Science Advances

advances.sciencemag.org/cgi/content/full/5/1/eaau0637/DC1

Supplementary Materials for

A single-stranded coordination copolymer affords heterostructure observation and photoluminescence intensification

Ryojun Toyoda, Ryota Sakamoto*, Naoya Fukui, Ryota Matsuoka, Mizuho Tsuchiya, Hiroshi Nishihara

*Corresponding author. Email: sakamoto@chem.s.u-tokyo.ac.jp.

Published 4 January 2019, *Sci. Adv.* **5**, eaau0637 (2019) DOI: 10.1126/sciadv.aau0637

This PDF file includes:

Fig. S1. Oak Ridge thermal ellipsoid plot drawings of $H_2L3 \cdot 2HBr$ and $H_2L3' \cdot 2HBr \cdot (solvent)_n$ with a thermal ellipsoid set at the 50% probability level.

Fig. S2. XPS for proligands and coordination polymers.

Fig. S3. Quantification of the elemental ratio from XPS.

Fig. S4. Elemental abundances in Co-1-*k* and Homo-1 determined by elemental and ICP-AES analysis.

Fig. S5. PL enhancement mechanism for a heteroleptic complex.

Fig. S6. UV/vis spectroscopy for Co-2-k in toluene.

Fig. S7. Photovoltaic conversion of Co-1-6, Homo-3, and Homo-1.

Fig. S8. Three-electrode electrochemical cell used for the photoelectric conversion.

Fig. S9. AFM images of Co-1-3 on other substrates.

Fig. S10. AFM for Homo-1.

Fig. S11. AFM for Homo-3'.

Fig. S12. Gaussian fitting of AFM height histograms of Co-1-k, Homo-1, and Homo-3'.

Fig. S13. PL lifetimes (τ_{PL}) in toluene.

Fig. S14. PL of Co-2-k in toluene.

Fig. S15. PL quantum yield dependence on x' in toluene.

Fig. S16. Calculated ϕ_{PL} dependence on *x*.

Fig. S17. UV/vis absorption spectroscopy for copolymers and corresponding mononuclear complexes in toluene.

Table S1. Crystallographic data.

Table S2. PL properties of Co-1-*k*, Homo-1, and Homo-3 in toluene.

Supplementary Materials

Fig. S1. Oak Ridge thermal ellipsoid plot drawings of H₂**L3**·2**HBr and H**₂**L3**'·2**HBr**·(**solvent**)_n **with a thermal ellipsoid set at the 50% probability level.** Gray: carbon; white: hydrogen; blue: nitrogen; orange: bromine. (C) Molecular structure of **H**₂**L3**'.

Table S1. Crystallographic data. Rr

(11) 11/2L3 211D

Empirical Formula	$C_{32}H_{36}Br_2N_4$
Formula Weight / g mol ⁻¹	636.47
Temperature / K	93
λ / Å	0.71075
Crystal System	triclinic
Space Group	P-1
<i>a</i> / Å	7.793(3)
<i>b</i> / Å	9.875(4)
c / Å	19.350(8)
α/°	86.845(11)
β/°	87.523(13)
γ/°	78.9714(10)
V / Å ³	1458.6(10)
Ζ	2
d_{calcd} / g cm ⁻³	1.449
μ (MoK α) / mm ⁻¹	2.815
F (000)	652.00
Crystal size / mm ³	0.300×0.300×0.300
Theta range for data collection	3.10 to 27.50 °
Index ranges	-8<=h<=9, -11<=k<=11, -22<=l<=2
Reflections collected	9001
Independent reflections	$4619 \ (R_{\rm int} = 0.0368)$
Data completeness	98.2 %
Max. and min. transmission	0.340 and 0.430
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4619/ 0 / 343
^{<i>a</i>} Goodness-of-Fit on F^2	1.096
${}^{b}R_{1}[I > 2.00\sigma(I)]$	0.0431
$^{c} wR_{2}$ (all reflections)	0.1005
Largest diff. peak and hole / $e^{A^{-3}}$	0.53 and -0.43

