
The EMBO Journal - Peer Review Process File 
 

 
© European Molecular Biology Organization  

 
 
 
Metabolic regulation of pluripotency and germ cell fate 
through α−ketoglutarate  
 
 
Julia Tischler, Wolfram H. Gruhn, John Reid, Edward Allgeyer, Florian Buettner, Carsten Marr, 
Fabian Theis, Ben D. Simons, Lorenz Wernisch, M Azim Surani 
 

 
 
 
 
Review timeline: Submission date:  27th Mar 2018  
 Editorial Decision:  25th Apr 2018  
 Revision received:  31st Jul 2018  
 Editorial Decision:  17th Aug 2018  
 Revision received:  24th Aug 2018  
 Accepted:  27th Aug 2018  
 
 
Editor: Daniel Klimmeck 
 
Transaction Report: 
 
(Note: With the exception of the correction of typographical or spelling errors that could be a source of ambiguity, 
letters and reports are not edited. The original formatting of letters and referee reports may not be reflected in this 
compilation.) 
 
 

1st Editorial Decision 25th Apr 2018 

Thank you for the submission of your manuscript (EMBOJ-2018-99518) to The EMBO Journal. 
Please accept my apologies for the delay in getting back to you due to delayed referee feedback. 
Your study has been sent to three referees, and we have received reports from all of them, which I 
enclose below.  
 
As you will see, the referees acknowledge the potential high interest and novelty of your work, 
although they also express a number of concerns that will have to be addressed before they can 
support publication of your manuscript in The EMBO Journal. While referee #3 is overall positive 
and supportive, referee #1 states concerns about the claims made on relevance of aKG and oxidative 
phosphorylation for stem cell fate determination and asks you to corroborate your analyses (referee 
#1, pts 1,3). Along the same lines, this referee also requests analysis of protein levels and activities 
of enzymes involved in aKG synthesis (referee #1, pt. 2). Referee #2 agrees in that the causal link 
between aKG and control of differentiation is not sufficiently supported by the current data, and 
points to subtlety of effects and inconsistencies in the data. In addition, all referees list a number of 
technical and methods issues on assays used and controls made, as well as incomplete 
documentation, points that need to be addressed to achieve the level of robustness required for The 
EMBO Journal.  
 
I judge the comments of the referees to be generally reasonable and we are in principle happy to 
invite you to revise your manuscript experimentally to address the referees' comments. I agree that 
your resource would strongly benefit from more in-depth analysis of the functional implication of 
aKG as opposed to other differential regulators.  
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REFEREE COMMENTS: 
 
Referee #1:  
 
In this manuscript 'Metabolic regulation of pluripotency and germ cell fate through alpha-
ketoglutarate', Tischler et al investigate the transcriptomic dynamics during stem cell differentiation 
and influences of alpha-ketoglutarate (aKG) on stem cell fate determination. This is generally a solid 
study conducted at a high standard. The findings on aKG's roles in different stages of stem cell 
differentiation are interesting. However, the evidence that distinguish aKG from other factors that 
also change during stem cell differentiation are less solid than the other parts of this study.  
1. As I mentioned above, the evidence from single cell RNA-seq are not strong enough to support 
the importance of alpha-ketoglutarate in stem cell fate determination. The only direct evidence is the 
down-regulation of Idh2 and up-regulation of Dlst during the ESC-to-EpiLC differentiation, but 
there are also other metabolic genes that have changes in their expression levels in this process. 
Moreover, the correlation between Dlst expression and the pseudotime (Fig 3A) is very subtle, 
suggesting that Dlst is not likely to be among the metabolic genes with the most dramatic changes. 
A comprehensive comparison among all genes considered in the pseudotime analysis will be helpful 
to clarify the importance of aKG.  
2. The authors conclude that evidence demonstrating changes in expression levels of genes coding 
for enzymes involved in aKG generation distinguishes their study from previous recent reports 
showing the importance of aKG in regulating pluripotency (Fig EV1D).  However, gene expression 
is not a direct indicator of enzyme level or activity.  Thus, it would be more informative if protein 
level or enzyme activity was quantified and presented in these contexts.  
3. Inhibition of glycolysis by 2-DG is used to validate the importance of OXPHOS in maintaining 
naïve pluripotency. This evidence is indirect and there is no other evidence showing that the 
inhibition of glycolysis results in enhanced OXPHOS.  
4. More details of the computational methods are necessary. For instance, the software used to 
obtain the transcript counts needs to be reported. For the pseudotime analysis, it is also not clear 
what criterion is used to identify genes that change during the differentiation.  
5. The authors claim that aKG can safeguard the transient epigenomic status during differentiation 
by maintaining histone methylation levels (Fig 4E). aKG is well known as a substrate of the aKG 
dependent histone and DNA demethylases. Thus, by intuition, adding aKG should lead to enhanced 
activity of these enzymes and loss of the histone methylation marks. However, Fig 4E shows that 
addition of aKG results in increased H3K27me3 levels. This is interesting but some discussion on 
possible mechanisms will be helpful.  
6. The color scheme used in some figures (Fig 2B, 3B, etc) needs to be changed. It is very hard to 
see the difference between the two green colors used in these figures.  
 
