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SUMMARY

Recent evidence indicates that specific RNAs pro-
mote the formation of ribonucleoprotein conden-
sates by acting as scaffolds for RNA-binding proteins
(RBPs). We systematically investigated RNA-RBP
interaction networks to understand ribonucleoprotein
assembly. We found that highly contacted RNAs are
structured, have long UTRs, and contain nucleotide
repeat expansions. Among the RNAs with such prop-
erties, we identified the FMR1 30 UTR that harbors
CGG expansions implicated in fragile X-associated
tremor/ataxia syndrome (FXTAS). We studied FMR1
binding partners in silico and in vitro and prioritized
the splicing regulator TRA2A for further characteriza-
tion. In a FXTAS cellular model, we validated the
TRA2A-FMR1 interaction and investigated implica-
tions of its sequestration at both transcriptomic and
post-transcriptomic levels. We found that TRA2A
co-aggregates with FMR1 in a FXTAS mouse model
and in post-mortem human samples. Our integrative
study identifies key components of ribonucleoprotein
aggregates, providing links to neurodegenerative
disease and allowing the discovery of therapeutic
targets.

INTRODUCTION

Proteins and RNAs coalesce in large phase-separated conden-

sates that are implicated in several cellular processes (Jiang

et al., 2015; Woodruff et al., 2017).
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Among the most studied condensates are ribonucleoprotein

(RNP) granules that assemble in liquid-like cellular compart-

ments composed of RNA-binding proteins (RBPs) (Hyman

et al., 2014; Maharana et al., 2018) that are in dynamic exchange

with the surrounding environment (Bolognesi et al., 2016). RNP

granules, such as processing bodies and stress granules

(SGs), are evolutionarily conserved from yeast to human (Brang-

wynne et al., 2009; Jain et al., 2016; Riback et al., 2017) and

contain constitutive protein components, such as G3BP1 (yeast:

Nxt3), TIA1 (Pub1), and TIAR (Ngr1) (Buchan et al., 2008). Several

granule-forming RBPs are prone to form amyloid aggregates

upon amino acid mutations (Hyman et al., 2014; Kato et al.,

2012) that induce a transition from a liquid droplet to a solid

phase (Qamar et al., 2018). This observation has led to the pro-

posal that a liquid-to-solid phase transition is a mechanism of

cellular toxicity (Patel et al., 2015) in diseases, such as amyotro-

phic lateral sclerosis (ALS) (Murakami et al., 2015) and myotonic

dystrophy (Pettersson et al., 2015).

All the components of molecular complexes need to be

physically close to each other to perform their functions. One

way to achieve this, while keeping selectivity in a crowded

cell, is to use platform or scaffold molecules that piece

together components of a complex or a pathway. Indeed,

RBPs are known to act as scaffolding elements promoting

RNP assembly through protein-protein interactions (PPIs) (Ba-

nani et al., 2017); yet, protein-RNA interactions (PRIs) also play

a role in the formation of condensates. Recent work based on

G3BP1 pull-down indicates that 10% of the human transcripts

can assemble into SGs (Khong et al., 2017). If distinct RNA

species are present in the condensates, a fraction of them

could be involved in mediating RBP recruitment. In this regard,

we previously observed that different RNAs act as scaffolds for

RNP complexes (Ribeiro et al., 2018), which indicates that
uthor(s).
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specific transcripts might promote the formation of RNP

condensates.

Combining PPI and PRI networks revealed by enhanced

cross-linking and immunoprecipitation (eCLIP) (Van Nostrand

et al., 2016) and mass spectrometric analysis of SGs (Jain

et al., 2016), we identified a class of transcripts that bind to a

large number of proteins and, therefore, qualify as potential scaf-

folding elements. In agreement with recent literature reports, we

found that UTRs have a particularly strong potential to bind pro-

teins in RNP granules, especially when they contain specific

homo-nucleotide repeats (Saha and Hyman, 2017). In support

of this observation, several diseases, including myotonic dystro-

phy (MD) and a number of ataxias (spinocerebellar ataxia [SCA]),

have been reported to be linked to expanded trinucleotide re-

peats that trigger the formation of intranuclear condensates in

which proteins are sequestered and functionally impaired. Spe-

cifically, expanded RNA repeats lead to RNA-mediated conden-

sate formation in DM1 (Mooers et al., 2005), SCA8 (Mutsuddi

et al., 2004), and SCA10 (White et al., 2010).

By understanding the characteristics of RNAs involved in RNP

assembly,weaimtounveil themoleculardetails of specifichuman

diseases. Indeed, the appearance of RNP condensates, often

called inclusions or foci, is not only linked to ALS, Huntington’s

disease, and MD but also other diseases, such as fragile X-asso-

ciated tremor/ataxia syndrome (FXTAS) (Tassone et al., 2004;

Sellier et al., 2017). The onset and development of FXTAS is

currently explained by two main mechanisms (Botta-Orfila et al.,

2016): (1) RNA-mediated recruitment of proteins attracted by

CGG trinucleotide repeats in the 50 UTR of fragile X mental retar-

dation protein (FMR1) RNA and (2) aggregation of repeat-associ-

ated non-AUG (RAN) polyglycine peptides translated from the

FMR1 50 UTR (FMRpolyG) (Todd et al., 2013). Previous work indi-

cates that FMR1 inclusions contain specific proteins, such as

HNRNP A2/B1, MBNL1, LMNA, and INA (Iwahashi et al., 2006).

Also, FMRpolyG peptides (Sellier et al., 2017) have been

found in the inclusions, together with CUGBP1, KHDRBS1, and

DGCR8 that are involved in splicing regulation and mRNA trans-

port regulation of microRNA regulation (Sellier et al., 2010,

2013). Although KHDRBS1 does not bind physically (Sellier

etal., 2010), itsproteinpartnerDGCR8 interactswithCGGrepeats

(Sellier et al., 2013), indicating that sequestration is a process led

by a pool of proteins that progressively attract other networks.

Notably, CGG repeats contained in the FMR1 50 UTR are of

different lengths (the most common allele in Europe being of

30 repeats). At over 200 repeats, methylation and silencing

of the FMR1 gene block FMRP protein expression (Todd et al.,

2013). The premutation range (55–200 CGG repeats) is instead

accompanied by appearance of foci that are the typical hallmark

of FXTAS (Todd et al., 2013). These foci are highly dynamic and

behave as RNP condensates that phase separate in the nucleus

forming inclusions (Tassone et al., 2004). Although long lived,

they rapidly dissolve upon tautomycin treatment, which indi-

cates liquid-like behavior (Strack et al., 2013).

The lability of FMR1 inclusions, which impedes their

biochemical characterization (Mitchell et al., 2013; Marchese

et al., 2016), complicates the identification of RBPs involved

in FXTAS. As shown in previous studies of RNP networks (Cirillo

et al., 2017; Marchese et al., 2017), computational methods can
be exploited to identify key partners of RNA molecules. New

contributions from other research areas are needed, especially

because FXTAS pathological substrate is still under debate and

there is still insufficient knowledge of targets for therapeutic

intervention (Todd et al., 2013; Sellier et al., 2017). Here, we

propose an integrative approach to identify newmarkers based

on the properties of PRI networks and characteristics of scaf-

folding RNAs.
RESULTS

In this work, we exploited a high-throughput computational

approach to investigate the physico-chemical properties of scaf-

folding RNAs (Figure 1A). We focused on the experimental

characterization of FMR1 that we predict to bind a large number

of RBPs. Among the FMR1 partners that we identified, we

selected the splicing regulator TRA2A and studied the biological

consequences of its recruitment in RNP condensates. We used

murine and post-mortem human tissues to assess TRA2A

involvement in FXTAS.
Protein-Protein Networks Do Not Discriminate Granule
and Non-Granule RBPs
We first studied if RBPs phase-separating in RNP condensates

interact with specific sets of proteins and RNAs. To discriminate

proteins that are in RNP condensates (granule RBPs) from other

RBPs (non-granule RBPs), we relied on recent proteomics data

on human and yeast SGs (STAR Methods; Table S1A) as well

as computational methods. The PRI datasets were identified

through eCLIP (human) (Van Nostrand et al., 2016) and microar-

ray (yeast) (Mittal et al., 2011) studies (Table S1B).