(B) $H_2L3' \cdot 2HBr \cdot (Solvent)_n$

Empirical Formula	$C_{36}H_{44}Br_2N_4$
Formula Weight / g mol ⁻¹	692.58
Temperature / K	93
λ/Å	0.71073
Crystal System	monoclinic
Space Group	$P2_1/n$
<i>a</i> / Å	9.9254(4)
<i>b</i> / Å	12.8066(5)
<i>c</i> / Å	14.3031(7)
α/°	90.0000
β / °	105.514(5)
γ/°	90.0000
$V / \text{\AA}^3$	1751.83(14)
Ζ	4
$d_{ m calcd}$ / g cm ⁻³	2.626
μ (MoK α) / mm ⁻¹	4.699
F (000)	1432.00
Crystal size / mm ³	0.300×0.300×0.300
Theta range for data collection	2.95 to 31.28 °
Index ranges	-12<=h<=12, -14<=k<=16, - 18<=l<=18
Reflections collected	13928
Independent reflections	$4014 \ (R_{\rm int} = 0.0439)$
Data completeness	99.9 %
Max. and min. transmission	0.782 and 1.000
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4014/ 0 / 190
^{<i>a</i>} Goodness-of-Fit on F^2	1.042
${}^{b}R_{1} [I > 2.00\sigma(I)]$	0.0394
$^{c} wR_{2}$ (all reflections)	0.0908
Largest diff. peak and hole / $eÅ^{-3}$	0.41 and -0.36

The contribution of solvent electron density was removed by the SQUEEZE function.

^{*a*}GOF = $[\Sigma(w(Fo^2 - Fc^2)^2 / \Sigma(Nr - Np)^2]$. ^{*b*} $R_1 = \Sigma ||Fo| - |Fc|| / \Sigma |Fo| (I > 2 \sigma (I))$. ^{*c*} $wR_2 = [\Sigma(w(Fo^2 - Fc^2)^2 / \Sigma w(Fo^2)^2]^{1/2} (I > 2 \sigma(I))$.

Fig. S2. XPS for proligands and coordination polymers. (A) H₂L1. (B) H₂L2. (C) H₂L3. (D) **Homo-1**. (E) **Homo-2**. (F) **Homo-3**. (G) **Co-1-7**. (H) **Co-2-7**. The intensity of the signal is standardized using the photoionization cross-section of each element.

Fig. S3. Quantification of the elemental ratio from XPS. (A) Homo-1. (B) Homo-2. (C) Homo-3. (D) Co-1-7. (E) Co-2-7.

Fig. S4. Elemental abundances in Co-1-*k* and Homo-1 determined by elemental and ICP-AES analysis. (A) carbon; (B) hydrogen; (C) nitrogen; (D) zinc. (E) Zn/N-*x* plot. As an admixture, water molecules were added; 2.12, 1.53, 0.87 and 1.31 molecules per zinc center were added to Homo-1, Co-1-*k* with x = 0.21, 0.42, and 0.63, respectively. Gray: calculated; magenta: experimental.

Fig. S5. PL enhancement mechanism for a heteroleptic complex. (A,B) Schematic illustrations of plausible thermal equilibria among the two non-emissive symmetry-breaking charge-separated states and the emissive ${}^{1}\pi - \pi^{*}$ excited state localized on the left-hand dipyrrinato ligand in the case of (A) homoleptic complex; (B) heteroleptic complex. (C) Chemical structure and molecular orbitals of Mono-4 with DFT/B3LYP/6-31G(d).

Fig. S6. UV/vis spectroscopy for Co-2-*k* in toluene. (A) Normalized UV/vis spectra of bridging dipyrrin proligands H₂L2 and H₂L3, and homopolymers Homo-2 and Homo-3. (B) UV/vis spectra of Co-2-*k* (k = 1-7) normalized at 490 nm. (C) Relationship between the mole fraction of L2 in Co-2-*k* (x') and mixing ratio of H₂L2 to (H₂L2 + H₂L3) (r').

Fig. S7. Photovoltaic conversion of Co-1-6, Homo-3, and Homo-1. (**A**) Photograph of a thin film of **Co-1-6** on a SnO₂ substrate. (**B**) Anodic photocurrent response of **Co-1-6** on irradiation of an electrode with intermittent 500 nm light (Light intensity: 3.56 mW). (**C**) Action spectrum for the photocurrent generation and absorption spectrum of **Co-1-6** on a SnO₂ substrate. (**D**) Action spectrum for the photocurrent generation and absorption spectrum of **Homo-3** on a SnO₂ substrate. (**E**) Action spectrum for the photocurrent generation and absorption spectrum of **Homo-3** on a SnO₂ substrate. (**D**) Action 1 on a SnO₂ substrate.

Fig. S9. AFM images of Co-1-3 on other substrates. (A) On mica. (B) On $SiO_2/Si(100)$. (C) On MoS₂. Among those, only MoS₂ visualized the exfoliated Co-1-3.

Fig. S10. AFM for Homo-1. (**A**) Representative AFM height image for **Homo-1**. (**B**) Height histogram. (**C**) Chemical structure of corresponding mononuclear complex **Mono-1**, with a size estimated by DFT calculation.