Referee #2:  
 
Developmental potential of pluripotent stem cells (PSCs) is regulated by sophisticated molecular 
networks controlling their gene expression, epigenetic status as well as metabolic status. In this 
study, the author examined roles of energy metabolic status during development of naïve 
pluripotential ES cells (ESCs) into PGCLCs via primed epiblast-like cells (EpiLCs) in culture.  
They first found that glycolysis- and oxidative phosphorylation-related enzyme genes were up- and 
down-regulated, respectively, in the course of ESC differentiation to EpiSCs by single-cell RNA-
seq, and also showed inhibition of glycolysis resulted in retention of ESCs undergoing conversion to 
EpiLCs in naïve status. The results together indicate the importance of glycolysis in primed PSCs, 
which is consistent to previous studies.  
The authors then focused on aKG, a metabolite in the TCA cycle, because of down- and up-
regulation of an aKG-producing enzyme gene, Idh2 and aKG-catobolizing enzyme gene, Dist, 
respectively, during EpiLC development from ESCs. Further investigation concerning roles of aKG 
indicated that aKG repressed conversion of ESCs to EpiLCs and partially replaced 2i for 
maintenance of naïve pluripotency of ESCs. The results also showed that addition of Citrate, an up-
stream metabolite to aKG, but not a down-stream metabolite Succinate, repressed EpiLC 
development from ESCs, indicating the importance of levels of aKG among the TCA cycle 
metabolites for regulating EpiLC development. The authors then demonstrated that repression of 
EpiLC development by aKG did not necessarily depend on repression of cell cycle progression.  
aKG is a co-factor of H3K9me2 demethylases KDM3A and KDM3B and TET enzymes involved in 
DNA demethylation, and the results demonstrated that knock-down of Kdm3a/b or Tet1/2 repressed 
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the inhibitory effect of aKG for EpiLC development form ESCs, suggesting that aKG functions on 
EpiLC development via H3K9me2 and DNA methylation. The authors finally tested roles of aKG 
on PGCLC differentiation from EpiLCs, and found that aKG stimulated PGCLC formation from 
EpiLCs and partially replaced BMP4. In addition, aKG sustained the PGCLC competence in EpiLCs 
probably via affecting histone and DNA methylation.  
 
This study revealed the importance of levels of aKG on EpiLC development from ESCs, PGCLC 
competence as well as PGCLC differentiation from EpiLCs, which should be highly interesting and 
important to understand roles of energy metabolisms on EpiLC and PGCLC development. 
Meanwhile experimental evidence showing direct linkage between aKG and regulation of epigenetic 
status in EpiLCs is weak.  
 
Specific comments:  
1. Fig.4E, Fig. EV6A, page 10, 2nd paragraph; Expected effects of addition of aKG are decreased 
H3K9me and H3K27me3. H3K9me2 is not significantly changes or is slightly decreased, if any, but 
H3K27me3 is clearly increased in dm-aKG treated cells compared with control cells both at 48 and 
72 hr in Fig. 4E, which is not consistent with the expected functions of aKG. In addition, if aKG 
results in decreased H3K9me2, it may be more suitable to naïve status than primed EpiLCs status, 
which may also be inconsistent with prolonged PGCLC competence in EpiLCs in the presence of 
aKG. Please address those issues.  
 
2. Fig.4, page 8-; Addition of dm-aKG enhanced PGCLC differentiation from EpiLCs, and it 
suggests that aKG is increased during PGCLC development. In that case, is the expression of Idh2 
and Dist up- and down-regulated, respectively, in the course of PGCLC development?  
 
Minor points:  
1. Fig. EV4I; The graph shows relative colony formation in Kdm3a/b-KD condition over control 
with or without aKG, but in the absence of dm-KG, colonies may be rarely formed, and it is 
important to show increased colony formation by aKG without Kdm3a/b-KD and decreased aKG-
induced colony formation by Kdm3a/b-KD. Therefore it may be more suitable to compare ratios of 
colony number in total number of plated cells in each condition.  
2. The color codes may be inverted in the graphs in Fig. 3C, Fig.3H right panel.  
3. Fig.3G left panel; EpiLCs in the legend may be ESCs w/o 2i.  
4. page 9, 3rd paragraph, lines 1- 2; 'Addition of dm-aKG up to 24h after-----' may be 'Addition of 
dm-aKG from 24h to 48h after-----'.  
5. page 12, lines 2-3; Please cite a reference or show data concerning OSN binding in Idh2.  
 