We analyzed if granule and non-granule RBPs show different

interaction network properties. To this aim, we used available

PPI datasets (STAR Methods) (Huttlin et al., 2015; Mittal

et al., 2011). We based the topological analysis on three

centrality measures describing the importance of a node (pro-

tein) within the network. For each protein, we computed the

degree (number of protein interactions), betweenness (number

of paths between protein pairs), and closeness centrality (how

close one protein is to other proteins in the network). We found

that granule and non-granule RBP networks display very similar

topology both in yeast and human datasets (Figure 1B; Figures

S1A and S1B).
Protein-RNA Networks Robustly Discriminate Granule
and Non-Granule RBPs
In both yeast and human, we found that PRIs significantly in-

crease the centralitymeasures of the granule network (Figure 1B;

Figures S1C and S1D). Importantly, human and yeast granule

RBPs interact with more transcripts than other RBPs (Figure 1C;

Figure S2; Tables S1C–S1F; yeast p value = 0.02, human p

value = 0.003, Wilcoxon rank-sum test; STAR Methods). Such

a difference holds even when looking independently at either

coding or non-coding RNAs (Figure S2; coding p value =

0.003, non-coding p value = 0.01, Wilcoxon rank-sum test) and

upon normalization by transcript length (yeast p value = 0.02;

human p value = 0.002, Wilcoxon rank-sum test).
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Figure 1. RNA as aKey Element in RNPCon-

densates

(A) We explored the differences between granule

and non-granule RBPs by using an interaction

network approach. We first studied the physico-

chemical properties of scaffolding RNAs and

prioritized FMR1 50 UTR for experimental charac-

terization. We retrieved known RBPs and identified

FMR1 partners involved in FXTAS, including

splicing factors. We evaluated the biological con-

sequences of RBP recruitment in cellular context

and the presence of ribonucleoprotein (RNP)

complexes in FXTAS brain inclusions.

(B) Statistical differences between granule and

non-granule elements (proteins or RNA) in protein-

protein interaction (PPI) and protein-RNA interac-

tion (PRI) networks. Only when analyzing RNA

interactions, granule and non-granule networks

show different topologies (Figures S1C and S1D).

(C) Independently of RNA length, granule RBPs

contact more transcripts that non-granule RBPs

(‘‘total’’ indicates all RBPs regardless of their

granule or non-granule definition; * indicates

p value < 0.01; Kolmogorov-Smirnov [KS] test).

(D) Transcripts interact more frequently with

granule than non-granule RBPs. The fractions of

granule and non-granule RBP contacts, monitored

at different lengths, show consistent enrichments

(p value < 0.01; KS test). Highly contacted tran-

scripts are enriched in small nuclear RNAs

(snRNAs) and small nucleolar RNAs (snoRNAs)

(p value < 2.2e�16, Wilcoxon rank-sum test).

Already described scaffolding RNAs such as

NEAT1 are also identified.
Granule RBPs Share RNA Networks
In both yeast and human proteomes, we found that granule-

forming RBPs share a larger number of transcripts (Fig-

ure S3A; Tables S1G–S1J; yeast p value < 2.2e�16, K562 p

value < 2.2e�16, KS test). Independent of their length,

RNAs contacting granule RBPs preferentially interact with

other granule RBPs (Figure 1D, p value < 2.2e�16, Wilcoxon

rank-sum test). In agreement with this finding, RNAs interact-

ing exclusively with granule RBPs have a higher number of
3424 Cell Reports 25, 3422–3434, December 18, 2018
protein contacts than RNAs associating

only with non-granule RBPs (Figure S3B,

p value = 0.04, Wilcoxon rank-sum test).

This observation is consistent with a

picture in which RNAs share a high

number of RBP interactions to promote

recruitment into RNP granules. Using a

high confidence threshold to select

RBP partners (number of reads normal-

ized by expression levels in the third

quartile of the statistical distribution)

(Armaos et al., 2017), we found that

our list of RNAs overlaps with a recently

published atlas of transcripts enriched

in SGs (area under the receiver oper-

ating characteristic [ROC] curve [AUC]
of 0.89; sensibility of 81.3% and specificity of 85.2%; Fig-

ure S3C; Table S1K) (Khong et al., 2017).

Non-Coding RNAs Are Contacted by Granule RBPs
Among the most contacted RNAs, we found an enrichment of

small nuclear and nucleolar RNAs that are known to be associ-

ated with paraspeckles and Cajal bodies formation (Figure 1D;

Table S2A; p value < 2.2e�16, Wilcoxon rank-sum test). We

also identified a few highly contacted long non-coding RNAs,



Figure 2. Properties of Scaffolding RNAs

(A–D) Properties of RNAs contacted by granule-

proteins. Granule transcripts are more abundant

(A, p value = 4.65e-11, KS test), and structured

(B, p value = 0.005; C, p value = 0.04; KS test) with

longer UTRs (D, p value 50UTR = 0.005, KS test)

than non-granule RNAs.

(E) Occurrence of CCG, UGC, CGC, GGU, and

CGG repeats discriminate the 50 UTRs of granule

and non-granule transcripts (the area under the

ROC curve, AUC, is used to separate the two

groups).

(F) Increasing the length of CGG repeats results in

stronger secondary structural content (the CROSS

algorithm [Delli Ponti et al., 2017] is used to mea-

sure the amount of double-stranded RNA).
such as NEAT1, that interacts with all the proteins present in our

dataset (Figure 1D). In agreement with this finding, NEAT1 has

been described as an architectural RNA (West et al., 2016) impli-

cated in scaffolding RBPs (Maharana et al., 2018) for para-

speckle nucleation. We hypothesize that other highly contacted

long non-coding RNAs may have similar functions within

cytoplasmic RNP granules. For instance, NORAD, a recently

described long non-coding RNA involved in genomic stability, in-

teracts with the large majority of proteins in our dataset (Lee

et al., 2016). NORAD has repetitive sequence regions, is acti-

vated upon stress, has ability to recruit proteins (Tichon et al.,

2016), and aggregates in SGs (Khong et al., 2017).

Characteristic Features of Candidate Scaffolding RNAs
Wenext studiedwhich properties support the scaffolding activity

of RNAs within granules. In this analysis, we define as granule

transcripts those contacted by a larger number of granule-form-

ing RBPs than non-granule forming RBPs (vice versa for non-

granule transcripts; STAR Methods; Table S2B and S2C), we

found that RNAs enriched in granule RBP contacts are more ex-
Cell Report
pressed (Figure 2A; p value = 5e�11, Kol-

mogorov-Smirnov, KS test), structured in

UTRs (Figures 2B, and 2C; parallel anal-

ysis of RNA structure [PARS] data; p

values = 0.005 and 0.05; we note that

the signal is enriched at the 30 UTRs with

p value < 0.001; the 50 UTRs is associated
with a p value of 0.02; KS test; STAR

Methods), and have longer UTRs (Fig-

ure 2D; 50UTR is shown; p value = 0.005,

KS test; 30 UTR is reported in Figure S3D).

This result, also valid in yeast (Figures S3E

and S3F; Tables S2B and S2C), is consis-

tent with previous observations that

length (Zhang et al., 2015), structure

(Reineke et al., 2015), and abundance

(Jain and Vale, 2017) contribute to RNA

assembly into RNP granules (Khong

et al., 2017).

Triplets prone to assemble into hairpin-

like structures (Krzyzosiak et al., 2012),
including CCG, UGC, CGC, GGU, and CGG, discriminate

granule and non-granule transcripts in the 50 UTRs (AUCs,

>0.60; Figure 2E). In agreement with these findings, predictions

of RNA structure performed with the Computational Recognition

of Secondary Structure (CROSS) algorithm (Delli Ponti et al.,

2017) indicate that the structural content (presence of double-

stranded regions) is enriched in granule-associated transcripts

(Figure S4A) and increase proportionally to CGG repeat length

(Figure 2F), which is in line with UV-monitored structure melting

experiments (Krzyzosiak et al., 2012).

In Silico Predictions Indicate a Large Number of
Partners for FMR1 Scaffolding RNA
To further investigate the scaffolding ability of homo-nucleotide

expansions, we selected the FMR1 transcript that contains

CGG repetitions. Using catRAPID omics (STARMethods) (Agos-

tini et al., 2013), we computed interactions between the 50 FMR1

UTR (containing 79 CGG repeats) and a library of nucleic-acid

binding proteins (3,340 DNA-binding, RNA-binding, and struc-

turally disordered proteins) (Livi et al., 2015). Previously identified
s 25, 3422–3434, December 18, 2018 3425



Figure 3. Protein Interactions of CGG Re-

peats

(A) Using catRAPID omics (Agostini et al., 2013),

we computed protein interactions with the first

FMR1 exon (containing 79 CGG repeats). Previ-

ously identified partners, such as HNRNP A1,

A2/B1, A3, C, D, and M; SRSF 1, 4, 5, 6, 7, and 10;

as well as MML1 and KHDRBS3 show strong

binding propensities and specificities (blue dots)

(Sellier et al., 2010). A previously unknown inter-

actor, TRA2A (red dot), shows comparable binding

propensities.

(B) We validated RBP interactions with FMR1

exon (‘‘pre’’containing 79 CGG repeats) through

protein arrays (Cirillo et al., 2017; Marchese

et al., 2017). We obtained high reproducibility

between replicas (Pearson’s correlations > 0.75

in log scale) and identified strong-affinity in-

teractions (signal to background ratio > 2.5;

red dots). The same procedure was applied to

the FMR1 exon containing 21 CGG repeats

(Table S4).

(C) We measured catRAPID omics (Agostini

et al., 2013) performances on protein array data

selecting an equal number of strong- (highest

signal to background ratios) and poor-affinity

(lowest signal to background ratios) candidates.

