance into the competition cre-
ates, that is, the amount by which her entrance decreases
the aggregate benefit of the competing investigators [22].
With perfect discrimination, the threshold investigator
(the last one to qualify for the lottery) has project value
v? = F−1(1 − q); every investigator with v > v? quali-
fies for the lottery, while every investigator with v < v?

opts out. Consider an investigator with an idea of value
v. If v < v?, then this investigator’s entrance into the
competition has no effect on other investigators’ benefit,
and thus the cost she pays is 0 (i.e., she opts out). If
the investigator has an idea of value v > v?, then she
knocks one threshold investigator out of the lottery. No
other investigator’s benefit changes. Thus, the new in-
vestigator’s presence decreases the aggregate benefit of
the other investigators by

p

q

(v0 + v?)

(1− k)g(v?)
. (S21)

This negative externality is exactly the re-scaled cost that
she pays, i.e.,

h(b(v)) =
p

q

(v0 + v?)

(1− k)g(v?)
. (S22)

Multiplying by g(v) undoes the re-scaling to give the ac-
tual cost paid:

c(v, b(v)) = g(v)h(b(v)) = g(v)
p

q

(v0 + v?)

(1− k)g(v?)
. (S23)

Two observations explain why the cost paid by the in-
vestigator is directly proportional to p. First, the identity
of the threshold investigator — the one who is knocked
out of the lottery when an investigator with a higher-
value project enters — is determined by q, not p. (In a
proposal competition, the threshold investigator is deter-
mined by p.) Second, the threshold investigator’s benefit
— and hence the negative externality imposed by the
newly arriving investigator — is directly proportional to
p. Thus, the (re-scaled) cost paid by any investigator will
also be directly proportional to p. Multiplying the cost
by g(v) to undo the rescaling does not change the direct
proportionality to p.

With noisy assessment, and/or in a multi-tiered lot-
tery, the negative externality that an investigator im-
poses on the field, and hence the (re-scaled) cost that
she pays at equilibrium, integrates the amount by which
her entry decreases the benefit of every investigator with
a project value less than hers. (This is one way to under-
stand the bid functions in eq. 2, 6, and S18.) In a lottery,
everyone’s benefit is proportional to p, and hence each
investigator’s negative externality, and the cost that she
pays, is proportional to p as well.