 
Referee #3:  
 
This is an excellent and novel manuscript that for the first time systematically tests the effect of aKG 
co-factor on distinct states of pluripotency, during their transition and in PGCs. This is a much 
needed study and set of results following the initial study by Carey e tal. Nature 2015 showing that 
Glutamine helps pluripotency via aKG production, however since then systematic characterization 
of aKG on pluripotency was missing (and in different states and during their transitions).  
 
The authors use exacting reporters and cutting edge differentiation protocols (e.g. REX1-dGFP, 
Blimp1-mVenus and PGC reporters) to test the result and responsive genes to aKG. The establish 
beyond any doubt that aKG supports naive and PGC state and not the primed states. They do not 
stop there, but also show the importance of TET enzymes and KDm members to directly dictate the 
epigenetic state. They also establish difference in TCA cycle gene expression during naive to primed 
state, that supports the rationale for having aKG levels high in naive state.  
 
The manuscript is very well written, and all conclusions are strongly supported by the results. I have 
no meaningful comments to add or experiments to requests, and support publishing this exciting and 
thorough study. 
 
1st Revision - authors' response 31st Jul 2018 
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Rebuttal 
General comments 
We are most grateful for the Editorial guidance for the revisions, and thank the Reviewers for their 

suggestions and constructive comments. In response, we have performed additional experiments 

and made appropriate changes to the manuscript. These include comprehensive statistical 

analysis on our single-cell expression data to quantify transcript level changes during the 

conversion to EpiLC fate with respect to the 478 regulators with roles in cellular metabolism. 

Importantly, we measured levels of the αKG-generating enzyme IDH2 during the ESC-to-EpiLC 

transition to strengthen the connection between IDH2-mediated αKG synthesis and the regulation 

of pluripotency. We further confirm elevated IDH2 protein levels as readout of TCA cycle activity 

following glycolytic inhibition through 2-DG. We provide additional support for a link between αKG 

and the epigenetic state of EpiLCs through the locus-specific analysis of H3K9me2 and 

H3K27me3 modifications by ChIP-qPCR. Accordingly, we discuss the increase in H3K27me3 

levels following dm-αKG supplementation and clarify the context-dependent roles of αKG in 

maintaining naïve pluripotency, and prolonging PGCLC competency, respectively.  

 

Our specific comments follow: 

Referee #1 

In this manuscript 'Metabolic regulation of pluripotency and germ cell fate through alpha-

ketoglutarate', Tischler et al investigate the transcriptomic dynamics during stem cell 

differentiation and influences of alpha-ketoglutarate (aKG) on stem cell fate determination. This is 

generally a solid study conducted at a high standard. The findings on aKG's roles in different 

stages of stem cell differentiation are interesting. However, the evidence that distinguish aKG 

from other factors that also change during stem cell differentiation are less solid than the other 

parts of this study.  

1. As I mentioned above, the evidence from single cell RNA-seq are not strong enough to support 

the importance of alpha-ketoglutarate in stem cell fate determination. The only direct evidence is 

the down-regulation of Idh2 and up-regulation of Dlst during the ESC-to-EpiLC differentiation, but 

there are also other metabolic genes that have changes in their expression levels in this process. 

Moreover, the correlation between Dlst expression and the pseudotime (Fig 3A) is very subtle, 

suggesting that Dlst is not likely to be among the metabolic genes with the most dramatic 

changes. A comprehensive comparison among all genes considered in the pseudotime analysis 

will be helpful to clarify the importance of aKG.  

 

We carried out a comprehensive statistical analysis of changes during the ESC-to-EpiLC 

transition of 478 transcripts linked to cellular metabolism, including 83 αKG-dependent 

dioxygenases, and of the key pluripotency (Esrrb, Klf4, Nanog, Sox2, and Tfcp2l1) and epiblast 
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fate (Dnmt3b, Fgf5, Lin28b) markers as references. We use the Kullback-Leibler (KL)-divergence 

between the genes’ expression at an early (ESCs in 2i/Lif culture conditions) and a late (48h 

EpiLCs) stage, respectively, as a metric to quantify gene expression changes. Higher KL-scores 

represent larger changes in transcript levels. The KL-divergence has several properties that make 

it suitable for this purpose: it is invariant to shifting and scaling of the data; however, it is sensitive 

to changes in the variance of the pseudotime trajectory. Ordering all 478 transcripts by their KL-

divergences, Idh2 and Dlst regulators have high KL-scores ranked as the 23rd and 58th, 

respectively, supporting substantial changes in expression during the ESC-to-EpiLC transition 

(see Appendix Table S1). Importantly, we identify Idh2 as the transcript with the top KL-score 

amongst all the TCA cycle genes analyzed, suggesting that the dynamic regulation of intracellular 

αKG levels through modulation of oxidative mitochondrial metabolism might be important for 

EpiLC differentiation. Indeed, we confirm this hypothesis through in-depth experimental 

validation. Genes with key roles in oxidative and glycolytic metabolism, respectively, rank 

comparably by our metric (i.e. KL-scores for Cox7a1, Cpt1a, and Pdk1 rank at 13th, 17th, and 

32nd, respectively).  