(D) Out of 27 candidates binding to both 79 and

21 CGG repeats (signal to background ratio >

2.5), 15 are highly prone to form granules (blue

bars) (Bolognesi et al., 2016), and the splicing

regulator TRA2A (red bar) shows the highest propensity. The black bars indicate non-specific partners interacting also with SNCA 30 UTR (Cirillo et al.,

2017; Marchese et al., 2017) or showing poor RNA-binding propensity (Livi et al., 2015).
CGG-binding proteins (Sellier et al., 2010), such as HNRNP A1,

A2/B1, A3, C, D, and M, and SRSF 1, 4, 5, 6, 7, and 10, as well

as MBNL1 and KHDRBS3, were predicted to interact strongly

(discriminative power, >0.90) and specifically (interaction

strength, >0.90; Figure 3A; Table S3; empirical p values <

0.01). Similar binding propensities were also found for a set of

92 RBPs reported to assemble in SGs (Jain et al., 2016) (Table

S3). In addition, our calculations identify a group of 37 RBPs

that are predicted to form granules by the catGRANULE algo-

rithm (Bolognesi et al., 2016) (STAR Methods; Figures S4B and

S4C). Among the RBPs prone to associate with FMR1, we found

a class of splicing factors, including TRA2A (interaction score,

0.99; specificity, 1.00; Table S3).

High-Throughput Validation of CGG Partners and
Identification of TRA2A Interaction
We used protein arrays (Cirillo et al., 2017; Marchese et al., 2017)

to perform a large in vitro screening of RBP interactions with

the first FMR1 exon (STARMethods). We probed both expanded

(79 CGG) and normal (21 CGG) range repeats on independent

replicas, obtaining highly reproducible results (Pearson’s corre-

lations, >0.75 in log scale; Figure 3B; Table S4). We used the 30

UTR of a similar length transcript, SNCA (575 nucleotides), to

control for the specificity of RBP interactions (Marchese et al.,

2017).

Using fluorescence intensities (signal to background ratio) to

measure binding affinities, we found that previously identified

partners SRSF 1, 5, and 6 rank in the top 1% of all interactions
3426 Cell Reports 25, 3422–3434, December 18, 2018
(out of 8,900 proteins), followed by KHDRBS3 (2%) and

MBNL1 (5%). We observed strong intensities (signal to back-

ground ratio, >1.5 corresponding to top 1% of all interactions)

for 85 RBPs interacting with expanded repeats (60 RBPs for

normal-range repeats) and using more stringent cutoff (signal

to background ratio, >2.5 for top 1% of all interactions) we iden-

tified 27 previously unreported interactions (binding to both

expanded and normal range repeats).

The list of 85 RBPs showed enrichment in Gene Ontology (GO)

terms related to splicing activity (FDR, <10�7), as reported by

cleverGO (Klus et al., 2015) as well as GeneMANIA server

(https://genemania.org/) and includes SRSF 1, 5, 6, and 10;

PCBP 1 and 2; HNRNP A0 and F; NOVA1;PPIG; and TRA2A.

catRAPID omics predictions are in agreement with protein array

experiments: from low- to high-affinity interactions, catRAPID

performances increase, reaching AUCs of 0.80 (Figure 3C), indi-

cating a strong predictive power. Notably, although KHDRBS1

(not present in the protein array) is predicted to have poor

binding propensity to CGG repeats, two of its RBP partners,

CIRBP and PTBP2, rank in the top 1% of all fluorescence

intensities, as predicted by catRAPID (Cirillo et al., 2013), and

DGCR8, which interacts with KHDRBS1 through DROSHA (Sell-

ier et al., 2013), is found to interact (top 7% of all fluorescence

intensities).

Out of 27 high-confidence candidates, 24 were predicted by

catGRANULE (Bolognesi et al., 2016) to form granules, and

among them, the splicing regulator TRA2A showed the

highest score (granule propensity, 2.15; Figure 3D; Figure S4D;

https://genemania.org/


Figure 4. Endogenous TRA2A Is Recruited

in Nuclear RNA Inclusions upon CGG Over-

expression

This specific recruitment is validated by experi-

ments with TRA2A overexpression and TRA2A

knockdown.

(A) COS-7 cells were transfected with either CGG

(603) or the empty vector as control. After 24 hr of

transfection, cells were immunostained with pri-

mary antiTRA2A antibody and secondary 488 and

hybridized with a Cy3-GGC (83) probe for RNA

FISH. The graph represents the 488 Cy3 intensity

co-localization in the section from the white line.

(B) After 24 hr of transfection, cells were immuno-

stained with antiTRA2A antibody and hybridized

with a Cy3-GGC (83) probe for RNA FISH; relative

TRA2A protein levels in COS-7 cells were treated

as in (B) (p < 0.028, unpaired t test).

(C) COS-7 cells were transfected with empty vec-

tor or CGG (603) and GFP-TRA2A. After 48h, cells

were hybridized with Cy3-GGC (83) probe for RNA

FISH. The graph represents the GFP/Cy3 in-

tensities co-localization in the section from the

white line.
Table S3). In agreement with our predictions, eCLIP experiments

indicate that the FMR1 transcript ranks in the top 25% of stron-

gest interactions with TRA2A (Van Nostrand et al., 2016).

TRA2A Recruitment in FMR1 Inclusions Is Driven by
CGG Hairpins In Vivo

As splicing defects have been reported to occur in FXTAS dis-

ease (Botta-Orfila et al., 2016; Sellier et al., 2010), we decided

to further investigate the recruitment of the splicing regulator

TRA2A. B lymphocytes are often used for initial investigations

because of their easy accessibility from blood samples from

patients. Expansions of CGG from 55 to 200 CGG repeats result

in mRNA levels in B lymphocytes that can exceed by 2–10 fold

(Tassone et al., 2007). Therefore, B lymphocytes are consid-

ered a goodmodel to recapitulate some of the events occurring

due to the permutation (i.e., higher expression levels of FMR1),

and to explore new biomarkers. We measured RNA and

protein levels of TRA2A in B lymphocytes of a normal individual

(41 CGG repeats; Coriell repository number NA20244A) and a

FXTAS premutation carrier (90 CGG repeats; Coriell repository

number GM06906B). RNA and protein levels of TRA2A were

found significantly increased 2.9 and 1.4 times in the FXTAS

premutation carrier compared with a normal individual, which

indicates that the TRA2A is significantly altered in disease

(Figure S5).
Cell Report
Yet, nuclear inclusions do not form in

B lymphocytes and we used the COS-7

cellular model to study FMR1 inclusions

(Sellier et al., 2010). We observed that

transfection of a plasmid containing CGG

expansions (triplet repeated 60 times) in-

duces significant increases in RNA and

protein levels of TRA2A after 48 hours

(Figure S5) (Sellier et al., 2010). By means
of RNA fluorescence in situ hybridization (FISH) coupled to

immunofluorescence (STAR Methods), we found that CGG

expansions and endogenous TRA2A significantly co-localize

in nuclear inclusions (45 out of 50 screened cells showed

unambiguous match). By contrast, TRA2A shows a diffuse nu-

clear pattern in cells that do not overexpress CGG repeats

(Figure 4A).

Upon knockdown of TRA2A using small interfering RNA

(siRNA) (STAR Methods), we observed that the nuclear aggre-

gates still form (Figures 4B), whereas overexpression of TRA2A

attached to GFP (GFP-TRA2A) results in strong recruitment in

CGG inclusions (Figure 4C; the control GFP plasmid and GFP-

TRA2A in the absence of CGG repeats does not give a granular

pattern).

To further characterize the recruitment of TRA2A in CGG re-

peats, we treated COS-7 cells with two different chemicals.

By incubatingCOS-7 cells with 9-hydroxy-5,11-dimethyl-2-(2-(pi-

peridin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium (also named

1a) that binds to CGG repeats preventing interactions with

RBPs (Disney et al., 2012), TRA2A recruitment was blocked (Fig-

ure 5A). Using TmPyP4 to specifically unfold CGG repeats (Morris

et al., 2012), we found that the aggregates are disrupted and

TRA2A remains diffuse (Figure 5B).

Our experiments show that the aggregation of TRA2A is caused

by CGG repeats and tightly depends on the hairpin structure.
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Figure 5. Disrupting CGG Hairpins and Dissolving RNA Inclusions

Impair TRA2A Sequestration

(A) COS-7 cells were co-transfected with empty vector or CGG (603), and after

24 hr of transfection, cells were treated with 1a to block protein binding.

(B) COS-7 cells were treated similarly as in (A) but with the TmPyP4 molecule

instead of 1a to disrupt CGG structure. In both cases, cells were immuno-

stained with primary anti TRA2A antibody and hybridized with the Cy3-GGC

(83) probe for RNA FISH.
TRA2A Recruitment in RNA Inclusions Is Independent of
its Partner TRA2B
Using RNA FISH coupled to immunofluorescence, we found that

TRA2B, which interacts with TRA2A (Huttlin et al., 2015) and

binds to CGG repeats (Sellier et al., 2010), aggregates in

COS-7 cells transfected with CGG repeats (360; Figure 6A).

