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Supplementary Figure 1. TEM images of nanopores drilled by focused electron beam. 
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Supplementary Discussion 1: Conductance models.  

The discrete levels of individual events were used to calculate the pore size and the pore 

length using a widely-accepted conductance model.1, 2  

For the circular nanopores, Gopen can be calculated by the equation: 

   𝐺𝑜𝑝𝑒𝑛 = 𝜎𝑏𝑢𝑙𝑘 [
4𝐿

𝑑2𝜋
+

1

𝑑
]

−1
                                                                                                        (1) 

When the DNA segment is inside the nanopore, the effective nanopore diameter deff will be 

  𝑑𝑒𝑓𝑓 = √𝑑2 − 𝑑𝐷𝑁𝐴
2                                                                                                                    (2) 

In above case, ss segment and ds segment can be 1.5 nm and 2.2 nm in diameter, 

respectively. 

Therefore, we can determine Gbloc to be 

𝐺𝑏𝑙𝑜𝑐 = 𝜎𝑏𝑢𝑙𝑘 [
4𝐿

𝑑𝑒𝑓𝑓
2 𝜋

+
1

𝑑𝑒𝑓𝑓
]

−1

                                                                                                     (3) 

 

As a result, we can compute the pore length (L) and the pore diameter (d) according to 

experimentally measured Gopen and Gbloc.  

 Open pore 

current (nA) 

Current 

blockade (nA) 

Analyte 

diameter 

(nm) 

Computed 

pore size 

(nm) 

Computed 

pore length 

(nm) 

ssDNA  4.2 1.2 1.5 2.7 8.8 

dsDNA 4.2 2.4 2.2 2.8 9.5 

 

Supplementary Table 1. Computed nanopore parameters. 
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Supplementary Discussion 2: Noise models. 

1. The Anderson-Darling Test 

The Anderson-Darling test3 is a commonly used parameter-free method for determining 

whether a set of data points is drawn from a given distribution (e.g., Gaussian). The test 

statistic belongs to the family of quadratic empirical distribution function statistics, which 

measure the distance between the hypothesized distribution, F(x) and the empirical 

cumulative distribution function, Fn(x), according to: 

D = n ∫ (𝐹𝑛(𝑥) − 𝐹(𝑥))
2

𝜔(𝑥)
∞

−∞
𝑑𝐹(𝑥)                                                                           (4). 

Here, n stands for the number of data points, while w(x) the weight function equals 

ω(𝑥) = [𝐹(𝑥)(1 − 𝐹(𝑥))]
−1

                                                                                            (5). 

It is obvious that the Anderson-Darling test places greater weight on the observations from 

the tails of the distribution. The Anderson-Darling test statistic reads as 

𝐴𝑛
2 = −n − ∑

𝑛

2𝑖−1
[ln(𝐹(𝑥𝑖)) + ln(1 − 𝐹(𝑥𝑛+1−𝑖))]𝑛

𝑖=1                                                 (6). 

It is implemented in MATLAB as part of the command adtest, and the decision to reject or 

not reject the null hypothesis is based on comparing the p-value for the hypothesis test with 

the specified significance level, and not on comparing the test statistic with a chosen critical 

value. 

 

2. Gaussian Mixture Models (GMM) 

A Gaussian distribution N (x|µ, σ2) with mean µ and variance σ2 in one dimension has 

the familiar probability density function 

𝑝𝑁(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2                                                                                                          (7). 

The probability distribution of a GMM with K components may be written as 

p(𝑥) = ∑ 𝑝(𝑧 = 𝑘)𝑝(𝑥|𝑧 = 𝑘) = ∑ 𝜋𝑘𝑝𝑁,𝑘(𝑥)𝐾
𝑘=1

𝐾
𝑘=1                                                        (8), 

where z is a latent variable indicating which component in the mixture a point x belongs 

to, while p𝑁 , 𝑘(𝑥)is a Gaussian distribution with mean µk and variance 𝜌𝑘
2;  𝜋𝑘  is the weight 

of k-th component, and clearly 

∑ 𝜋𝑘 = 1𝐾
𝑘=1                                                                                                                       (9). 
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The parameters in a GMM model are estimated using the maximize likelihood method and 

accompanying E-M algorithm.4 

 

Supplementary Figure 2. Noise histograms for different levels. 

 

3. Welch’s Method for Estimating PSDs 

    Welch’s method is based on the concept of using periodogram spectrum estimates, 

which are the result of transforming a signal from the time domain to the frequency domain. 

The main component of the method is the Fast Fourier Transform (FFT). The method 

involves two preprocessing steps: first, the signal is split up into overlapping segments; 

second, each segment is windowed. In the first step, the length of the overlapping fragments 

can be arbitrary (in the range (0,100)%), and the length of each segment is a tunable 

parameter. For the second step, commonly used windows includes rectangular, Hanning 

and Blackman-Harris windows. The squared magnitude of the periodogram is computed 

using the FFT after preprocessing each segment individually. The results are averaged to 

reduce the variance of individual power measurements. In our analysis, we choose the 

length of the segment to be N/32, where N is the total length of the signal, and do not use 

any overlaps. For windowing, we chose the Blackman-Harris window. 