 

We provide this data set as a rank-ordered list (by descending KL-scores) as Appendix Table S1. 

Accordingly, we refer to the comprehensive quantitative analysis in the main text (see page 4, 

first paragraph, lines 10-11, page 5, last paragraph, lines 1-3, and page 12, first paragraph, line 

3). We provide details on the statistical analysis in the updated Methods section (see page 18, 

last paragraph). Furthermore, we acknowledge the less-pronounced change in Dlst transcript 

levels and now refer to it as ‘slight’ up regulation in the main text (see page 5, last paragraph, 

lines 2-3). 

 

 

2. The authors conclude that evidence demonstrating changes in expression levels of genes 

coding for enzymes involved in aKG generation distinguishes their study from previous 

recent reports showing the importance of aKG in regulating pluripotency (Fig EV1D).  However, 

gene expression is not a direct indicator of enzyme level or activity.  Thus, it would be more 

informative if protein level or enzyme activity was quantified and presented in these contexts.  

 

We measured IDH2 protein levels in naïve ESCs and at t=24h, 48h, and 72h during the EpiLC 

differentiation. Western blot analysis confirms the pronounced reduction of the αKG-generating 

enzyme during the ESC-to-EpiLC transition (see Fig EV3A to complement the pseudotime 

trajectory for Idh2 in Fig 3A). We amend the text in our manuscript accordingly (see page 6, lines 

2-3, and page 12, second paragraph, lines 3-5). 
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3. Inhibition of glycolysis by 2-DG is used to validate the importance of OXPHOS in maintaining 

naïve pluripotency. This evidence is indirect and there is no other evidence showing that the 

inhibition of glycolysis results in enhanced OXPHOS.  

 

Principally, restriction of glycolysis requires cells to use alternative metabolic pathways to meet 

their energetic demands. We verify an increased dependency on mitochondrial oxidative 

metabolism following glycolytic inhibition by 2-DG in the context of the ESC-to-EpiLC transition: 

we confirm elevated IDH2 protein levels as readout of enhanced TCA cycle activity following 2-

DG supplementation during the EpiLC differentiation (see Fig EV2A, referred to on page 5, line 

6). A previous report indicated increased mitochondrial respiration after addition of 2-DG to 

mESCs cultures (Zhou et al., 2012). Note that up regulation of oxidative metabolism as an 

adaptive response to compensate for glycolytic inhibition by 2-DG has also been observed in 

various tumor-derived cell lines (Pusapati & Settleman, 2016, Sottnik, Lori et al., 2011).  

 

 

4. More details of the computational methods are necessary. For instance, the software used in 

obtain the transcript counts needs to be reported. For the pseudotime analysis, it is also not clear 

what criterion is used to identify genes that change during the differentiation.  

 

We include details on the software used to obtain single-cell transcript counts in the Revised 

Methods section (see page 17, first full paragraph, lines 6-8). In addition, we provide details on 

the computational and statistical methods employed for the comprehensive quantitative 

pseudotime analysis of 478 transcripts implicated in metabolic regulation (see page 18, last 

paragraph, and Appendix Table S1; please also see point 1 above). 

 

 

5. The authors claim that aKG can safeguard the transient epigenomic status during 

differentiation by maintaining histone methylation levels (Fig 4E). aKG is well known as a 

substrate of the aKG dependent histone and DNA demethylases. Thus, by intuition, adding aKG 

should lead to enhanced activity of these enzymes and loss of the histone methylation marks. 

However, Fig 4E shows that addition of aKG results in increased H3K27me3 levels. This is 

interesting but some discussion on possible mechanisms will be helpful.   

 

The transition from pre- to post-implantation epiblast in vivo entails rapid accumulation of the 

repressive H3K9me2 mark at promoters, gene bodies, and enhancers of developmentally linked 

genes, and concomitantly, a genome-wide reduction and redistribution of the repressive 
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H3K27me3 mark (Kurimoto, Yabuta et al., 2015, Zylicz, Dietmann et al., 2015). The ESC-to-

EpiLC differentiation system in vitro faithfully recapitulates the histone methylation dynamics 

observed during this developmental transition (see Fig EV3A).  

 

We propose that dm-αKG supplementation during the EpiLC induction sustains KDM3A and 

KDM3B activity, thereby counteracting the locus-specific accumulation of H3K9me2 (see Fig 

EV4H, I and Fig 4F). In addition, αKG likely supports the low-DNA methylation state by enhancing 

the efficiency of the DNA hydroxylases TET1 and TET2 (see Fig EV4J). Consequently, αKG 

plausibly prevents the genome-wide reduction in H3K27me3 that normally occurs during epiblast 

development, by further promoting its spreading at high CpG- regions (Zylicz et al., 2015). 

