

advances.sciencemag.org/cgi/content/full/5/1/eaau7314/DC1

## Supplementary Materials for

# Improving the metabolic fidelity of cancer models with a physiological cell culture medium

Johan Vande Voorde, Tobias Ackermann, Nadja Pfetzer, David Sumpton, Gillian Mackay, Gabriela Kalna, Colin Nixon, Karen Blyth, Eyal Gottlieb, Saverio Tardito\*

\*Corresponding author. Email: s.tardito@beatson.gla.ac.uk

Published 2 January 2019, *Sci. Adv.* **5**, eaau7314 (2019) DOI: 10.1126/sciadv.aau7314

#### This PDF file includes:

Table S1. Comparison between the formulations of Plasmax and HPLM.

Fig. S1. Selenite-dependent colony formation.

Fig. S2. PCA of gene expression.

Fig. S3. Isotopologue distribution of urea cycle intermediates.

#### SUPPLEMENTARY MATERIAL

|                                           | Concentration (uM) |           |
|-------------------------------------------|--------------------|-----------|
|                                           | Plasmax            | HPLM      |
| Proteinogenic Amino Acids                 |                    |           |
| I -Alanine <sup>1</sup>                   | 510                | 430       |
|                                           | 64                 | 110       |
| L-Asparagine <sup>1</sup>                 | 41                 | 50        |
| L-Aspartic acid <sup>1</sup>              | 6                  | 20        |
| L-Cysteine <sup>2</sup>                   | 33                 | 40        |
| L-Glutamate <sup>1</sup>                  | 98                 | 80        |
|                                           | 650                | 550       |
| Glycine <sup>1</sup>                      | 330                | 300       |
| L Histidino1                              | 120                | 110       |
|                                           | 120                | 70        |
|                                           | 170                | 160       |
|                                           | 220                | 200       |
| L-LySille                                 | 220                | 200       |
|                                           | 50                 | 30        |
|                                           | 68                 | 80        |
|                                           | 360                | 200       |
|                                           | 140                | 150       |
| L-Ihreonine'                              | 240                | 140       |
| L-Tryptophan <sup>1</sup>                 | 78                 | 60        |
| L-Tyrosine <sup>1</sup>                   | 74                 | 80        |
| L-Valine <sup>1</sup>                     | 230                | 220       |
| Non-proteinogenic Amino Acids             |                    |           |
| $\alpha$ Aminobutyrate <sup>2</sup>       | /1                 | 20        |
|                                           | 55                 | 20        |
|                                           | 55                 | 40        |
| L-Cysume <sup>2</sup>                     | 00                 |           |
|                                           | 9                  | 1NA<br>20 |
|                                           | 13                 | 20        |
|                                           | 80                 | 70        |
| L-Pyrogiutamate <sup>2</sup>              | 20                 | INA       |
| Amino Acids Derivatives                   |                    |           |
| L-Acetyl glycine <sup>2</sup>             | 70                 | 90        |
| L-Carnosine <sup>2</sup>                  | 6                  | NA        |
| Glutathione (reduced) <sup>2</sup>        | 37                 | 25        |
| Taurine <sup>2</sup>                      | 130                | 90        |
| N-Trimethylglycine (betaine) <sup>2</sup> | 72                 | 70        |
|                                           |                    |           |
| Other Components                          |                    |           |
| Acetate <sup>2</sup>                      | 42                 | 40        |
| Acetone <sup>2</sup>                      | 55                 | 60        |
| Acetyl carnitine <sup>2</sup>             | 5                  | NA        |
| Citrate <sup>2</sup>                      | 114                | 130       |
| Carnitine <sup>2</sup>                    | 46                 | 40        |
| Creatine <sup>2</sup>                     | 37                 | 40        |
| Creatinine <sup>2</sup>                   | 74                 | 75        |
| Formate <sup>2</sup>                      | 33                 | 50        |
| Fructose                                  | NA                 | 40        |
| Galactose                                 | NA                 | 60        |
| D-Glucose <sup>7</sup>                    | 5560               | 5000      |
| Glycerol <sup>2</sup>                     | 82                 | 120       |
| 2-Hydroxybutyrate <sup>2</sup>            | 31                 | 50        |