    It is implemented in MATLAB as part of the command pwelch. The following formula 

in used in the command pwelch to convert Po[i] into a real signal power Psig[i] at frequency 

index i: 

𝑃𝑠𝑖𝑔[𝑖] = 𝑃0[𝑖] ∙
𝑁𝐺∙𝑓𝑏𝑖𝑛

𝐶𝐺2                                                                                                      (10), 

where fbin is the frequency resolution, and NG and CG are two variables related to the 

choice of windowing. 

 

4. Hilbert-Huang Transform 
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The Hilbert–Huang Transform (HHT) is a transform designed for empirical analyses of 

nonlinear and non-stationary data. The transform, being unconstrained by the Heisenberg 

principle, can lead to high resolution in both the frequency and time domains. It relies on 

two processing tools: the Hilbert spectral analyzer (HAS) and the empirical mode 

decomposition (EMD) framework. The first step in the analysis is to find intrinsic mode 

functions (IMF) of the signal then apply the HAS to obtain instantaneous frequency data. 

4.1 Empirical mode decomposition (EMD) 

To simplify data analysis, the signal is decomposed into a finite and small number of 

components using EMD technique. An algorithmic depiction of the process is presented in 

the previous publication.5 

4.2 The Hilbert transform  

The Hilbert transform of a signal x(t) is defined as: 

y(t) =
1

𝜋
∫

𝑥(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
                                                                                                         (11). 

By applying the Hilbert transform to every IMF component xj(t) , we obtain a 

representation that allows us to extract local properties of the signal. The process works as 

follows: After obtaining all IMFs, the original signal x(t) can be written as: 

𝑥(𝑡) = 𝑟(𝑡) + ∑ 𝑥𝑗(𝑡)𝑘
𝑗=1                                                                                                (12), 

where r(t) is the residual, k is the number of intrinsic mode functions, xj(t) is the j-th IMF. 

Let yj(t)  denotes the Hilbert transform of xj(t) . Each xj(t)  in turn has a real and an 

imaginary component that reads as: 

𝑥𝑗(𝑡) = 𝑅𝑒𝑎𝑙(𝑎𝑗(𝑡)𝑒−𝑖𝜑𝑗(𝑡)), 𝑦𝑗(𝑡) = 𝐼𝑚(𝑎𝑗(𝑡)𝑒−𝑖𝜑𝑗(𝑡))                                             (13). 

The instantaneous frequency is defined as ωj(t) =
𝑑𝜑𝑗(𝑡)

𝑑𝑡
, while the Hilbert spectrum of 

xj(t) is defined as 

𝐻𝑗(𝜔, 𝑡) = {
𝑎𝑗(𝑡),   𝜔 = 𝜔𝑗(𝑡)

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                     (14). 

The estimated Hilbert Spectrum of the signal itself x(t) equals: 

𝐻(𝜔, 𝑡) = ∑ 𝐻𝑗(𝜔, 𝑡)𝑘
𝑗=1                                                                                                (15). 

This representation can be used to analyze the characteristics of instantaneous frequencies 

for non-stationary signals. 
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We performed the HHT transform and Hilbert spectral analysis on our “212” readouts. 

The results are summarized below. Figures S3 plot the components of the EMD for one 

sample of 3 level signals. Different samples follow the same trend. The HHT results 

depicted in Figures S4 show that in the HHT domain, Level 1 signals tend to have larger 

energy in the given frequency range than Level 0 and 2 signals, so that energy may be 

consequently used as a means to discriminate them. Better results using HHT may be 

expected for a larger number of events, as our analysis only made use of 40 samples for 

each level. 
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Supplementary Figure 3. EMD of Level 0, 1 and 2 event. (a) for Level 0, (b) for Level 1 

and (c) for Level 2. 
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Supplementary Figure 4. A typical example of average energy vs. probability with HHT 

of Level 0, 1 and 2 signals in the frequency domain for 0-10k Hz. 
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Supplementary Figure 5. Current-voltage  characteristics of a MoS2 membrane before 

and after ECR process. 
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Supplementary Figure 6. Scatter plot of translocation events of protruded complex (red) 

and ssDNA (blue). 
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Supplementary Figure 7. Scatter plot of 3’ end entry and 5’ end entry. 
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Supplementary Figure 8. Representative continuous traces for a) SiNx nanopore recorded 

at 200 mV and room temperature using ss-ds-ss DNA complexes in 4M LiCl and for b) 

MoS2 nanopore recorded at 200 mV and 4°C using barcoded short 22mer in 4M LiCl. 
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