 

Collectively, we show that αKG results in lower global H3K9me2 levels, which is consistent with a 

reduction of H3K9me2 levels at certain cis-regulatory elements (see Fig 4F; please also see point 

1 below), and conversely, increased H3K27me3 levels (Fig 4E), in line with the characteristic 

epigenetic state of a relatively naïve cell state (Fig EV3A). 

 

We discuss the possible counter-intuitive increase in H3K27me3 levels following addition of dm-

αKG in the manuscript (see page 10, last paragraph, lines 7-10, and page 14, last paragraph). 

 

Please also see our comments in response to Referee #2, point 1 below. 

 

 

6. The color scheme used in some figures (Fig 2B, 3B, etc) needs to be changed. It is very hard 

to see the difference between the two green colors used in these figures.  

 

We have amended the color scheme to improve the visibility of the differences in Fig 2B, 3B, and 

3G. 

 

 

Referee #2:  

 

Developmental potential of pluripotential stem cells (PSCs) are regulated by sophisticated 

molecular networks controlling their gene expression, epigenetic status as well as metabolic 

status. In this study, the author examined roles of energy metabolic status during development of 

naïve pluripotential ES cells (ESCs) into PGCLCs via primed epiblast-like cells (EpiLCs) in 

culture.  

They first found that glycolysis- and oxidative phosphorylation-related enzyme genes were up- 
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and down-regulated, respectively, in the course of ESC differentiation to EpiSCs by single-cell 

RNA-seq, and also showed inhibition of glycolysis resulted in retension of ESCs undergoing 

conversion to EpiLCs in naïve status. The results together indicate the importance of glycolysis in 

primed PSCs, which is consistent to previous studies.  

The authors then focused on aKG, a metabolite in the TCA cycle, because of down- and up-

regulation of an aKG-producing enzyme gene, Idh2 and aKG-catobolizing enzyme gene, Dist, 

respectively, during EpiLC development from ESCs. Further investigation concerning roles of 

aKG indicated that aKG repressed conversion of ESCs to EpiLCs and partially replaced 2i for 

maintenance of naïve pluripotency of ESCs. The results also showed that addition of Citrate, an 

up-stream metabolite to aKG, but not a down-stream metabolite Succinate, repressed EpiLC 

development from ESCs, indicating the importance of levels of aKG among the TCA cycle 

metabolites for regulating EpiLC development. The authors then demonstrated that repression of 

EpiLC development by aKG did not necessarily depend on repression of cell cycle progression.  

aKG is a co-factor of H3K9me2 demethylases KDM3A and KDM3B and TET enzymes involved in 

DNA demethylation, and the results demonstrated that knock-down of Kdm3a/b or Tet1/2 

repressed the inhibitory effect of aKG for EpiLC development form ESCs, suggesting that aKG 

functions on EpiLC development via H3K9me2 and DNA methylation. The authors finally tested 

roles of aKG on PGCLC differentiation from EpiLCs, and found that aKG stimulated PGCLC 

formation from EpiLCs and partially replaced BMP4. In addition, aKG sustained the PGCLC 

competence in EpiLCs probably via affecting histone and DNA methylation.  

 

This study revealed the importance of levels of aKG on EpiLC development from ESCs and on 

PGCLC competence as well as PGCLC differentiation from EpiLCs, which should be highly 

interesting and important to understand roles of energy metabolisms on EpiLC and PGCLC 

development. Meanwhile experimental evidence showing direct linkage between aKG and 

regulation of epigenetic status in EpiLCs is weak.  

 

We greatly appreciate this feedback; we address the linkage between αKG and epigenetic state 

in more detail (see below).  

 

 

Specific comments:  

1. Fig.4E, Fig. EV6A, page 10, 2nd paragraph; Expected effects of addition of aKG are decreased 

H3K9me and H3K27me3. H3K9me2 is not significantly changes or is slightly decreased, if any, 

but H3K27me3 is clearly increased in dm-aKG treated cells compared with control cells both at 

48 and 72 hr in Fig. 4E, which is not consistent with the expected functions of aKG  
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We acknowledge the comment and refer to our comment above (Referee #1, point 5).  

The global changes in H3K9me2 levels following dm-αKG treatment are mild (Fig 4E), however, 

the conversion from naïve to primed pluripotency involves the acquisition of the H3K9me2 mark 

at promoters, gene bodies, and enhancers of some developmentally linked genes (Zylicz et al., 

2015). We address this with reference to the locus-specific effects of dm-αKG supplementation 

during the EpiLC induction, by analyzing H3K9me2 and H3K27me3 modifications by ChIP-qPCR 

(see Fig 4F, Fig EV6D).  