Notably, endogenous TRA2B is recruited by CGG inclusions

upon TRA2A knock down (Figure 6B, upper row; Figure 6C;

the result is also observed when TRA2B is overexpressed; Fig-

ures S6A and 6B). Similarly, endogenous TRA2A co-localizes

with CGG repeats upon TRA2B knock down (Figure 6B, lower

row; see also Figures S6C–S6E). Thus, upon knock down of

one of the two proteins, the other one is still recruited by the over-
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expressed CGG repeats (Figure 6B; Figures S6F and S6G). By

contrast, in absence of CGG overexpression, neither TRA2A

nor TRA2B localize within the inclusions (Figures S6A–S6E).

Alterations in RNA Splicing by FMR1 Inclusions
Correlate with Alterations in RNA Splicing by TRA2A
Knockdown
When assessing TRA2A levels in response to CGG overexpres-

sion in COS-7 cells, we found that around 20%–25%of TRA2A is

recruited in condensates that are positive for CGG FISH signal

(STARMethods), which is fully compatible with SOD1 accumula-

tion in SGs (Mateju et al., 2017). To study the functional implica-

tions of TRA2A recruitment in FMR1 inclusions, we analyzed

changes in RNA splicing (STAR Methods).

Splicing alterations due to TRA2A sequestration were investi-

gated through microarrays and RNA sequencing (RNA-seq)

experiments (both in triplicate experiments) to identify events (1)

occurring upon CGG aggregate formation (CGG+ TRA2A+; 74 in-

stances) and (2) altered when TRA2A is knocked down (CGG+

TRA2A-, 82 instances). With respect to events occurring in the

absence of CGG aggregates (CGG� TRA2A+, i.e., physiological

conditions), 59 exons are spliced in CGG+ TRA2A+ and not in

CGG+ TRA2A� (CGG+ TRA2A+yCGG+ TRA2A�) and thus

depend on TRA2A sequestration (39 skipped and 20 included

exons; q-value, <0.10; Figure 7A; Table S5). Notably, 67 events

occur exclusively in CGG+ TRA2A� and can be ascribed to pertur-

bations in the splicing factor network (Tan and Fraser, 2017), while

15 (i.e., 3+12) occur in both CGG+ TRA2A+ and CGG+ TRA2A�

(Figure 7B) and are, therefore, TRA2A independent (Figure 7B).

To better understand TRA2A-dependent effects, we studied

events caused by TRA2Adepletion in the absence of CGGaggre-

gates (CGG� TRA2A�; Figure 7A): 11 out of 59 CGG+ TRA2A+

cases are present in CGG� TRA2A� but not in CGG+ TRA2A�

(CGG� TRA2A� X CGG+ TRA2A+yCGG+ TRA2A�), which is

statistically highly significant. Indeed, by shuffling the splicing

events reported in one of the two experiments (i.e., randomizing

the association between exons and q-values), we found that the

intersection CGG� TRA2A� X CGG+ TRA2A+yCGG+ TRA2A�,
never contains 11 events (we found 1 event in 288 out 10,000 ran-

domizations and 2 events in 3 out 10,000 randomizations, but

never > 3 events; p value < 10�4; Figure 7B). Notably, 17 cases

occur in CGG+ TRA2A� and CGG� TRA2A� but not in CGG+

TRA2A+, which is expected because splicing factors work

together on common targets (Tan and Fraser, 2017).

Using the cleverGO algorithm (Klus et al., 2015), we found

that the largest GO cluster of affected genes includes RBPs

(18 genes; Table S5; ‘‘RNA-binding’’; fold enrichment of 24;

p value < 10�8; calculated with Bonferroni correction; examples:

HNRNPL, CIRBP, and DDX24) and, more specifically, spliceo-

some components (‘‘mRNA splicing via spliceosome’’; fold

enrichment of 5; p value < 10�3, examples: HNRNP A2/B1,

and SRSF 10) or genes related to alternative splicing activity

(‘‘regulation of splicing’’; fold enrichment of 6; p value < 10�3,

examples: RBM5 and THOC1).

Intriguingly, genes associated with mental retardation, such

as UBE2A (Budny et al., 2010), ACTB (Procaccio et al., 2006),

and ACTG1 (Rivière et al., 2012), have splicing patterns affected

by TRA2A sequestration. Similarly, muscle-related proteins,



Figure 6. Endogenous TRA2B Is Recruited

in CGG Inclusions but TRA2A Recruitment

Is Independent from TRA2B

(A) COS-7 cells were transfected with CGG (603).

After 24 hr of transfection, cells were immuno-

stained with antiTRA2B antibody and hybridized

with a Cy3-GGC (83) probe for RNA FISH.

(B) COS-7 cells were transfected with CGG (603)

and siTRA2A or siTRA2B. After 24 hr of trans-

fection, cells were immunostained with antiTRA2

antibodies and hybridized with a Cy3-GGC probe

for RNA FISH.

(C) TRA2A protein levels in COS-7 cells were

treated as described in (B).
including PIP5K1A (Chen et al., 2018) and TPM1 (Erdmann et al.,

2003), and genes linked to intellectual disabilities, such as

DOCK3 (de Silva et al., 2003), and craniofacial development,

such asWWP2 (Zou et al., 2011), are subjected to exon skipping

upon TRA2A recruitments in RNP condensates (Table S5; Fig-

ure 7B). Out of 59 splicing events occurring in CGG+ TRA2A+

and CGG+ TRA2A� conditions, 23 (including ACTG1, TMP1,

and WWP2) involve transcripts that physically bind to FMRP

protein, as also detected in CLIP experiments (available from

http://starbase.sysu.edu.cn/), which unveils an important link

(significance: p value < 10�4; Fisher’s exact test) to fragile X syn-

drome (Maurin et al., 2014).

In the 11 CGG+ TRA2A+ cases present in CGG� TRA2A� but

not in CGG+ TRA2A� (Figure 7B) there is GADD45B linked to syn-

aptic plasticity (Ma et al., 2009), as well as g KIAA1217 (Semba

et al., 2006) and TM4SF19 (de la Rica et al., 2013) associated

with skeletal development pathways. We also found the molec-

ular chaperone CCT that is known to restrict neuro-pathogenic

protein aggregation via autophagy (Pavel et al., 2016).
Cell Report
TRA2A Is Present in Murine and
Human FXTAS Brain Inclusions
We tested if TRA2A co-aggregates with

FMR1 inclusions in two mouse models

with repeats containing more than 90

CGG: (1) the 50 UTR was expressed under

the control of doxycycline (Hukema et al.,

2015) and (2) the CGG repeat has been re-

placed by the human expanded repeat

(Willemsen et al., 2003). Immunohisto-

chemistry experiments with sections of

paraffin-embedded neurons and astro-

cytes indicated that the TRA2A protein

is present in the inclusions (Figure 7C;

STAR Methods).

Importantly, RAN translation has been

shown to occur in FMR1 50 UTR, resulting
in the production of FMRpolyG and

FMRpolyA peptides (Todd et al., 2013).

The main RAN translation product,

FMRpolyG, co-localizes with ubiquitin in

intranuclear inclusions (Sellier et al., 2017).

In agreement with our murine model,

we found positive staining for TRA2A in
nuclear inclusions from two FXTAS post-mortem human brain

donors (Figure 7D), and remarkably, we observed co-localization

with FMRpolyG (Figure 7E). We observe that FMRpolyG reaches

its highest abundance in hippocampus co-aggregating in 20%

total nuclei (Glineburg et al., 2018). In the same tissue, TRA2A

co-localizes with inclusions in 2%–3% of total nuclei, thus indi-

cating strong sequestration (Figure S7). Interestingly, TRA2A-

positive cells aggregate in groups that are in close proximity,

which provides precious information on the biochemical

behavior of aggregates as well as the spreading nature of the

disease across brain districts (Figure S7).

Thus, TRA2A sequestration by CGG repeats is not only

observed in cell lines but also in FXTAS animal models and

human post-mortem brain samples.

DISCUSSION

Previous evidence indicates that proteins are the main cohesive

elements within RNP granules (Banani et al., 2017). Yet, specific
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Figure 7. TRA2A Recruitment in FMR1 In-

clusions Affects Splicing

(A) With respect to events occurring in the absence

of CGG aggregates (CGG� TRA2A+), 59 exons are

spliced in CGG+ TRA2A+ and not in CGG+ TRA2A�

(i.e., CGG+ TRA2A+yCGG+ TRA2A�; red points).

We investigated cases caused by TRA2A depletion

in absence of CGG aggregates (CGG� TRA2A�)
and identified 11 events that are present in CGG+

TRA2A+ and not in CGG+ TRA2A� (i.e.: CGG�

TRA2A� X CGG+ TRA2A+yCGG+ TRA2A�; or-

ange points; Table S5; STAR Methods).

(B) Muscle proteins, including PIP5K1A, TPM1,

and autophagy-related SQSTM1, are subjected to

exon skipping upon TRA2A recruitments in RNP

condensates (Table S5; Figure 7B). Events occur-

ring when TRA2A is depleted are linked to neuro-

pathogenesis (GADD45B and CCT7) and skeletal

development (KIAA1217 and TM4SF19).