Fig. S11. AFM for Homo-3'. (A) Molecular structure of Homo-3'. The difference between Homo-3 lies in additional methyl groups shown in red. The lower dispersibility of Homo-3 hampered the AFM analysis, which prompted us to use Homo-3' as an alternative. The additional methyl group is unlikely to alter the height of the single strand observed in AFM. (B) Representative AFM height image for Homo-3'. (C) Height histogram. (D) Chemical structure of corresponding mononuclear complex Mono-3'', with a size estimated by DFT calculation.

Fig. S12. Gaussian fitting of AFM height histograms of Co-1-k, Homo-1, and Homo-3'.

Sample	ϕ_{PL} (excited at 550 nm)	ϕ_{PL} (excited at 490 nm)	$ au_{\mathrm{PL}}$ /ns
Co-1-1	0.32	0.21	2.89 ^{a)}
Co-1-2	0.24	0.23	2.72 ^{a)}
Co-1-3	0.25	0.25	2.66 ^{a)}
Co-1-4	0.15	0.15	2.46 ^{a)}
Co-1-5	0.12	0.12	2.16 ^{a)}
Co-1-6	0.11	0.11	2.08 ^{a)}
Co-1-7	0.06	0.06	1.61 ^{a)}
Homo-1	0.03	N/A	N/A ^{b)}
Homo-3	N/A	0.10	3.79 ^{a)}

Table S2. PL properties of Co-1-*k*, Homo-1, and Homo-3 in toluene.

^{a)} measured at excitation with 470 nm. ^{b)} not measured due to low absorption at 470 nm.

Fig. S13. PL lifetimes (τ_{PL}) in toluene. τ_{PL} – mole ratio of ligand L1 (x) plots. PL lifetime of Co-1-k was measured in toluene with an incident light of 470 nm. The PL decay was fitted with a single-exponential decay.

Fig. S14. PL of Co-2-*k* in toluene. PL spectra of (A) Homo-2 excited at 550 nm. (B–H) Co-2-*k* (k = 1-7) excited at 490 (solid line) and 550 nm (circle).

Fig. S15. PL quantum yield dependence on x' in toluene. (A,B) $\phi_{PL} - x'$ plots for coordination copolymers Co-2-k (k = 1-7; circles) and homopolymers Homo-2 and Homo-3 (triangles) excited at (A) 550 nm; (B) 490 nm.

Fig. S16. Calculated ϕ_{PL} **dependence on** *x***.** (**A**) When excited at 550 nm; (**B**) When excited at 490 nm. Herein, intrawire exciton hopping is not considered. For 550 nm illumination, $\mathbf{D}_{Homo-L1}$ or $\mathbf{D}_{Hetero-L1}$ is photoexcited, the distribution ratio of which is x : (1 - x). Therefore, the simulated $\phi_{PL} = \phi(\mathbf{D}_{Homo-L1}) x + \phi(\mathbf{D}_{Hetero-L1}) (1 - x)$, where $\phi(\mathbf{D}_{Homo-L1})$ and $\phi(\mathbf{D}_{Hetero-L1})$ denote the probabilities of PL emission from $\mathbf{D}_{Homo-L1}$ and $\mathbf{D}_{Hetero-L1}$. For 490 nm illumination, $\mathbf{D}_{Homo-L3}$ or $\mathbf{D}_{Hetero-L3}$ is photoexcited, the distribution ratio of which is (1 - x) : x. Therefore, the simulated $\phi_{PL} = \phi(\mathbf{D}_{Homo-L3}) (1 - x) + \phi(\mathbf{D}_{Hetero-L3}) x$, where $\phi(\mathbf{D}_{Homo-L3})$ and $\phi(\mathbf{D}_{Hetero-L3})$ denote the probabilities of PL emission from $\mathbf{D}_{Homo-L3}$ and $\mathbf{D}_{Hetero-L3}$ and $\phi(\mathbf{D}_{Hetero-L3}) = 0.10; \phi(\mathbf{D}_{Homo-L1}) = 0.03; \phi(\mathbf{D}_{Hetero-L3}) = \phi(\mathbf{D}_{Hetero-L1}) = 0.40$, the same value used in the numerical simulation shown in Fig. 6C.

Fig. S17. UV/vis absorption spectroscopy for copolymers and corresponding mononuclear complexes in toluene. UV/vis spectra of **Co-1-6** (solid line), **Mono-1** (dotted line, orange) and **Mono-3** (dotted, blue).