 

We find that dm-αKG opposes the accumulation of H3K9me2 on certain enhancer elements 

associated with the genes for the naïve pluripotent state (Zylicz et al., 2015), such as Esrrb, 

Arid5b, Prdm14, and Nanog. Consistent with this, levels for the repressive H3K27me3 mark are 

higher at these pluripotency-associated genes, except for Prdm14, where we detected no 

change. By contrast, we observe an inverse pattern, with high H3K9me2 and low H3K27me3, 

respectively, marking in the cis-regulatory region of Pdgfa. Notably, on loci, such as in the 

enhancer region of the germ cell-associated gene Tfap2c, H3K9me2 levels show an increase, 

while there also is an increase in the repressive H3K27me3 mark. This is consistent with 

repression of germline genes by both H3K9me2 and H3K27me3 during epiblast development 

(Kurimoto et al., 2015).  

 

Altogether, while there is reduction in the global H3K9me2 levels following dm-αKG 

supplementation during the EpiLC induction, we observe a locus-specific effect of dm-αKG.  

Thus, a subset of cis-regulatory regions, in particular enhancer elements of pluripotency-

associated genes have low levels of H3K9me2, but other regulatory regions, such as enhancers 

of the germ cell-associated gene Tfap2c, or the platelet-derived growth factor subunit A (Pdgfa), 

respectively, show an increase in H3K9me2 levels, irrespective of dm-αKG treatment. The locus-

specific effect might reflect the selective recruitment of αKG-dependent H3K9me2 demethylases 

and the subtle changes in global H3K9me2 levels.      

 

We present the results of these new ChIP-qPCR data on representative loci (Esrrb, Arid5b, 

Tfap2c, Nanog, Prdm14, and Pdgfa) in Fig 4F and Fig EV6D and in the text (see page 11, first full 

paragraph, page 11, second full paragraph, lines 4-8, and page 14, last paragraph, lines 4-6); we 

provide technical details in the Methods section (see page 24, last paragraph, continued on page 

25).  

 

 



	
   7	
  

In addition, if aKG results in decreased H3K9me2, it may be more suitable to naïve status than 

primed EpiLCs status, which may also be inconsistent with prolonged PGCLC competence in 

EpiLCs in the presence of aKG. Please address those issues.  

 

We agree that αKG plays an important role in maintaining naïve pluripotency, as we demonstrate 

through its inhibitory effect on the conversion to the primed pluripotent state and its ability to 

partially replace 2i inhibitors in sustaining an embryonic stem cell (ESC) state. The addition of 

dm-αKG even at t=24h of EpiLC stimulation, results in the majority of cells retaining a Rex1-GFP 

positive state (see attached Figure); consequently, there is a reduction in the efficiency of PGCLC 

specification (Fig EV6A, EV6B). By contrast, the addition of dm-αKG at t=48h of EpiLC 

differentiation, at the time when cells start to become competent for the PGCLC fate, promotes 

and extends the duration of the competent state to 72h, but without a change in the efficiency of 

the PGCLC induction (Fig 4C, Fig EV6C). Note that in the control EpiLCs, the competent state for 

the specification of Prdm1-GFP positive PGCLCs largely declines after 48h.  

 

We propose a relative balance between H3K9me2 and H3K27me3 as being a key to the 

developmental competence for the PGC fate, which is apparently sustained for a longer period by 

dm-αKG. Of note, dm-αKG supplementation at the time of competence does not restore the very 

low H3K9me2 levels to those detected in naïve ESCs. Instead, αKG conceivably counteracts the 

differentiation-stimulating bFGF & ActivinA signaling and maintains equilibrium between 

H3K9me2 removal through activating αKG-dependent H3K9me2 demethylases, and 

differentiation-induced H3K9me2 accumulation at certain loci, and consequently, prevents the 

global reduction of H3K27me3. This proposal merits further investigation in the future.  

 

We discuss the dual functions of αKG in sustaining the naïve pluripotent state and in extending 

the developmental competence for the PGC fate, respectively, in detail (see page 14, second and 

third full paragraphs, and page 15, first full paragraph). 

 

 

2. Fig.4, page 8-; Addition of dm-aKG enhanced PGCLC differentiation from EpiLCs, and it 

suggests that aKG is increased during PGCLC development. In that case, is the expression of 

Idh2 and Dist up- and down-regulated, respectively, in the course of PGCLC development?  

 

We investigated expression levels of key regulators implicated in oxidative metabolism (Cox7a1, 

Cpt1a), αKG synthesis (Idh2), and glycolysis (Pdk1, Pdk3) during PGCLC development by qRT 

PCR analysis. We find Cox7a1 and Idh2 to be up regulated in day4 PGCLC, in line with an 

enhanced oxidative metabolism and increased αKG generation during PGC development. This is 
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also consistent with a recent report from our group, showing that Idh2 transcript levels reach a 

maximum in E9.5 ex vivo-isolated PGCs (Hackett, Sengupta et al., 2013).  