(C) TRA2A immunohistochemistry in wild-type

(WT) and premutated mouse model (counter-

staining was done with hematoxylin; the arrow

points to the inclusion).

(D) TRA2A immunohistochemistry in human hippo-

campus from control and FXTAS (counterstained

with hematoxylin; the arrow points to the inclusion).

(E) Double immunofluorescence of TRA2A as well

as FMRpolyG peptides in human FXTAS (STAR

Methods).
RNAs can act as structural scaffolds to assemble proteins in

RNP condensates, as recently reported in the literature (Langdon

et al., 2018), and RNA-RNA interactions play an important role in

the formation of RNP assemblies (Van Treeck and Parker, 2018).

Our analysis of PRI networks reveals that scaffolding RNAs have

a large number of RBP contacts, increased length, and high

structural content. In agreement with our computational anal-

ysis, two works published at the time of writing indicate that

UTR length and structural content (Khong et al., 2017; Maharana

et al., 2018) are important properties of RNAs aggregating in

RNP condensates. Moreover, nucleotide repeats (Jain and

Vale, 2017), changes in RNA levels (Tartaglia and Vendruscolo,

2009), and RNA binding abilities (Zhang et al., 2015) are known

factors modulating phase transitions in the cell.

Our PRI networks were retrieved from eCLIP experiments

(Van Nostrand et al., 2016) that have been performed in

conditions different from those promoting the formation of

physiological SGs. Similarly, PPI networks were taken from
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the BioPlex database that includes highly

curated, multi-source experiments (Hut-

tlin et al., 2015). Yet, our underlying hy-

pothesis is that PPI and PRI are governed

by physico-chemical forces that are in

place regardless of the environmental

conditions, and we assume that the

ability of proteins and RNAs to assemble

is impaired when the molecules are

poorly expressed or chemically modi-

fied. Indeed, to control for the contribu-

tion of RNA abundance, we used it to
normalize the number of CLIP reads in our calculations. Sup-

porting our assumptions, the RNA list retrieved from the

network analysis shows a very significant overlap with a

recently published atlas of transcripts enriched in SGs (Khong

et al., 2017). We note that our analysis would be more

accurate if the protein and RNA interaction networks were

known for the different biological condensates.

Combining computational approaches with large-scale in vitro

experiments, we unveiled the scaffolding ability of FMR1 50 UTR,
recovering previously known partners relevant in FXTAS, such as

SRSF1, 5, and 6; KHDRBS3; and MBNL1 (Sellier et al., 2010),

and identifying additional interactions involved in alternative

splicing, such as PCBP 1 and 2, HNRNP A0 and F, NOVA1,

PPIG, and TRA2A. At the time of writing, TRA2A has been re-

ported to be a component of ALS granules (Markmiller et al.,

2018). Yet, TRA2A does not appear in TAU inclusions (Maziuk

et al., 2018), which indicates that its sequestration occurs only

in specific neurodegenerative diseases.



To prove the implication of TRA2A sequestration in FXTAS

pathogenesis and overcome the technical limitation of our

cellular model in which the non-AUG codon downstream the

50 UTR of FMR1 is lacking, we tested TRA2A colocalization

with FMRpolyG in patients’ brain samples. Our experiments

showed that the two proteins colocalize, providing additional

information on TRA2A involvement in FXTAS disease. This result

indicates that CGG could interact with both TRA2A and FMRpo-

lyG and supports our previous work indicating that interactions

between proteins and cognate RNAs are frequent in aggrega-

tion-prone genes (Cirillo et al., 2013).

Through splicingmicroarrays and RNA-seq analysis, we found

that TRA2A sequestration induces changes in the splicing of

genes associated with mental retardation, including ACTB (Pro-

caccio et al., 2006) and ACTG1 (Rivière et al., 2012), intellectual

disabilities, such as DOCK3 (de Silva et al., 2003), and craniofa-

cial development, such as WWP2 (Zou et al., 2011), which are

relevant in the context of fragile X syndrome (Maurin et al.,

2014). Thus, the identification of TRA2A opens the avenue for

new therapeutic intervention to correct the splicing defects of

deregulated transcripts or to restore the functional role by clus-

tered regularly interspaced short palindromic repeat (CRISPR)-

Cas technology.

In the future, it will be very important to analyze genome-

wide data in different bio-specimens from patients to see

the expression of differently spliced variants of TRA2A targets.

Nevertheless, because FXTAS is a rare disease with low pene-

trance, the number of samples from patients is very limited.

Therefore, more work should be done in this direction to pro-

mote biomarker discovery in patients and, ultimately, promote

personalized treatment. Yet, our theoretical framework is also

applicable to other diseases in which RNAs promote the for-

mation of phase-separated condensates that could be used

by the pathologist to identify the proteins that are specifically

sequestered.
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86970-P), and ‘‘Fundació LaMarató de TV3’’ (PI043296).We acknowledge sup-

port of the Spanish Ministry of Economy and Competitiveness, ‘Centro de

Excelencia Severo Ochoa 2013-2017’. We acknowledge the support of the

CERCAProgramme, Generalitat de Catalunya and SpanishMinistry for Science

and Competitiveness (MINECO) to the EMBL partnership.

AUTHOR CONTRIBUTIONS

G.G.T. and T.B.-O. conceived the study together with the help of B.B.; F.C.-S.

performed the calculations; T.B.-O. supervised M.G.-B. and performed all the

experiments as well as analyzed samples from R.K.H., L.-A.W.S., and E.G.;

T.B.-O., N.L.-G., G.G.T., and B.L. analyzed the data; T.B.-O., F.C.-S., B.B.,

and G.G.T. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no conflict of interest.

Received: June 19, 2018

Revised: September 26, 2018

Accepted: November 19, 2018

Published: December 18, 2018

REFERENCES

Agostini, F., Zanzoni, A., Klus, P., Marchese, D., Cirillo, D., and Tartaglia, G.G.

(2013). catRAPID omics: a web server for large-scale prediction of protein-

RNA interactions. Bioinformatics 29, 2928–2930.

Armaos, A., Cirillo, D., and Gaetano Tartaglia, G. (2017). omiXcore: a web

server for prediction of protein interactions with large RNA. Bioinformatics

33, 3104–3106.

Banani, S.F., Lee, H.O., Hyman, A.A., and Rosen, M.K. (2017). Biomolecular

condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol.

18, 285–298.
Cell Reports 25, 3422–3434, December 18, 2018 3431

https://doi.org/10.1016/j.celrep.2018.11.076
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref1
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref1
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref1
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref2
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref2
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref2
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref3
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref3
http://refhub.elsevier.com/S2211-1247(18)31867-9/sref3


Bellucci, M., Agostini, F., Masin, M., and Tartaglia, G.G. (2011). Predicting pro-

tein associations with long noncoding RNAs. Nat. Methods 8, 444–445.

Bolognesi, B., Lorenzo Gotor, N., Dhar, R., Cirillo, D., Baldrighi, M., Tartaglia,

G.G., and Lehner, B. (2016). A concentration-dependent liquid phase separa-

tion can cause toxicity upon increased protein expression. Cell Rep. 16,

222–231.

Botta-Orfila, T., Tartaglia, G.G., andMichalon, A. (2016). Molecular pathophys-

iology of fragile x-associated tremor/ataxia syndrome and perspectives for

drug development. Cerebellum 15, 599–610.

Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C.,

Gharakhani, J., J€ulicher, F., and Hyman, A.A. (2009). Germline P granules

are liquid droplets that localize by controlled dissolution/condensation. Sci-

ence 324, 1729–1732.

Brannan, K.W., Jin, W., Huelga, S.C., Banks, C.A.S., Gilmore, J.M., Florens, L.,

Washburn, M.P., Van Nostrand, E.L., Pratt, G.A., Schwinn, M.K., et al. (2016).

SONAR discovers RNA-binding proteins from analysis of large-scale protein-

protein interactomes. Mol. Cell 64, 282–293.

Buchan, J.R., Muhlrad, D., and Parker, R. (2008). P bodies promote stress

granule assembly in Saccharomyces cerevisiae. J. Cell Biol. 183, 441–455.

Budny, B., Badura-Stronka, M., Materna-Kiryluk, A., Tzschach, A., Raynaud,

M., Latos-Bielenska, A., and Ropers, H.H. (2010). Novel missense mutations

in the ubiquitination-related gene UBE2A cause a recognizable X-linked

mental retardation syndrome. Clin. Genet. 77, 541–551.

Buijsen, R.A., Sellier, C., Severijnen, L.-A.W., Oulad-Abdelghani, M., Verha-

gen, R.F., Berman, R.F., Charlet-Berguerand, N., Willemsen, R., and Hukema,

R.K. (2014). FMRpolyG-positive inclusions in CNS and non-CNS organs of a

fragile X premutation carrier with fragile X-associated tremor/ataxia syndrome.

Acta Neuropathol. Commun. 2, 162.

Chen, X., Wan, J., Yu, B., Diao, Y., and Zhang, W. (2018). PIP5K1a promotes

myogenic differentiation via AKT activation and calcium release. Stem Cell

Res. Ther. 9, 33.