### Table S1. Comparison between the formulations of Plasmax and HPLM.

| 3-Hydroxybutyrate <sup>2</sup>          | 77     | 50     |
|-----------------------------------------|--------|--------|
| 3-Hydroxyisobutyrate <sup>2</sup>       | 20     | NA     |
| Hypoxanthine <sup>2</sup>               | 5      | 10     |
| Lactate <sup>2</sup>                    | 500    | 1600   |
| Malonate                                | NA     | 10     |
| Methyl acetoacetate <sup>2</sup>        | 41     | NA     |
| Phenol Red <sup>7</sup>                 | 25     | 14     |
| Pyruvate <sup>8</sup>                   | 100    | 50     |
| Succinate <sup>2</sup>                  | 23     | 20     |
| Uracil <sup>2</sup>                     | 2      | NA     |
| Urate <sup>₄</sup>                      | 270    | 350    |
| Urea <sup>2</sup>                       | 3000   | 5000   |
| Uridine <sup>2</sup>                    | 3      | NA     |
|                                         | -      |        |
| Inorganic Salts                         |        |        |
| Ammonium Chloride <sup>3</sup>          | 50     | 40     |
| Calcium Chloride <sup>7</sup>           | 1800   | 2350   |
| Calcium Nitrate                         | NA     | 40     |
| Magnesium Chloride                      | NA     | 480    |
| Magnesium Sulfate <sup>7</sup>          | 813    | 350    |
| Potassium Chloride <sup>7</sup>         | 5330   | 4100   |
| Sodium Bicarbonate <sup>7</sup>         | 26191  | 24000  |
| Sodium Chloride <sup>7</sup>            | 118706 | 105000 |
| Sodium Phosphate monobasic <sup>7</sup> | 1010   | 870*   |
|                                         |        |        |
| Trace Elements                          |        |        |
| Ammonium Metavanadate <sup>3</sup>      | 0.0026 | NA     |
| Cupric Sulfate <sup>3</sup>             | 0.0052 | NA     |
| Ferric Nitrate <sup>3</sup>             | 0.1238 | NA     |
| Ferric Sulfate <sup>3</sup>             | 1.0428 | NA     |
| Manganous Chloride <sup>3</sup>         | 0.0002 | NA     |
| Sodium Selenite <sup>3</sup>            | 0.0289 | NA     |
| Zinc Sulfate <sup>3</sup>               | 1.5    | NA     |
|                                         |        |        |
| Vitamins                                |        |        |
| p-Aminobenzoate                         | NA     | 7.3    |
| Ascorbate <sup>6</sup>                  | 62     | NA     |
| D-Biotin⁵                               | 4.1    | 0.8    |
| Choline⁵                                | 7.1    | 21.5   |
| Folate⁵                                 | 2.3    | 2.3    |
| myo-Inositol⁵                           | 11.1   | 194.3  |
| Niacinamide⁵                            | 8.2    | 8.2    |
| D-Pantothenic acid hemicalcium5         | 4.2    | 1.05   |
| Pyridoxine⁵                             | 4.9    | 4.9    |
| Riboflavin⁵                             | 0.3    | 0.5    |
| Thiamine⁵                               | 3      | 3      |
| Vitamin B126                            | 0.005  | 0.0037 |

\* present as dibasic salt

Formulations of Plasmax and HPLM (Cantor et al. 2017, Cell 169, 258-272). Plasmax components were dissolved and stocked as follow: <sup>1</sup> 100x solution 1, <sup>2</sup> 100x solution 2, <sup>3</sup> 1,000x solution 3 (trace element concentrations as in Advanced DMEM-F12, Thermo Fisher Scientific cat no. 12634028), <sup>4</sup> 500x solution 4, <sup>5</sup>100x commercially available BME vitamin mix. <sup>6</sup>100,000x individual stocks, supplemented to BME vitamin mix to obtain a 100x stock solution 5. <sup>7</sup> included in the commercially available EBSS. <sup>8</sup> individual stock solutions commercially available.



**Fig. S1. Selenite-dependent colony formation.** Quantification of colony formation assays performed with (a) CAL-120 cells and (b) BT549 seeded 500cells/well and incubated in DMEM-F12 with 28nM Na<sub>2</sub>SeO<sub>3</sub>, as indicated. Mean  $\pm$  SEM; (a) n = 3 (b) n=1 independent experiments. Each dot represents an independent experiment. p value refers to a two-tailed t-test for paired homoscedastic samples.



Fig. S2. PCA of gene expression obtained from RNA sequencing data of BT549, CAL-120, and MDA-MB-468 cells cultured in Plasmax or DMEM-F12, in normoxia. Each dot represents an independent experiment.



**Fig. S3. Isotopologue distribution of urea cycle intermediates.** Intracellular levels of (**a**) <sup>13</sup>C arginine (**b**) <sup>13</sup>C ornithine and (**c**) <sup>13</sup>C citrulline in BT549, CAL-120 and MDA-MB-468 cells cultured for 48 hours in Plasmax (P) and DMEM supplemented with <sup>13</sup>C<sub>6</sub> and <sup>13</sup>C<sub>0</sub> arginine at the indicated concentrations. Mean  $\pm$  SEM; CAL-120 (n = 3 independent experiments); BT549 and MDA-MB-468 (n = 2 independent experiments).