 

We include the new data set as Fig EV5A and refer to it in the main text (see page 9, first 

paragraph, lines 2-8, and page 14, first paragraph, lines 5-6). 

 

Minor points:  

1. Fig. EV4I; The graph shows relative colony formation in Kdm3a/b-KD condition over control 

with or without aKG, but in the absence of dm-KG, colonies may be rarely formed, and it is 

important to show increased colony formation by aKG without Kdm3a/b-KD and decreased aKG-

induced colony formation by Kdm3a/b-KD. Therefore it may be more suitable to compare ratios of 

colony number in total number of plated cells in each condition.  

 

We present bright-field images of AP-stained colonies at the bottom of the figure panel, which 

represent the low colony forming ability of DMSO-treated control cells, the enhanced colony 

formation after addition of dm-αKG during EpiLC induction, and the attenuation of the dm-αKG-

induced effect upon knockdown of Kdm3a/b, respectively. However, we consider it more 

appropriate to graphically represent the relative colony formation after Kdm3a/b knockdown, 

normalized to the non-targeting control, in both conditions (dm-αKG and DMSO, respectively).  

 

 

2. The color codes may be inverted in the graphs in Fig. 3C, Fig.3H right panel.   

 

We have corrected this error. 

 

3. Fig.3G left panel; EpiLCs in the legend may be ESCs w/o 2i.  

 

We have amended the legend accordingly.  

 

4. page 9, 3rd paragraph, lines 1- 2; 'Addition of dm-aKG up to 24h after-----' may be 'Addition of 

dm-aKG from 24h to 48h after-----'.  

 

We have modified the sentence as suggested. 

 

5. page 12, lines 2-3; Please cite a reference or show data concerning OSN binding in Idh2.  
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We now show data on OSN binding within a region of 20Kb upstream to 4Kb downstream of the 

transcriptional start site of Idh2; by contrast, we do not find this to be the case for Idh1, and Dlst.  

Please see graphical representations (see Appendix Figure S1), and our reference to it in the text 

(see page 12, last paragraph, lines 14-15, continued on page 13, lines 1-3). We provide details 

on evaluating OSN binding, including the three references to the ChIP-seq data sets we have 

analyzed, in the Methods section (see page 25, last paragraph, continued on page 26).  

 

 

Referee #3:  

 

This is an excellent and novel manuscript that for the first time systematically tests the effect of 

aKG co-factor on distinct states of pluripotency, during their transition and in PGCs. This is a 

much needed study and set of results following the initial study by Carey e tal. Nature 2015 

showing that Glutamine helps pluripotency via aKG production, however since then systematic 

characterization of aKG on pluripotency was missing (and in different states and during their 

transitions).  

 

The authors use exacting reporters and cutting edge differentiation protocols (e.g. REX1-dGFP, 

Blimp1-mVenus and PGC reporters) to test the result and responsive genes to aKG. The 

establish beyond any doubt that aKG supports naive and PGC state and not the primed states. 

They do not stop there, but also show the importance of TET enzymes and KDm members to 

directly dictate the epigenetic state. They also establish difference in TCA cycle gene expression 

during naive to primed state, that supports the rationale for having aKG levels high in naive state.  

 

The manuscript is very well written, and all conclusions are strongly supported by the results. I 

have no meaningful comments to add or experiments to requests, and support publishing this 

exciting and thorough study.  

 

We acknowledge and appreciate the supportive comments by the Reviewer. 
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Figure 1. Addition of dm-αKG at t=24h to t=48h during the ESC-to-EpiLC transition retains a 
Rex1-high state. Shown is the fraction of Rex1-GFPd2 cells, following dm-αKG supplementation 
from t=24h, averaged over duplicate experiments. Error bars indicate ± SE. 
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  RNA-­‐Seq	
  data:	
  Gene	
  Expression	
  Omnibus	
  GSE39462,	
  
Proteomics	
  data:	
  PRIDE	
  PXD000208	
  etc.)	
  Please	
  refer	
  to	
  our	
  author	
  guidelines	
  for	
  ‘Data	
  Deposition’.

Data	
  deposition	
  in	
  a	
  public	
  repository	
  is	
  mandatory	
  for:	
  
a.	
  Protein,	
  DNA	
  and	
  RNA	
  sequences	
  
b.	
  Macromolecular	
  structures	
  
c.	
  Crystallographic	
  data	
  for	
  small	
  molecules	
  
d.	
  Functional	
  genomics	
  data	
  
e.	
  Proteomics	
  and	
  molecular	
  interactions
19.	
  Deposition	
  is	
  strongly	
  recommended	
  for	
  any	
  datasets	
  that	
  are	
  central	
  and	
  integral	
  to	
  the	
  study;	
  please	
  consider	
  the	
  
journal’s	
  data	
  policy.	
  If	
  no	
  structured	
  public	
  repository	
  exists	
  for	
  a	
  given	
  data	
  type,	
  we	
  encourage	
  the	
  provision	
  of	
  