Cirillo, D., Agostini, F., Klus, P., Marchese, D., Rodriguez, S., Bolognesi, B.,

and Tartaglia, G.G. (2013). Neurodegenerative diseases: quantitative predic-

tions of protein-RNA interactions. RNA 19, 129–140.

Cirillo, D., Blanco, M., Armaos, A., Buness, A., Avner, P., Guttman, M., Cerase,

A., and Tartaglia, G.G. (2017). Quantitative predictions of protein interactions

with long noncoding RNAs. Nat. Methods 14, 5–6.

Colomer, V., Kicska, G.A., and Rindler, M.J. (1996). Secretory granule content

proteins and the luminal domains of granule membrane proteins aggregate

in vitro at mildly acidic pH. J. Biol. Chem. 271, 48–55.

de la Rica, L., Rodrı́guez-Ubreva, J., Garcı́a, M., Islam, A.B., Urquiza, J.M.,

Hernando, H., Christensen, J., Helin, K., Gómez-Vaquero, C., and Ballestar,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human lymphocytes
Human lymphocytes cells from Coriell repository (CGG(41X); Coriell repository number NA20244A and CGG(90X) Coriell repository

number GM06906B) were grown in suspension in DMEM 10% fetal bovine serum (FBS) 1%Penicillin/Streptomycin, 2mMGlutamine

at 37�C with a 5% CO2 atmosphere. Cell counting was performed with Neubauer chamber.

COS-7 cells
COS-7 cell lines were cultured in DMEM 10% FBS, 0,1% non-essential aminoacids, pyruvate and glutamine, at 37�Cwith a 5%CO2

atmosphere. Cells were counted with a Neubauer chamber.

Mouse model
We employed two established FXTASmousemodels: 1) the knock-in mouse in which themurine CGG repeat has been replaced by a

human expanded repeat of 100-150 CGGs (Willemsen et al., 2003) and 2) an inducible model in which the 50UTR containing 90 CGG

repeats was expressed under the control of doxycycline (Hukema et al., 2015). Both male and female mice were used, since both

genders form the characteristic inclusions. All experiments were conductedwith the permission of the local institute of animal welfare

(IVD) and the study was complying with ethical permission CCD license AVD101002015290. The knock-in mice were aged about

70 weeks. These mice were previously shown to contain ubiquitin positive intra-nuclear inclusions. For the doxycycline inducible

mice, the dox treatment was of 12-28 week, which was sufficient to allow formation of inclusions.

Human post-mortem samples
Wecollected samples from onemale (died at age 73) and one female (84 years old), both in the premutation range (100 CGG repeats).

The brain samples were obtained from the Netherlands Brain Bank (NBB; project nr. 1084), Netherlands Institute for Neuroscience,

Amsterdam (open access https://www.brainbank.nl/). All material has been collected from donors for or from whom a written

informed consent for a brain autopsy and the use of the material and clinical information for research purposes had been obtained

by the NBB.

METHOD DETAILS

RNA IVT and Protein arrays
FMR1 50-UTR expanded and control pCAGIG vectors, with 79 and 21 repeats, respectively, were generated by Dr. Marti’s group. The

UTRs were subcloned in PBSK plasmid containing promoters suitable for in vitro transcription. The plasmid was digested in final vol-

ume reaction of 30ul with restriction enzymes and the digestion was ensured by loading 1ul in a 1% agarose gel. The reaction was

purified with the MinElute PCR Purification Kit following manufacturer’s instructions. In vitro transcription was performed with the T7

Megascript T7, High Yield Transcription Kit, Invitrogen, Thermo Scientific according to standard procedure with the addition of 1%

DMSOand 1% ribolock, overnight at 37�C. The synthetized RNAwas treatedwith TURBODNase 2U/ul (Invitrogen) at 37�C for 15min.

The RNA was purified with magnetic beads (Agencourt RNA Clean XP) eluting in 30ul of nuclease-free water.The integrity and spec-

ificity of the RNA was checked by means of RNA denaturing agarose gel and Bioanalyzer quality control.

The CGGxRNAwas fluorescently labeled with Cy5 Label IT uArray Labeling Kit (Mirus) with slight modifications from standard pro-

tocol. Briefly, 5ug of RNA were mixed with 1:5 Label IT Cy5 reagent and incubated in a final volume of 25ul at 37�C for 70min. The

reaction was stopped by adding 2.5ul of 10X Stop solution. Again the labeled RNAwas purified withmagnetic beads (Agencourt RNA

Clean XP).

The RNA concentration and labeling density were measured with Nanodrop 1000 spectrophotometer (Thermo Scientific) and

calculated as follows.

Only reactions with an RNA labeling density of 1 Cy5 dye per 700-900 nt were used.

Base:dye = (Abase*ε dye)/(Adye*ε base)

Abase = A260-(Adye*CF260)

Constants:

ε dye = 250000

CF260 = 0.05

ε base = 8250
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Labeled RNA integrity was verified with the Agilent 2100 Bioanalyzer.

50 pmoles of labeled RNA were hybridized in the protein arrays Human Protein Microarrays v5,2, Life Technologies.

The arrays were dried and immediately scanned at 635nm in Microarray Scanner G2505B (Agilent). GenePix Pro 6.1 software

(Molecular Devices) was used to determine the signal at 635nm of each spotted protein location and therefore quantify the RNA-

protein interaction. Specifically, the local background intensity (B635) was subtracted from the intensity (F635) at each of the dupli-

cate spots for a given protein, to quantify. Data was filtered based on signal to background ratio for each of the duplicate feature to be

greater than 2.5 fold and Z-ScoreR 3 from the global mean signal from all the spotted proteins. Finally, the intersection of technical

replicates was considered as the final value for quantification.

IF-RNA FISH in COS-7 cells
COS-7 cells were grown on 13mm coverslips until a 70% confluence. Cells were transfected with lipofectamine 2000 (Invitrogen,

#13778150) according to manufacturer’s instructions and stained after 24 hours.

SiRNA treatments were performed with lipofectamine 2000 (Invitrogen, 11668019) using different siRNA sequences (siTRA2A,

Ambion AM16704, siTRA2B, Ambion S12749, compared to water). Overexpression of proteins was achieved by transfection of

GFP-TRA2A, GFP-TRA2B, compared with GFP-vector, all plasmids kindly given by Dr. Nicolas Charlet-Berguerand. For further

treatments, cells were incubated with 25nM TMP4yP (Abcam ab120793) or 15uM of 1amolecule (this latter kindly given by Matthew

D. Disney).

Prior to immunostaining, cells were fixed with 4% paraformaldehyde for 10 minutes and washed three times with PBS. Permeabi-

lization was done with Triton X-100 0.1% for 5 minutes. Cells were washed 3 times with PBS and then blocked with BSA 1% solution

for 20minutes andwashed againwith PBS. Primary antibodies were used in a 1:50 dilution (antiTRA2A, Abcam, ab72625, antiTRA2B,

Abcam, ab31353). Secondary antibodies (anti Rabbit 647, ab150115, anti-rabbit 488, ab11008) were used in a 1:200 dilution after

three washes with PBS solution. RNA FISH assay was done after the immunostaining according tomanufacturer’s protocol (Stellaris,

Biosearch Technologies). The RNA FISH probe ((GGC)8X-Cy3, Sigma) was used at 125nM final concentration and cells were then

incubated at 37�C overnight, as reported in Sellier et al., 2010. Finally, cells weremounted directly in Fluoroshield with DAPI histology

mounting medium (Sigma, #F6057). All coverslips were examined using a fluorescence microscope (Leica) coupled to a DMI600

camera. Intensity graphs were generated with ImageJ software to assess levels of colocalization of signals from different fluores-

cence channels.

q-PCR
Human lymphocytes were washed and pelleted by centrifugation at 800rpm for 2 min. COS-7 cells were tripsinized and pelleted by

centrifugation at 1200rpm for 2 minutes. RNA extraction from the different cultured cells was done according to manufacturer’s

instructions (QIAGEN, #50974136). cDNA was generated by RT-PCR using SuperScript III First-Strand Synthesis SuperMix

for qRT-PCR (Invitrogen, # 11752250) to quantify mRNAs. q-PCR was performed using Sybr Green master mix (Invitrogen,

# 4367659) and analyzed by AB7900HT (Leica). In all experiments, GAPDH was used as internal control in all experiments.

Western Blot
Total proteins from human lymphocytes and COS-7 cells (one day post-transfection) were extracted. The level of protein was

measured by the Bio-Rad Protein Assay according to manufacturer’s instructions. All lysates were resolved in a 4%–12% gel

(NuPAGE, Invitrogen) according to the molecular size of the proteins and then transferred to a nitrocellulose membrane 0.2 mm.

The membranes were blocked with 5% non-fat dry milk in TBS-Tween 1% then washed with PBS and incubated with anti TRA2A

(1:1000, Abcam ab72625), anti TRA2B (1:500, Abcam ab31353) or anti Tubulin (1:5000, Abcam ab7291) overnight at 4�C. After
primary antibodies treatment, membranes were washed three times with TBS-Tween 1% and then incubated with the secondary

peroxidase antibody 1h with an anti-mouse (Abcam ab97046) or an anti-rabbit antibody (Protein G, Merk #18-161).