datasets	
  in	
  the	
  manuscript	
  as	
  a	
  Supplementary	
  Document	
  (see	
  author	
  guidelines	
  under	
  ‘Expanded	
  View’	
  or	
  in	
  
unstructured	
  repositories	
  such	
  as	
  Dryad	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  Figshare	
  (see	
  link	
  list	
  at	
  top	
  right).
20.	
  Access	
  to	
  human	
  clinical	
  and	
  genomic	
  datasets	
  should	
  be	
  provided	
  with	
  as	
  few	
  restrictions	
  as	
  possible	
  while	
  
respecting	
  ethical	
  obligations	
  to	
  the	
  patients	
  and	
  relevant	
  medical	
  and	
  legal	
  issues.	
  If	
  practically	
  possible	
  and	
  compatible	
  
with	
  the	
  individual	
  consent	
  agreement	
  used	
  in	
  the	
  study,	
  such	
  data	
  should	
  be	
  deposited	
  in	
  one	
  of	
  the	
  major	
  public	
  access-­‐
controlled	
  repositories	
  such	
  as	
  dbGAP	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  EGA	
  (see	
  link	
  list	
  at	
  top	
  right).
21.	
  Computational	
  models	
  that	
  are	
  central	
  and	
  integral	
  to	
  a	
  study	
  should	
  be	
  shared	
  without	
  restrictions	
  and	
  provided	
  in	
  a	
  
machine-­‐readable	
  form.	
  	
  The	
  relevant	
  accession	
  numbers	
  or	
  links	
  should	
  be	
  provided.	
  When	
  possible,	
  standardized	
  
format	
  (SBML,	
  CellML)	
  should	
  be	
  used	
  instead	
  of	
  scripts	
  (e.g.	
  MATLAB).	
  Authors	
  are	
  strongly	
  encouraged	
  to	
  follow	
  the	
  
MIRIAM	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  deposit	
  their	
  model	
  in	
  a	
  public	
  database	
  such	
  as	
  Biomodels	
  (see	
  link	
  list	
  
at	
  top	
  right)	
  or	
  JWS	
  Online	
  (see	
  link	
  list	
  at	
  top	
  right).	
  If	
  computer	
  source	
  code	
  is	
  provided	
  with	
  the	
  paper,	
  it	
  should	
  be	
  
deposited	
  in	
  a	
  public	
  repository	
  or	
  included	
  in	
  supplementary	
  information.

22.	
  Could	
  your	
  study	
  fall	
  under	
  dual	
  use	
  research	
  restrictions?	
  Please	
  check	
  biosecurity	
  documents	
  (see	
  link	
  list	
  at	
  top	
  
right)	
  and	
  list	
  of	
  select	
  agents	
  and	
  toxins	
  (APHIS/CDC)	
  (see	
  link	
  list	
  at	
  top	
  right).	
  According	
  to	
  our	
  biosecurity	
  guidelines,	
  
provide	
  a	
  statement	
  only	
  if	
  it	
  could.

F-­‐	
  Data	
  Accessibility

D-­‐	
  Animal	
  Models

E-­‐	
  Human	
  Subjects

NA

G-­‐	
  Dual	
  use	
  research	
  of	
  concern

We	
  have	
  deposited	
  the	
  single-­‐cell	
  RNA-­‐Seq	
  data	
  generated	
  in	
  this	
  study	
  under	
  accession	
  number	
  
GSE107761	
  in	
  the	
  Gene	
  Expression	
  Omnibus	
  database.	
  We	
  specify	
  the	
  accession	
  number	
  under	
  
'Data	
  availability'	
  at	
  the	
  end	
  of	
  the	
  Methods	
  section.	
  

See	
  section	
  F-­‐18	
  above.

We	
  are	
  providing	
  catalog	
  numbers	
  for	
  all	
  antibodies	
  used	
  in	
  this	
  study	
  in	
  the	
  respective	
  sections	
  
('Mitochondria	
  labelling',	
  'Western	
  blot	
  analysis',	
  'ChIP-­‐qPCR	
  analysis')	
  within	
  the	
  Methods	
  section	
  
of	
  our	
  manuscript.	
  

We	
  are	
  listing	
  all	
  cell	
  lines	
  used	
  in	
  this	
  study,	
  including	
  the	
  specific	
  clones	
  when	
  applicable,	
  and	
  
their	
  source	
  within	
  the	
  section	
  'Cell	
  lines'	
  within	
  the	
  Methods	
  section	
  of	
  our	
  manuscript.

NA

NA

NA

NA

NA

NA

All	
  models	
  used	
  are	
  already	
  published	
  as	
  open	
  access	
  and	
  are	
  freely	
  available	
  (please	
  see	
  Methods	
  
for	
  more	
  details	
  and	
  specific	
  parameter	
  settings).	
  

NA

NA

NA

NA

NA
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