Visualization of the signal was achieved by Luminata Starter kit (Millipore, WBLUM0100) according to manufacturer’s recommended

instructions, and with Amersham Imager 600.

Immunohistochemistry and immunofluorescence from murine and human brain tissue
Tissues were fixed overnight in 4% paraformaldehyde and embedded in paraffin according to standard protocols. Sections (6mm)

were deparaffinized followed by antigen retrieval using microwave treatment in 0.01M sodium citrate. Endogenous peroxidase

activity was blocked and immunostaining was performed overnight at 4�C using TR2A (Abcam, ab72625) and 8FM 1:10 antibodies

(Buijsen et al., 2014). In order to better visualize inclusions an extra antigen retrieval step was added, using proteinase K. Antigen-

antibody complexes were visualized by incubation with DAB substrate (Dako, K3468) after incubation with Brightvision poly-HRP-

linker (Immunologic, DPVO-HRP 55). Slides were counterstained with hematoxylin and mounted with Entellan.

For (double) immunofluorescence, slides were blocked for auto-fluorescence with Sudan Black in 70%ethanol. Primary antibodies

include TR2A (Abcam, ab72625), 8FM 1:10 (Buijsen et al., 2014) and ubiquitin (Dako, Z0458). Secondary antibodies were

antirabbit Fab 488 (Molecular Probes, A11070) and antimouse cy3 (Jackson, 715-165-150). Nuclei were visualized with Hoechst

(Figure S7).
e4 Cell Reports 25, 3422–3434.e1–e7, December 18, 2018



Quantification of TRA2A levels in presence of CGG aggregates
We quantified the amount of soluble protein in presence of CGG aggregates by microscopy in COS-7 cells, and found that around

20%–25%of TRA2A protein is present in the inclusions. Specifically, we assessed the intensity of the signal from endogenous TRA2A

in cells from four different experiments upon overexpression of CGG (ImageJ), wemeasured the signal from TRA2A antibody for each

cell from by selecting i) the Intensity Density (ID) from the Area from all the aggregates colocalizing with CGG signal; ii) the total ID for

each cell; iii) the substraction of the total ID minus the sum of all the aggregates, then meaning the signal background; and finally iv)

the fraction of protein that is in the aggregates in respect to the total of protein diffused.

Levels of functional protein are altered, in a magnitude that ranges from 20%–25%, which is fully compatible with previous reports

in literature (Colomer et al., 1996; Grousl et al., 2018).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data acquisition and composition
Granule-forming proteins were extracted from a previous publication (Jain et al., 2016) that reports the most exhaustive list of com-

ponents for cytoplasmic RNP granules to date, comprising 205 yeast and 411 human granule-forming proteins (Figure S1A; Tables

S1A–S1F).

Human PPIs were taken from the BioPlex database (Huttlin et al., 2015) that includes highly curated data produced by

high-throughput affinity-purification mass spectrometry. BioPlex contains 56,554 interactions among 510,882 different proteins

(Figure 1A; Figure S1C). Human PRIs were identified through eCLIP experiments (Van Nostrand et al., 2016). The dataset contains

1,103,800 interactions of 78 proteins in the K562 cell line (Figure 1B; Table S1B; Figure S1C). We processed the eCLIP data

normalizing the number of reads by gene expression (Armaos et al., 2017). We considered interactions having values of number

of reads by expression level higher than the first, second and third quartile of the distribution of the whole dataset (Figure S2; Tables

S1C–S1E). After data normalization and filtering, the dataset includes 22,961 transcripts interacting with at least one protein

(20,724 coding and 2,237 non-coding). We extracted the expression levels for K562 transcripts from the ENCODE project (Armaos

et al., 2017).

For yeast analysis we used the dataset reported in a previous article (Mittal et al., 2011) that includes both protein-protein and PRIs.

The protein-protein network is based on the integration of two mass spectrometry studies that comprise a total of 5,303 proteins

and 401,821 interactions (Mittal et al., 2011) (Figure 1A). PRIs were extracted from the integration of four different studies on immu-

noprecipitation of RBPs followed by microarray analysis of the bound transcripts (Table S1F). The data includes a total of 24,932

interactions from 69 RPBs to 6,159 transcripts.

We considered non-granule forming those RBPs present in the protein-RNA dataset and not described as granule-forming

in a previous article (Jain et al., 2016) (Figure S1; Tables S1A–S1E). There are 22,571 transcripts interacting with at least one

granule-forming protein, 287 transcripts interacting only with granule-forming proteins and 390 with only non-granule forming

proteins.

In the case of the granule and non-granule protein-protein networks comparison, we included RBP lists provided by (Brannan et al.,

2016;Gerstberger et al., 2014) for yeast and human. These datasets comprise a total of 690 yeast RBPs and 1,795 human RBPs.

Network analysis
Protein-protein and protein-RNA networks consisted of a set of nodes (protein or RNAs) that are connected through edges (interac-

tions). All network analyses were performed in the R environment (http://www.r-project.org) using the igraph package (http://igraph.

org/)(Csárdi and Nepusz, 2006). We employed build-in functions to compute degree, betweenness and closeness measures of

centrality. Networks were considered directionless and unweighted. Degree centrality is defined as the number of edges a node

has. The other centrality measures were based on the shortest path length between nodes in the network (i.e., minimum number

of edges between two certain nodes). In this sense, betweenness is defined as the number of shortest paths in the network that

go through a certain node. Closeness centrality is the inverse of the average of the shortest path between a certain node and all

the other nodes in the network. We compared the distribution of centrality values for granule and non-granule RBPs in the same

global protein-protein or protein-RNA network (Figure 1A; Figures S1C and S1D).

We used the Jaccard index (Tables S1G–S1J) as a measure of the overlap of RNA targets between pairs of proteins. The Jaccard

index of a specific couple of proteins a and b (Ja,b) was computed as:

Ja;b =
jAXB j
jAWB j

were A is the set of RNA targets of the first protein of the pair, B is the set of RNA targets of the second protein of the pair, jAXBj is the
size of the intersection of A andB (i.e., number of RNA targets shared by the two proteins) and jAUBj is the size of the union of A andB

(i.e., the total number of RNA targets of A and B minus the number of shared RNA targets).
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RNA properties analysis
To study features of granule and non-granule transcripts, we compared RNAs with the same number of total protein contacts (Tables

S2A–S2C).We used a cut-off of 10 RBP contacts in the human analysis and 5 contacts in the yeast case. The total number of contacts

was chosen to have granule and non-granule sets of comparable size (Tables S2B and S2C), yet we note that the results are inde-

pendent of a particular cut-off. Granule transcripts are contacted by a larger number of granule-forming RBPs than non-granule form-

ing RBPs (viceversa for non-granule transcripts).

The UTR analysis is based on Ensembl annotation (Tables S2B and S2C).

RNA secondary structure
To profile the secondary structure of granule and non-granule transcripts (Figures 2B and 2C; Figure S3E; Tables S2B and S2C), we

used PARS data (Kertesz et al., 2010; Wan et al., 2014). PARS distinguishes double- and single-stranded regions using the catalytic

activity of two enzymes, RNase V1 (able to cut double-stranded nucleotides) and S1 (able to cut single-stranded nucleotides).

Nucleotides with a PARS score higher than 0 indicate double-stranded conformation, while values lower than 0 are considered

single-stranded (Kertesz et al., 2010; Wan et al., 2014). Undetermined nucleotides with a PARS score of 0 were discarded from

our analysis. For each transcript, we counted the number of nucleotides with PARS score above zero divided by total length of

the sequence.

We also predicted the secondary structure of granule and non-granule transcripts using CROSS (PARS human model; Figure 2F;

Figures S4A). Input sequences were the same employed for the granule RNA properties analysis. For each sequence, structural con-

tent is defined as the percentages of nucleotides with a CROSS score bigger than 0.5 (double-stranded prone).

Statistical analysis
To assess whether granule RBPs exhibit different trends compared to non-granule RBPs, we used the Wilcoxon test (also called

Mann-Whitney U test). Wilcoxon test is a non-parametric test used to compare the mean of two distributions without any given

assumption about them. To compare properties of highly versus lowly contacted RNAs and difference in target overlap between

granule and non-granule pairs, we used the Kolmogorov-Smirnov test (KS test). KS test is also a non-parametric test used to

compare the distance between two cumulative distribution functions (CDFs).

DATA AND SOFTWARE AVAILABILITY

catRAPID omics analysis
catRAPID omics was used to compute the interaction propensity (Figures 3A and 3C) of CGG repeats with proteins (Agostini et al.,

2013). catRAPID omics ranks predictions based on interactions score as well as presence of motifs and RBDs (Bellucci et al., 2011).

For RNA sequences > 1000 nt, the uniform fragmentation procedure is applied to determine the binding regions of a protein. The

software is available at http://s.tartaglialab.com/page/catrapid_omics_group.

catGRANULE analysis
Structural disorder, nucleic acid binding propensity and amino acid patterns such as arginine-glycine and phenylalanine-glycine are

key features of proteins coalescing in granules (Bolognesi et al., 2016). These features were combined in a computational approach,

catGRANULE, that we employed to identify RBPs assembling into granules (scores > 0 indicate granule propensity; Figure 2D)

(Bolognesi et al., 2016). The software is available at http://service.tartaglialab.com/new_submission/catGRANULE.

Splicing Arrays experiments and analysis
COS-7 cells were grown in P10 plates and cultured in different conditions and in three biological replicates each: control, (CGG)60X

185ng, siTRA2A 50nM, (CGG)60X 185ng+siTRA2A 13.6ng, GFP-TRA2A 200ng, (CGG)60X 185ng + GFP-TRA2A 200ng.

Total RNA extraction was performed with QIAGEN RNeasy Mini Kit including DNase treatment according to manufacturer’s in-

structions. RNA amount was quantified and controlled with Nanodrop and Bioanalyzer. 100ng of total RNA from each sample

were labeled according to the Affymetrix GeneChip� Whole Transcript Plus protocol, and hybridized to Affymetrix Human Clariom

D array using a Affymetrix GeneChip Hybridization Oven 645, in Servei de Microarrays (IMIM-Barcelona). GeneChip was scanned

using Affymetrix GeneChip Scanner 3000 7G. The data were analyzed using the RMA algorithm and then LIMMA was applied to

calculate significant differential expression between samples. Splicing arrays were analyzed with the Transcriptome Analysis

Console Software (Thermo Fisher Scientific), setting the following thresholds and methods: Gene-Level Fold Change < �2 or > 2,

Gene-Level P value < 0,05, Splicing Index < �2 or > 2, Exon-Level P value < 0,05, Anova Method: ebayes, Probeset (Gene/Exon)

considered expressed if R 50% samples have DABG values below DABG Threshold (DABG < 0,05), event Pointer P value < 0,1

and event score > 0,2. Data are deposited in GEO repository with accession number GEO: GSE108007.

RNA-seq experiments and analysis
An aliquot of the same RNA extracted from COS-7 cells for splicing arrays (previous section) was used for RNASEQ, in three biolog-

ical replicates each: control, (CGG)60X 185ng, siTRA2A 50nM, (CGG)60X 185ng+siTRA2A 13.6ng, GFP-TRA2A 200ng, (CGG)60X
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185ng + GFP-TRA2A 200ng. 500ng of total RNA were used for library preparation with TruSeq total RNA-rRNA depletion (Illumina).

The sequencing was performed with HiSeq3000, paired-end, 2X125, 3samples/lane.

Nucleotide alignments were performed using STAR_2.5.2 with reference genome and annotations taken fromGencode Release 27

(GRCh38.p10) (http://www.gencodegenes.org/releases/current.html. Pre-processing of bam files was made with python scripts

(‘‘dexseq_prepare_annotation.py’’ and ‘‘dexseq_count.py’’) provided in the DEXSeq v 1.24.2 R package. Statistical analysis of alter-

native splicing events was done with R 3.4.0 using two methods: EventPointer v1.0.0 and DEXSeq v 1.24.2. Data are deposited in

GEO repository with accesion number GEO: GSE121304.
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Supplementary Figure 1 [related to Figure 1]. Datasets A) Granule RBPs Red circle: granule-
forming proteins, Blue circle: RBPs, as defined in Gerstberger et al, 2014 (Gerstberger et al., 2014). 
Intersection represents granule RBPs. B) Number of interactions. Red circle: granule-forming proteins. 
Blue circle: RBPs with known targets. Intersection represents granule RBPs with known targets. 
Distribution of centrality values of granule and non-granule RBPs in different interaction 
networks. C) Centrality distributions for the human dataset. Up: Protein-protein network. (p-value 
(left) = 0.39, p-value (centre) = 0.41, p-value (right) = 0.36. Down: Protein-RNA network (p-value 
(left) = 0.003, p-value (centre) = 0.007, p-value (right) = 0.01. D) Centrality distributions for the yeast 
dataset. Up: Protein-protein network. (p-value (left) = 0.26, p-value (centre) = 0.30, p-value (right) = 
0.18. Down: Protein-RNA network (p-value (left) = 0.02, p-value (centre) = 0.05, p-value (right) = 
0.01. 



Human (all)

p = 0.01

Granule RBPs Non granule RBPs

Nu
m

be
r o

f R
NA

 ta
rg

et
s 

(lo
g 

sc
al

e)
A (Q1)

Coding

p = 0.01

Granule RBPs Non granule RBPs

Non-coding

p = 0.02

Granule RBPs Non granule RBPs

Nu
m

be
r o

f R
NA

 ta
rg

et
s 

(lo
g 

sc
al

e)

p = 0.004

Human (all)

B (Q2)

Granule RBPs Non granule RBPs

Nu
m

be
r o

f R
NA

 ta
rg

et
s 

(lo
g 

sc
al

e)

p = 0.004

Granule RBPs Non granule RBPs

Coding

Nu
m

be
r o

f R
NA

 ta
rg

et
s 

(lo
g 

sc
al

e)

p = 0.01

Granule RBPs Non granule RBPs

Non-coding

Nu
m

be
r o

f R
NA

 ta
rg

et
s 

(lo
g 

sc
al

e)

Nu
m

be
r o

f R
NA

 ta
rg

et
s 

(lo
g 

sc
al

e)

Supplementary	Figure	2



	

Supplementary Figure 2 [related to Figure 1]. Number of RNA targets of granule and non-
granule RBPs: A) First quartile of the reads/expression distribution (Q1). B) Second quartile (Q2). 
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Supplementary Figure 3 [related to Figure 1,2]. Properties of granule RNAs. A) RNAs interacting 
exclusively with granule forming RBPs have higher number of protein contacts (p-value = 0.04, 
Wilcoxon test). Human transcripts: B) Granule RNAs have more structured UTRs (p-value = 0.007; 
KS test). PARS analysis on 3’UTR of granule and non-granule RNAs. Yeast granule RNA are C) 
structured (p-value = 0.001; KS test; PARS data), and D) more abundant (p-value = 2.2e-16; KS test) 
than non-granule RNAs. The UTR analysis was not performed due to the lack of annotation.  
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Supplementary Figure 4 [related to Figure 2,3]. Computational predictions of granule-forming 
components. A) Granule transcripts are predicted to be more structured (structural content according is 
measured using CROSS; p-value < 2.2e-16, KS test).  B and C) catGRANULE performances on 
human and yeast experimentally described granule-forming proteins.  AUC (Area under the ROC 
curve) is used to measure the discriminative power of the method. D) Distribution of catGRANULE 
scores for the whole human proteome. TRA2A (catGRANULE score = 2.14) ranks 188th out of 20190 
human proteins (i.e. 1% of the distribution). 
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Supplementary Figure 5 [related to Figure 4]. TRA2A levels in human lymphocytes and COS-7 
cell model. A) Human lymphocytes from control (A) or pre mutation-carrier (B) were lysated and both 
RNA and protein were isolated (*** p-value < 0.01). Relative TRA2A RNA expression (left panel) and 
TRA2A protein (right panel) are represented. B) COS-7 cells were transfected with CGG(60X) and 
compared to controls. After 24h, 48h or 72h of transfection cells were pelleted and RNA and protein 
extraction was performed. Relative TRA2A RNA expression (left panel) and TRA2A protein (right 
panel) are represented. 
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Supplementary Figure 6 [related to Figure 6]. TRA2B over-expression and TRA2A knock-down. 
A) Control COS-7 cells (without CGG(60X) transfection) were transfected with GFP-TRA2B and 
siTRA2A. B) COS-7 cells were transfected with CGG(60X), GFP-TRA2B and siTRA2A. In both A 
and B, after 48 hours, cells were hybridized with Cy3-GGC(8X) probe and immunostained with an 
antibody against TRA2B. The graph represents TRA2B/CGG levels. TRA2A over-expression and 
TRA2B knock-down. C) Control COS-7 cells were transfected with siTRA2B and GFP-TRA2A (in 
absence of CGG(60X) transfection). D) COS-7 cells were transfected with CGG(60X), siTRA2B and 
GFP-TRA2A. In both A and B, after 48 hours of transfection cells were hybridized with Cy3-
GGC(8X) probe and immunostained with antiGFP. The graphs represent TRA2A/CGG levels.  
E) TRA2B protein levels in COS-7 cells treated as in B. TRA2A and TRA2B over-expression COS-7 
cells were transfected with GFP-TRA2A F) or GFP-TRA2B G) and CGG(60X). After 48 hours, cells 
were hybridized with Cy3-GGC(8X) probe and immunostained with an antibody against either TRA2A 
or TRA2B. Graphs represent TRA2A/TRA2B/CGG levels. 
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Supplementary Figure 7 [related to Figure 10]. A-F) TRA2A immunohistochemistry in human 
hippocampus from FXTAS. G-H) TRA2A immunohistochemistry in premutated mouse model 
(counterstaining is done with haematoxylin; the arrows points to the inclusions). 
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